Transient Central Diabetes Insipidus (Arginine Vasopressin Deficiency) Following SARS-CoV-2 Vaccination: A Case Report and Literature Review

Page: [1856 - 1864] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people, causing the COVID-19 global pandemic. The use of novel technologies led to the development of different types of SARS-CoV-2 vaccines that have reduced severe disease courses and related deaths. Besides the positive impact of vaccination on the pandemic, local and systemic side effects have been reported; they are usually mild to moderate, although also serious adverse events have been described.

Case Presentation: A 21-year-old female was referred to our hospital for the recent onset of severe polyuria and polydipsia, with the need for about 8 liters of daily water intake. The symptoms developed seven days after the administration of the second dose of the mRNA-based (Pfizer-BioNTech® BNT162b2) SARS-CoV-2 vaccine. In the suspicion of central diabetes insipidus (DI) development, she started treatment with desmopressin (Minirin® tablets) 60 mg/day with an improvement of symptoms and thirst. A thickening of the pituitary stalk was observed at the pituitary MRI with loss of the posterior pituitary bright spot on T1 weighted images. To confirm the diagnosis of central DI, both the water deprivation test and arginine stimulated copeptin test were performed; whilst the former gave no clear-cut indication of DI, the latter showed a reduced copeptin peak after arginine infusion consistent with the diagnosis of partial central DI. Furthermore, the development of symptoms right after the second dose of the vaccine strengthened the hypothesis that DI was related to the vaccination itself. After our evaluation, there was a progressive reduction of desmopressin dose to a complete discontinuation with the maintenance of a normal hydroelectrolytic balance. Clinical and biochemical follow-up was performed by repeating a pituitary MRI and a second arginine-stimulated copeptin test 15 months after the diagnosis. This time, copeptin levels reached a significantly higher peak after arginine stimulation that completely excluded central DI and at pituitary MRI, the thickening of the pituitary stalk previously described was no longer visible.

Conclusion: Neurohypophysitis can have an abrupt onset independently of the etiology. Central DI is a rather exceptional event after SARS-CoV-2 vaccination but should be recalled in case of sudden polyuria and polydipsia. DI is indeed reported even after SARS-CoV-2 infection, thus, this report should not discourage the use of mRNA-based vaccines. Furthermore, our case demonstrates that full recovery of posterior pituitary function is possible after immunization with anti-Covid-19 BNT162b2 vaccine. Further studies are needed to clarify the possible mechanism relating to SARS-CoV-2 vaccination and this rare adverse event.

[1]
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2023. Available From: https://covid19.who.int/
[2]
Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis., 2022, 22(9), 1293-1302.
[http://dx.doi.org/10.1016/S1473-3099(22)00320-6] [PMID: 35753318]
[3]
Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 Vaccines. JAMA, 2021, 325(13), 1318-1320.
[http://dx.doi.org/10.1001/jama.2021.3199] [PMID: 33635317]
[4]
Lamprinou, M.; Sachinidis, A.; Stamoula, E.; Vavilis, T.; Papazisis, G. COVID-19 vaccines adverse events: Potential molecular mechanisms. Immunol. Res., 2023, 71(3), 356-372.
[http://dx.doi.org/10.1007/s12026-023-09357-5] [PMID: 36607502]
[5]
Zhao, Y.; Wu, X. Influence of COVID-19 vaccines on endocrine system. Endocrine, 2022, 78(2), 241-246.
[http://dx.doi.org/10.1007/s12020-022-03119-3] [PMID: 35751776]
[6]
Faje, A. Hypophysitis: Evaluation and Management. Clin. Diabetes Endocrinol., 2016, 2(1), 15.
[http://dx.doi.org/10.1186/s40842-016-0034-8] [PMID: 28702249]
[7]
Caturegli, P.; Di Dalmazi, G.; Lombardi, M.; Grosso, F.; Larman, H.B.; Larman, T.; Taverna, G.; Cosottini, M.; Lupi, I. Hypophysitis secondary to cytotoxic T-lymphocyte–associated protein 4 blockade. Am. J. Pathol., 2016, 186(12), 3225-3235.
[http://dx.doi.org/10.1016/j.ajpath.2016.08.020] [PMID: 27750046]
[8]
Kurokawa, R.; Kurokawa, M.; Baba, A.; Nakaya, M.; Kato, S.; Bapuraj, J.; Nakata, Y.; Ota, Y.; Srinivasan, A.; Abe, O.; Moritani, T. Neuroimaging of hypophysitis: Etiologies and imaging mimics. Jpn. J. Radiol., 2023, 41(9), 911-927.
[http://dx.doi.org/10.1007/s11604-023-01417-y] [PMID: 37010787]
[9]
Ankireddypalli, A.R.; Chow, L.S.; Radulescu, A.; Kawakami, Y.; Araki, T. A case of hypophysitis associated with SARS-CoV-2 vaccination. AACE Clin. Case Rep., 2022, 8(5), 204-209.
[http://dx.doi.org/10.1016/j.aace.2022.06.001] [PMID: 35754921]
[10]
Ishay, A.; Shacham, E.C. Central diabetes insipidus: A late sequela of BNT162b2 SARS-CoV-2 mRNA vaccine? BMC Endocr. Disord., 2023, 23(1), 47.
[http://dx.doi.org/10.1186/s12902-023-01296-4] [PMID: 36810011]
[11]
Ach, T.; Kammoun, F.; Fekih, H.E.; Slama, N.B.H.; Kahloun, S.; Fredj, F.B. Central diabetes insipidus revealing a hypophysitis induced by SARS-CoV-2 vaccine. Therapie, 2023, 78(4), 453-455.
[http://dx.doi.org/10.1016/j.therap.2022.09.007]
[12]
Partenope, C.; Pedranzini, Q.; Petri, A.; Rabbone, I.; Prodam, F.; Bellone, S. AVP deficiency (central diabetes insipidus) following immunization with anti-COVID-19 BNT162b2 Comirnaty vaccine in adolescents: A case report. Front. Endocrinol. (Lausanne), 2023, 14, 1166953.
[http://dx.doi.org/10.3389/fendo.2023.1166953] [PMID: 37143723]
[13]
Bouça, B.; Roldão, M.; Bogalho, P.; Cerqueira, L.; Silva-Nunes, J. Central diabetes insipidus following immunization with BNT162b2 mRNA COVID-19 vaccine: A case report. Front. Endocrinol. (Lausanne), 2022, 13, 889074.
[http://dx.doi.org/10.3389/fendo.2022.889074] [PMID: 35600593]
[14]
Dashe, A.M.; Cramm, R.E.; Crist, C.A.; Habener, J.F. Solomon DH. A water deprivation test for the differential diagnosis of polyuria. JAMA, 1963, 185(9), 699-703.
[http://dx.doi.org/10.1001/jama.1963.03060090031011]
[15]
Winzeler, B.; Cesana-Nigro, N.; Refardt, J.; Vogt, D.R.; Imber, C.; Morin, B.; Popovic, M.; Steinmetz, M.; Sailer, C.O.; Szinnai, G.; Chifu, I.; Fassnacht, M.; Christ-Crain, M. Arginine-stimulated copeptin measurements in the differential diagnosis of diabetes insipidus: A prospective diagnostic study. Lancet, 2019, 394(10198), 587-595.
[http://dx.doi.org/10.1016/S0140-6736(19)31255-3] [PMID: 31303316]
[16]
Ippolito, S.; Gallo, D.; Rossini, A.; Patera, B.; Lanzo, N.; Fazzino, G.F.M.; Piantanida, E.; Tanda, M.L. SARS-CoV-2 vaccine-associated subacute thyroiditis: Insights from a systematic review. J. Endocrinol. Invest., 2022, 45(6), 1189-1200.
[http://dx.doi.org/10.1007/s40618-022-01747-0] [PMID: 35094372]
[17]
Lee, H.J.; Sajan, A.; Tomer, Y. Hyperglycemic Emergencies Associated With COVID-19 Vaccination: A Case Series and Discussion. J. Endocr. Soc., 2021, 5(11), bvab141.
[http://dx.doi.org/10.1210/jendso/bvab141] [PMID: 34604689]
[18]
Varona, J.F.; García-Isidro, M.; Moeinvaziri, M.; Ramos-López, M.; Fernández-Domínguez, M. Primary adrenal insufficiency associated with Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia (VITT). Eur. J. Intern. Med., 2021, 91, 90-92.
[http://dx.doi.org/10.1016/j.ejim.2021.06.025] [PMID: 34256983]
[19]
Taylor, P.; Allen, L.; Shrikrishnapalasuriyar, N.; Stechman, M.; Rees, A. Vaccine‐induced thrombosis and thrombocytopenia with bilateral adrenal haemorrhage. Clin. Endocrinol. (Oxf.), 2022, 97(1), 26-27.
[http://dx.doi.org/10.1111/cen.14548] [PMID: 34235757]
[20]
Aliberti, L.; Gagliardi, I.; Rizzo, R.; Bortolotti, D.; Schiuma, G.; Franceschetti, P.; Gafà, R.; Borgatti, L.; Cavallo, M.A.; Zatelli, M.C.; Ambrosio, M.R. Pituitary apoplexy and COVID-19 vaccination: A case report and literature review. Front. Endocrinol. (Lausanne), 2022, 13, 1035482.
[http://dx.doi.org/10.3389/fendo.2022.1035482] [PMID: 36465651]
[21]
Piñar-Gutiérrez, A.; Remón-Ruiz, P.; Soto-Moreno, A. Case report: Pituitary apoplexy after COVID-19 vaccination. Med. Clin. (Barc.), 2022, 158(10), 498-499.
[http://dx.doi.org/10.1016/j.medcli.2021.09.028] [PMID: 34895747]
[22]
Taieb, A.; Asma, B.A.; Mounira, E.E. Evidences that SARS-CoV-2 Vaccine-Induced apoplexy may not be solely due to ASIA or VITT syndrome’, Commentary on Pituitary apoplexy and COVID-19 vaccination: A case report and literature review. Front. Endocrinol. (Lausanne), 2023, 14, 1111581.
[http://dx.doi.org/10.3389/fendo.2023.1111581] [PMID: 36761192]
[23]
Bragazzi, N.L.; Hejly, A.; Watad, A.; Adawi, M.; Amital, H.; Shoenfeld, Y. ASIA syndrome and endocrine autoimmune disorders. Best Pract. Res. Clin. Endocrinol. Metab., 2020, 34(1), 101412.
[http://dx.doi.org/10.1016/j.beem.2020.101412] [PMID: 32265102]
[24]
Borba, V.; Malkova, A.; Basantsova, N.; Halpert, G.; Andreoli, L.; Tincani, A.; Amital, H.; Shoenfeld, Y. Classical Examples of the Concept of the ASIA Syndrome. Biomolecules, 2020, 10(10), 1436.
[http://dx.doi.org/10.3390/biom10101436] [PMID: 33053910]
[25]
Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M. Cancer immunotherapy — immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol., 2017, 13(4), 195-207.
[http://dx.doi.org/10.1038/nrendo.2016.205] [PMID: 28106152]
[26]
Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med., 2018, 378(2), 158-168.
[http://dx.doi.org/10.1056/NEJMra1703481] [PMID: 29320654]
[27]
Takahashi, Y. MECHANISMS IN ENDOCRINOLOGY: Autoimmune hypopituitarism: Novel mechanistic insights. Eur. J. Endocrinol., 2020, 182(4), R59-R66.
[http://dx.doi.org/10.1530/EJE-19-1051] [PMID: 31999621]
[28]
Caturegli, P.; Newschaffer, C.; Olivi, A.; Pomper, M.G.; Burger, P.C. Rose, NR Autoimmune hypophysitis. Endocrine Rev., 2005, 26(5), 599-614.
[http://dx.doi.org/10.1210/er.2004-0011]
[29]
Barbaro, D.; Loni, G. Lymphocytic hypophysitis and autoimmune thyroid disease. J. Endocrinol. Invest., 2000, 23(5), 339-340.
[http://dx.doi.org/10.1007/BF03343733]
[30]
Lim, S.; Elston, M.S.; Swarbrick, M.J.; Conaglen, J.V. Lymphocytic hypophysitis with associated thyroiditis in a man with aseptic meningitis. Pituitary, 2009, 12(4), 375-379.
[http://dx.doi.org/10.1007/s11102-008-0119-1] [PMID: 18401720]
[31]
Iwama, S.; Arima, H. Anti-pituitary antibodies as a marker of autoimmunity in pituitary glands. Endocr. J., 2020, 67(11), 1077-1083.
[http://dx.doi.org/10.1507/endocrj.EJ20-0436] [PMID: 33055452]
[32]
Arihara, Z.; Sakurai, K.; Niitsuma, S.; Sato, R.; Yamada, S.; Inoshita, N.; Iwata, N.; Fujisawa, H.; Watanabe, T.; Suzuki, A.; Takahashi, K.; Sugimura, Y. Studies on anti-rabphilin-3A antibodies in 15 consecutive patients presenting with central diabetes insipidus at a single referral center. Sci. Rep., 2022, 12(1), 4440.
[http://dx.doi.org/10.1038/s41598-022-08552-y] [PMID: 35292721]
[33]
Yavari, A.; Sharifan, Z.; Larijani, B.; Mosadegh Khah, A. Central diabetes insipidus secondary to COVID-19 infection: A case report. BMC Endocr. Disord., 2022, 22(1), 134.
[http://dx.doi.org/10.1186/s12902-022-01048-w] [PMID: 35590312]
[34]
Rajevac, H.; Bachan, M.; Khan, Z. Diabetes insipidus as a symptom of COVID-19 infection: Case report. Chest, 2020, 158(4), A2576.
[http://dx.doi.org/10.1016/j.chest.2020.09.172]
[35]
Sheikh, A.B.; Javed, N.; Sheikh, A.A.E.; Upadhyay, S.; Shekhar, R. Diabetes insipidus and concomitant myocarditis: A late sequelae of COVID-19 infection. J. Investig. Med. High Impact Case Rep., 2021, 9.
[http://dx.doi.org/10.1177/2324709621999954] [PMID: 33686899]
[36]
Misgar, R.A.; Rasool, A.; Wani, A.I.; Bashir, M.I. Central diabetes insipidus (Infundibuloneuro hypophysitis): A late complication of COVID-19 infection. J. Endocrinol. Invest., 2021, 44(12), 2855-2856.
[http://dx.doi.org/10.1007/s40618-021-01627-z] [PMID: 34215999]
[37]
Lizzi, M.; Aricò, M.; Carlone, G.; Anzellotti, M.T.; Trotta, D.; Palatino, V. Central diabetes insipidus: Another rare complication of SARS-CoV-2 infection in children? Pediatr. Infect. Dis. J., 2022, 41(10), e448.
[http://dx.doi.org/10.1097/INF.0000000000003632] [PMID: 35830512]
[38]
Engel, A.; Maas, D. PMON82 SARS-CoV-2 Associated hypophysitis and central diabetes insipidus. J. Endocr. Soc., 2022, 6(Suppl. 1), A566.
[http://dx.doi.org/10.1210/jendso/bvac150.1175]
[39]
Sheikh, A.B.; Javaid, M.A.; Sheikh, A.A.E.; Shekhar, R. Central adrenal insufficiency and diabetes insipidus as potential endocrine manifestations of COVID-19 infection: A case report. Pan Afr. Med. J., 2021, 38, 222.
[http://dx.doi.org/10.11604/pamj.2021.38.222.28243] [PMID: 34046127]
[40]
Pal, R.; Banerjee, M. COVID-19 and the endocrine system: Exploring the unexplored. J. Endocrinol. Invest., 2020, 43(7), 1027-1031.
[http://dx.doi.org/10.1007/s40618-020-01276-8] [PMID: 32361826]
[41]
Shirbhate, E.; Pandey, J.; Patel, V.K.; Kamal, M.; Jawaid, T.; Gorain, B.; Kesharwani, P.; Rajak, H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: A potential approach for therapeutic intervention. Pharmacol. Rep., 2021, 73(6), 1539-1550.
[http://dx.doi.org/10.1007/s43440-021-00303-6] [PMID: 34176080]
[42]
Brann, D.H.; Tsukahara, T.; Weinreb, C.; Lipovsek, M.; Van den Berge, K.; Gong, B.; Chance, R.; Macaulay, I.C.; Chou, H.J.; Fletcher, R.B.; Das, D.; Street, K.; de Bezieux, H.R.; Choi, Y.G.; Risso, D.; Dudoit, S.; Purdom, E.; Mill, J.; Hachem, R.A.; Matsunami, H.; Logan, D.W.; Goldstein, B.J.; Grubb, M.S.; Ngai, J.; Datta, S.R. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv., 2020, 6(31), eabc5801.
[http://dx.doi.org/10.1126/sciadv.abc5801] [PMID: 32937591]
[43]
Gu, J.; Gong, E.; Zhang, B.; Zheng, J.; Gao, Z.; Zhong, Y.; Zou, W.; Zhan, J.; Wang, S.; Xie, Z.; Zhuang, H.; Wu, B.; Zhong, H.; Shao, H.; Fang, W.; Gao, D.; Pei, F.; Li, X.; He, Z.; Xu, D.; Shi, X.; Anderson, V.M.; Leong, A.S.Y. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med., 2005, 202(3), 415-424.
[http://dx.doi.org/10.1084/jem.20050828] [PMID: 16043521]
[44]
Gu, W.T.; Zhou, F.; Xie, W.Q.; Wang, S.; Yao, H.; Liu, Y.T.; Gao, L.; Wu, Z.B. A potential impact of SARS-CoV-2 on pituitary glands and pituitary neuroendocrine tumors. Endocrine, 2021, 72(2), 340-348.
[http://dx.doi.org/10.1007/s12020-021-02697-y] [PMID: 33786714]