Effect of Per and Poly-Fluoroalkyl Substances on Pregnancy and Child Development
  • * (Excluding Mailing and Handling)

Abstract

Background: Childhood obesity is significantly influenced by maternal exposure to Per- and Poly-Fluoroalkyl Substances (PFAS) during pregnancy. PFAS exposure occurs through the Peroxisome Proliferator-Activated Receptor (PPAR-γ) receptor, leading to increased fat deposition and profound health effects in child growth and development. Despite ongoing investigations, the relationship between maternal serum PFAS concentration and child obesity requires further exploration.

Objective: This study aimedto review the possible effects of Per and poly-fluoroalkyl substances exposure and their mechanism in overweight/obese children from pregnant ladies.

Methods: A detailed literature survey was conducted using online databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. The study focused on the diverse effects of PFAS on maternal and child health, with particular emphasis on neurological complications.

Results: Child growth development depends upon breastfeeding and placenta health, which is disrupted by PFAS exposure, ultimately destroying the body mass index of the child. Neurotoxicity testing utilized the SH-SY5Y human-derived cell line as an in vitro model, revealing PFAS-induced increases in adipocyte number, reduced cell size, altered lipid conglomeration, increased adiposity, and changes in liver function. in vivo studies in mice and human cell lines indicated PPAR-γ and ER-α activation, leading to adiposity and weight gain through Estrogen signaling and Lipid metabolism. PFAS concentrations positively correlated in maternal sera, analyzed by liquid chromatography/quadrupole mass spectrometry.

Conclusion: PFAS, with a long half-life of 3.5-8.5 years, is commonly found in the serum of pregnant women, crossing the placenta barrier. This exposure disrupts placental homeostasis, negatively impacting mechanisms of action and potentially leading to deterioration in pregnancy and child health. Further research is needed to comprehensively understand the complex interplay between PFAS exposure and its implications for maternal and child well-being.

[1]
Koyuncuoğlu Güngör N. Overweight and obesity in children and adolescents. J Clin Res Pediatr Endocrinol 2014; 6(3): 129-43.
[http://dx.doi.org/10.4274/jcrpe.1471] [PMID: 25241606]
[2]
Mannino A, Sarapis K, Moschonis G. The effect of maternal overweight and obesity pre-pregnancy and during childhood in the development of obesity in children and adolescents: A systematic literature review. Nutrients 2022; 14(23): 5125.
[http://dx.doi.org/10.3390/nu14235125] [PMID: 36501155]
[3]
Han JC, Lawlor DA, Kimm SYS. Childhood obesity. Lancet 2010; 375(9727): 1737-48.
[http://dx.doi.org/10.1016/S0140-6736(10)60171-7] [PMID: 20451244]
[4]
Braun JM, Chen A, Romano ME, et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study. Obesity (Silver Spring) 2016; 24(1): 231-7.
[http://dx.doi.org/10.1002/oby.21258] [PMID: 26554535]
[5]
Key BD, Howell RD, Criddle CS. Fluorinated organics in the biosphere. Environ Sci Technol 1997; 31(9): 2445-54.
[http://dx.doi.org/10.1021/es961007c]
[6]
Buck CO, Eliot MN, Kelsey KT, et al. Prenatal exposure to perfluoroalkyl substances and adipocytokines: The HOME Study. Pediatr Res 2018; 84(6): 854-60.
[http://dx.doi.org/10.1038/s41390-018-0170-1] [PMID: 30250302]
[7]
Wikström S, Lin PI, Lindh CH, Shu H, Bornehag CG. Maternal serum levels of perfluoroalkyl substances in early pregnancy and offspring birth weight. Pediatr Res 2020; 87(6): 1093-9.
[http://dx.doi.org/10.1038/s41390-019-0720-1] [PMID: 31835271]
[8]
De Toni L, Radu CM, Sabovic I, et al. Increased cardiovascular risk associated with chemical sensitivity to perfluoro–octanoic acid: Role of impaired platelet aggregation. Int J Mol Sci 2020; 21(2): 399.
[http://dx.doi.org/10.3390/ijms21020399] [PMID: 31936344]
[9]
Meneguzzi A, Fava C, Castelli M, Minuz P. Exposure to perfluoroalkyl chemicals and cardiovascular disease: Experimental and epidemiological evidence. Front Endocrinol 2021; 12: 706352.
[http://dx.doi.org/10.3389/fendo.2021.706352] [PMID: 34305819]
[10]
Ulfberg J, Carter N, Talbäck M, Edling C. Occupational exposure to organic solvents and sleep-disordered breathing. Neuroepidemiology 1997; 16(6): 317-26.
[http://dx.doi.org/10.1159/000109704] [PMID: 9430132]
[11]
Boyd RI, Ahmad S, Singh R, et al. Toward a mechanistic understanding of poly- and perfluoroalkylated substances and cancer. Cancers 2022; 14(12): 2919.
[http://dx.doi.org/10.3390/cancers14122919] [PMID: 35740585]
[12]
Dragon J, Hoaglund M, Badireddy AR, Nielsen G, Schlezinger J, Shukla A. Perfluoroalkyl substances (PFAS) affect inflammation in lung cells and tissues. Int J Mol Sci 2023; 24(10): 8539.
[http://dx.doi.org/10.3390/ijms24108539] [PMID: 37239886]
[13]
Kelsey MM, Zaepfel A, Bjornstad P, Nadeau KJ. Age-related consequences of childhood obesity. Gerontology 2014; 60(3): 222-8.
[http://dx.doi.org/10.1159/000356023] [PMID: 24434909]
[14]
Ben Mordechay E, Sinai T, Berman T, et al. Wastewater-derived organic contaminants in fresh produce: Dietary exposure and human health concerns. Water Res 2022; 223: 118986.
[http://dx.doi.org/10.1016/j.watres.2022.118986] [PMID: 35988339]
[15]
Ehrlich V, Bil W, Vandebriel R, et al. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health 2023; 22(1): 19.
[http://dx.doi.org/10.1186/s12940-022-00958-5] [PMID: 36814257]
[16]
Hartman TJ, Calafat AM, Holmes AK, et al. Prenatal exposure to perfluoroalkyl substances and body fatness in girls. Child Obes 2017; 13(3): 222-30.
[http://dx.doi.org/10.1089/chi.2016.0126] [PMID: 28128969]
[17]
Ding N, Karvonen-Gutierrez CA, Herman WH, Calafat AM, Mukherjee B, Park SK. Associations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) and PFAS mixtures with adipokines in midlife women. Int J Hyg Environ Health 2021; 235: 113777.
[http://dx.doi.org/10.1016/j.ijheh.2021.113777] [PMID: 34090141]
[18]
Blake BE, Fenton SE. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 2020; 443: 152565.
[http://dx.doi.org/10.1016/j.tox.2020.152565] [PMID: 32861749]
[19]
Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol 2019; 29(2): 131-47.
[http://dx.doi.org/10.1038/s41370-018-0094-1] [PMID: 30470793]
[20]
Ding N, Harlow SD, Randolph JF Jr, Loch-Caruso R, Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update 2020; 26(5): 724-52.
[http://dx.doi.org/10.1093/humupd/dmaa018] [PMID: 32476019]
[21]
Kirk AB, Michelsen-Correa S, Rosen C, Martin CF, Blumberg B. PFAS and potential adverse effects on bone and adipose tissue through interactions with PPARγ. Endocrinology 2021; 162(12): bqab194.
[http://dx.doi.org/10.1210/endocr/bqab194] [PMID: 34480479]
[22]
Braun JM. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat Rev Endocrinol 2017; 13(3): 161-73. Available from: https://pubmed.ncbi.nlm.nih.gov/27857130/
[http://dx.doi.org/10.1038/nrendo.2016.186] [PMID: 27857130]
[23]
Sevelsted A, Gürdeniz G, Rago D, et al. Effect of perfluoroalkyl exposure in pregnancy and infancy on intrauterine and childhood growth and anthropometry. Sub study from COPSAC2010 birth cohort. EBioMedicine 2022; 83: 104236.
[http://dx.doi.org/10.1016/j.ebiom.2022.104236] [PMID: 36030647]
[24]
Fenton SE, Ducatman A, Boobis A, et al. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ Toxicol Chem 2021; 40(3): 606-30.
[http://dx.doi.org/10.1002/etc.4890] [PMID: 33017053]
[25]
Gundacker C, Audouze K, Widhalm R, et al. Reduced birth weight and exposure to per- and polyfluoroalkyl substances: A review of possible underlying mechanisms using the AOP-helpfinder. Toxics 2022; 10(11): 684.
[http://dx.doi.org/10.3390/toxics10110684] [PMID: 36422892]
[26]
Nielsen C, Li Y, Lewandowski M, Fletcher T, Jakobsson K. Breastfeeding initiation and duration after high exposure to perfluoroalkyl substances through contaminated drinking water: A cohort study from Ronneby, Sweden. Environ Res 2022; 207: 112206.
[http://dx.doi.org/10.1016/j.envres.2021.112206] [PMID: 34653413]
[27]
Fromme H, Mosch C, Morovitz M, et al. Pre- and postnatal exposure to perfluorinated compounds (PFCs). Environ Sci Technol 2010; 44(18): 7123-9.
[http://dx.doi.org/10.1021/es101184f] [PMID: 20722423]
[28]
Geiger SD, Xiao J, Shankar A. Positive association between perfluoroalkyl chemicals and hyperuricemia in children. Am J Epidemiol 2013; 177(11): 1255-62.
[http://dx.doi.org/10.1093/aje/kws392] [PMID: 23552989]
[29]
Brusseau ML, Anderson RH, Guo B. PFAS concentrations in soils: Background levels versus contaminated sites. Sci Total Environ 2020; 740: 140017.
[http://dx.doi.org/10.1016/j.scitotenv.2020.140017] [PMID: 32927568]
[30]
Babut M, Labadie P, Simonnet-Laprade C, et al. Per- and poly-fluoroalkyl compounds in freshwater fish from the Rhône River: Influence of fish size, diet, prey contamination and biotransformation. Sci Total Environ 2017; 605-606: 38-47.
[http://dx.doi.org/10.1016/j.scitotenv.2017.06.111] [PMID: 28654807]
[31]
Szilagyi JT, Avula V, Fry RC. Perfluoroalkyl substances (PFAS) and their effects on the placenta, pregnancy, and child development: A potential mechanistic role for placental peroxisome proliferator–activated receptors (PPARs). Curr Environ Health Rep 2020; 7(3): 222-30.
[http://dx.doi.org/10.1007/s40572-020-00279-0] [PMID: 32812200]
[32]
Toyama K, Kimura K, Miyashita M, Yanagisawa R, Nakata K. [Case of lung edema occurring as a result of inhalation of fumes from a Teflon-coated flying pan overheated for 4 hours]. Japanese Respiratory Society Magazine 2006; 44(10): 727-31. [Case of lung edema occurring as a result of inhalation of fumes from a Teflon-coated flying pan overheated for 4 hours].
[PMID: 17087340]
[33]
Watkins AM, Wood CR, Lin MT, Abbott BD. The effects of perfluorinated chemicals on adipocyte differentiation in vitro. Mol Cell Endocrinol 2015; 400: 90-101.
[http://dx.doi.org/10.1016/j.mce.2014.10.020] [PMID: 25448844]
[34]
van den Dungen MW, Murk AJ, Kok DE, Steegenga WT. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation. Toxicol in vitro 2017; 40: 79-87.
[http://dx.doi.org/10.1016/j.tiv.2016.12.011] [PMID: 28011154]
[35]
Jansen A, Müller MHB, Grønnestad R, et al. Decreased plasma levels of perfluoroalkylated substances one year after bariatric surgery. Sci Total Environ 2019; 657: 863-70.
[http://dx.doi.org/10.1016/j.scitotenv.2018.11.453] [PMID: 30677951]
[36]
Chen N, Li J, Li D, Yang Y, He D. Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro. PLoS One 2014; 9(11): e113453.
[http://dx.doi.org/10.1371/journal.pone.0113453] [PMID: 25412474]
[37]
Yang F, Wen C, Zheng S, Yang S, Chen J, Feng X. Involvement of MAPK/ERK1/2 pathway in microcystin-induced microfilament reorganization in HL7702 hepatocytes. J Toxicol Environ Health A 2018; 81(21): 1135-41.
[http://dx.doi.org/10.1080/15287394.2018.1532715] [PMID: 30422063]
[38]
Du G, Hu J, Huang H, et al. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo. Environ Toxicol Chem 2013; 32(2): 353-60.
[http://dx.doi.org/10.1002/etc.2034] [PMID: 23074026]
[39]
Balasubramanian S, Gunasekaran K, Sasidharan S, Jeyamanickavel Mathan V, Perumal E. MicroRNAs and xenobiotic toxicity: An overview. Toxicol Rep 2020; 7: 583-95.
[http://dx.doi.org/10.1016/j.toxrep.2020.04.010] [PMID: 32426239]
[40]
Buck RC, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr Environ Assess Manag 2011; 7(4): 513-41.
[http://dx.doi.org/10.1002/ieam.258] [PMID: 21793199]
[41]
Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CKC. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochim Biophys Acta, Gen Subj 2012; 1820(7): 1092-101.
[http://dx.doi.org/10.1016/j.bbagen.2012.03.010] [PMID: 22484034]
[42]
Wang Y, Liu W, Zhang Q, Zhao H, Quan X. Effects of developmental perfluorooctane sulfonate exposure on spatial learning and memory ability of rats and mechanism associated with synaptic plasticity. Food Chem Toxicol 2015; 76: 70-6.
[http://dx.doi.org/10.1016/j.fct.2014.12.008] [PMID: 25524167]
[43]
García-Hernández MH, Rodríguez-Varela E, García-Jacobo RE, et al. Frequency of regulatory B cells in adipose tissue and peripheral blood from individuals with overweight, obesity and normal-weight. Obes Res Clin Pract 2018; 12(6): 513-9.
[http://dx.doi.org/10.1016/j.orcp.2018.07.001] [PMID: 30115554]
[44]
Zeng Z, Song B, Xiao R, et al. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ Int 2019; 126: 598-610.
[http://dx.doi.org/10.1016/j.envint.2019.03.002] [PMID: 30856447]
[45]
Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet 2014; 29(4): 333-40.
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RG-114] [PMID: 24552687]
[46]
Oenarto J, Karababa A, Castoldi M, Bidmon HJ, Görg B, Häussinger D. Ammonia-induced miRNA expression changes in cultured rat astrocytes. Sci Rep 2016; 6(1): 18493.
[http://dx.doi.org/10.1038/srep18493] [PMID: 26755400]
[47]
Zhao Y, Li L, Min LJ, et al. Regulation of MicroRNAs, and the correlations of MicroRNAs and their targeted genes by zinc oxide nanoparticles in ovarian granulosa cells. PLoS One 2016; 11(5): e0155865.
[http://dx.doi.org/10.1371/journal.pone.0155865] [PMID: 27196542]
[48]
Bas-Orth C, Koch M, Lau D, Buchthal B, Bading H. A microRNA signature of toxic extrasynaptic N-methyl-D-aspartate (NMDA) receptor signaling. Mol Brain 2020; 13(1): 3.
[http://dx.doi.org/10.1186/s13041-020-0546-0] [PMID: 31924235]
[49]
Grogg MW, Braydich-Stolle LK, Maurer-Gardner EI, et al. Modulation of miRNA-155 alters manganese nanoparticle-induced inflammatory response. Toxicol Res (Camb) 2016; 5(6): 1733-43.
[http://dx.doi.org/10.1039/C6TX00208K] [PMID: 30090472]
[50]
Chaturvedi AP, Dehm SM. Androgen Receptor Dependence. Adv Exp Med Biol. 2019; 1210: pp. 333-50.
[http://dx.doi.org/10.1007/978-3-030-32656-2_15]
[51]
Kim SJ, Yu SY, Yoon HJ, Lee SY, Youn JP, Hwang SY. Epigenetic regulation of miR-22 in a BPA-exposed human hepatoma cell. Biochip J 2015; 9(1): 76-84.
[http://dx.doi.org/10.1007/s13206-014-9110-2]
[52]
Lemaire J, Van der Hauwaert C, Savary G, et al. Cadmium-induced renal cell toxicity is associated with MicroRNA deregulation. Int J Toxicol 2020; 39(2): 103-14.
[http://dx.doi.org/10.1177/1091581819899039] [PMID: 31934807]
[53]
Bolleyn J, Fraczek J, Vinken M, et al. Effect of trichostatin a on miRNA expression in cultures of primary rat hepatocytes. Toxicol in vitro 2011; 25(6): 1173-82.
[http://dx.doi.org/10.1016/j.tiv.2011.04.013] [PMID: 21513791]
[54]
Lieschke GJ, Currie PD. Animal models of human disease: Zebrafish swim into view. Nat Rev Genet 2007; 8(5): 353-67.
[http://dx.doi.org/10.1038/nrg2091] [PMID: 17440532]
[55]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med 2009; 6(7): e1000100.
[http://dx.doi.org/10.1371/journal.pmed.1000100] [PMID: 19621070]
[56]
Hu H, Shi Y, Zhang Y, et al. Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg. Sci Total Environ 2017; 607-608: 795-805.
[http://dx.doi.org/10.1016/j.scitotenv.2017.07.036] [PMID: 28711009]
[57]
Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010; 5(7): 583-9.
[http://dx.doi.org/10.4161/epi.5.7.12762] [PMID: 20647767]
[58]
Vahdati Hassani F, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem Toxicol 2017; 107(Pt A): 395-405.
[http://dx.doi.org/10.1016/j.fct.2017.07.007] [PMID: 28689058]
[59]
Grenier B, Hackl M, Skalicky S, et al. MicroRNAs in porcine uterus and serum are affected by zearalenone and represent a new target for mycotoxin biomarker discovery. Sci Rep 2019; 9(1): 9408.
[http://dx.doi.org/10.1038/s41598-019-45784-x] [PMID: 31253833]
[60]
Fu J, Wang M, Chaudhry MT, Tian Y, Liu C. Combined RNA-Seq with small RNA revealed ribosome biogenesis and oxidative stress associated with cadmium response in carp (Cyprinus carpio L.) Hepato-pancreas. Aquaculture 2020; 518: 734817.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734817]
[61]
Piao F, Chen Y, Yu L, et al. 2,5-hexanedione-induced deregulation of axon-related microRNA expression in rat nerve tissues. Toxicol Lett 2020; 320: 95-102.
[http://dx.doi.org/10.1016/j.toxlet.2019.11.019] [PMID: 31760062]
[62]
Marin DE, Braicu C, Dumitrescu G, et al. MicroRNA profiling in kidney in pigs fed ochratoxin A contaminated diet. Ecotoxicol Environ Saf 2019; 184: 109637.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109637] [PMID: 31499447]
[63]
Feng Y, Chen X, Ma J, Zhang B, Li X. Aberrant expressional profiling of known micrornas in the liver of silver carp (Hypophthalmichthys molitrix) following microcystin-LR exposure based on samllRNA sequencing. Toxins 2020; 12(1): 41.
[http://dx.doi.org/10.3390/toxins12010041] [PMID: 31936480]
[64]
Chen M, Li X, Fan R, et al. Cadmium induces BNIP3-dependent autophagy in chicken spleen by modulating miR-33-AMPK axis. Chemosphere 2018; 194: 396-402.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.026] [PMID: 29223809]
[65]
Pillar N, Haguel D, Grad M, Shapira G, Yoffe L, Shomron N. Characterization of MicroRNA and gene expression profiles following ricin intoxication. Toxins 2019; 11(5): 250.
[http://dx.doi.org/10.3390/toxins11050250] [PMID: 31052539]
[66]
Bonato M, Corrà F, Bellio M, et al. PFAS environmental pollution and antioxidant responses: An overview of the impact on human field. Int J Environ Res Public Health 2020; 17(21): 8020.
[http://dx.doi.org/10.3390/ijerph17218020] [PMID: 33143342]
[67]
Mamsen LS, Björvang RD, Mucs D, et al. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ Int 2019; 124: 482-92.
[http://dx.doi.org/10.1016/j.envint.2019.01.010] [PMID: 30684806]
[68]
Mitro SD, Sagiv SK, Rifas-Shiman SL, et al. Per- and polyfluoroalkyl substance exposure, gestational weight gain, and postpartum weight changes in project viva. Obesity (Silver Spring) 2020; 28(10): 1984-92.
[http://dx.doi.org/10.1002/oby.22933] [PMID: 32959518]
[69]
Romano ME, Heggeseth BC, Gallagher LG, et al. Gestational per- and polyfluoroalkyl substances exposure and infant body mass index trajectory in the new hampshire birth cohort study. Environ Res 2022; 215(Pt 3): 114418.
[http://dx.doi.org/10.1016/j.envres.2022.114418] [PMID: 36162478]
[70]
Styne DM. Childhood and adolescent obesity. Prevalence and significance. Pediatr Clin North Am 2001; 48(4): 823-854, vii.
[http://dx.doi.org/10.1016/S0031-3955(05)70344-8] [PMID: 11494639]
[71]
Kohut T, Robbins J, Panganiban J. Update on childhood/adolescent obesity and its sequela. Curr Opin Pediatr 2019; 31(5): 645-53.
[http://dx.doi.org/10.1097/MOP.0000000000000786] [PMID: 31145127]
[72]
Oh J, Schmidt RJ, Tancredi D, et al. Prenatal exposure to per- and polyfluoroalkyl substances and cognitive development in infancy and toddlerhood. Environ Res 2021; 196: 110939.
[http://dx.doi.org/10.1016/j.envres.2021.110939] [PMID: 33647299]
[73]
Cardenas A, Hauser R, Gold DR, et al. Association of perfluoroalkyl and polyfluoroalkyl substances with adiposity. JAMA Netw Open 2018; 1(4): e181493.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.1493] [PMID: 30646133]
[74]
Huang Q, Chen Q. Mediating roles of PPARs in the effects of environmental chemicals on sex steroids. PPAR Res 2017; 2017: 1-8.
[http://dx.doi.org/10.1155/2017/3203161] [PMID: 28819354]
[75]
Bodin J, Groeng EC, Andreassen M, Dirven H, Nygaard UC. Exposure to perfluoroundecanoic acid (PFUnDA) accelerates insulitis development in a mouse model of type 1 diabetes. Toxicol Rep 2016; 3: 664-72.
[http://dx.doi.org/10.1016/j.toxrep.2016.08.009] [PMID: 28959590]
[76]
Veugelers PJ, Fitzgerald AL. Prevalence of and risk factors for childhood overweight and obesity. CMAJ 2005; 173(6): 607-13.
[http://dx.doi.org/10.1503/cmaj.050445] [PMID: 16157724]
[77]
Weihrauch-Blüher S, Wiegand S. Risk factors and implications of childhood obesity. Curr Obes Rep 2018; 7(4): 254-9.
[http://dx.doi.org/10.1007/s13679-018-0320-0] [PMID: 30315490]
[78]
Seth A, Sharma R. Childhood obesity. Indian J Pediatr 2013; 80(4): 309-17.
[http://dx.doi.org/10.1007/s12098-012-0931-5] [PMID: 23255079]
[79]
Lee EB, Mattson MP. The neuropathology of obesity: Insights from human disease. Acta Neuropathol 2014; 127(1): 3-28.
[http://dx.doi.org/10.1007/s00401-013-1190-x] [PMID: 24096619]
[80]
Susaki E, Nakayama KI. An animal model manifesting neurodegeneration and obesity. Aging (Albany NY) 2010; 2(7): 453-6.
[http://dx.doi.org/10.18632/aging.100172] [PMID: 20622266]
[81]
Kaiser AM, Zare Jeddi M, Uhl M, Jornod F, Fernandez MF, Audouze K. Characterization of potential adverse outcome pathways related to metabolic outcomes and exposure to per- and polyfluoroalkyl substances using artificial intelligence. Toxics 2022; 10(8): 449.
[http://dx.doi.org/10.3390/toxics10080449] [PMID: 36006128]
[82]
Banik A, Kandilya D, Ramya S, Stünkel W, Chong Y, Dheen S. Maternal factors that induce epigenetic changes contribute to neurological disorders in offspring. Genes 2017; 8(6): 150.
[http://dx.doi.org/10.3390/genes8060150] [PMID: 28538662]
[83]
Wilhelm-Benartzi CS, Houseman EA, Maccani MA, et al. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect 2012; 120(2): 296-302.
[http://dx.doi.org/10.1289/ehp.1103927] [PMID: 22005006]
[84]
Kubota T, Miyake K, Hirasawa T. Epigenetics in neurodevelopmental and mental disorders. Med Epigenet 2013; 1(1): 52-9.
[http://dx.doi.org/10.1159/000354718]
[85]
Bose R, Spulber S, Ceccatelli S. The threat posed by environmental contaminants on neurodevelopment: What can we learn from neural stem cells? Int J Mol Sci 2023; 24(5): 4338.
[http://dx.doi.org/10.3390/ijms24054338] [PMID: 36901772]
[86]
Fry RC, Bangma J, Szilagyi J, Rager JE. Developing novel in vitro methods for the risk assessment of developmental and placental toxicants in the environment. Toxicol Appl Pharmacol 2019; 378: 114635.
[http://dx.doi.org/10.1016/j.taap.2019.114635] [PMID: 31233757]
[87]
Morken NH, Klungsøyr K, Skjaerven R. Perinatal mortality by gestational week and size at birth in singleton pregnancies at and beyond term: A nationwide population-based cohort study. BMC Pregnancy Childbirth 2014; 14(1): 172.
[http://dx.doi.org/10.1186/1471-2393-14-172] [PMID: 24885576]
[88]
Verner MA, Loccisano AE, Morken NH, et al. Associations of perfluoroalkyl substances (PFAS) with lower birth weight: An evaluation of potential confounding by glomerular filtration rate using a physiologically based pharmacokinetic model (PBPK). Environ Health Perspect 2015; 123(12): 1317-24.
[http://dx.doi.org/10.1289/ehp.1408837] [PMID: 26008903]
[89]
O’Neil A, Itsiopoulos C, Skouteris H, et al. Preventing mental health problems in offspring by targeting dietary intake of pregnant women. BMC Med 2014; 12(1): 208.
[http://dx.doi.org/10.1186/s12916-014-0208-0] [PMID: 25394602]