Advanced Strategies of CAR-T Cell Therapy in Solid Tumors and Hematological Malignancies

Page: [557 - 572] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Chimeric antigen receptor T-cells, known as CAR-T cells, represent a promising breakthrough in the realm of adoptive cell therapy. These T-cells are genetically engineered to carry chimeric antigen receptors that specifically target tumors. They have achieved notable success in the treatment of blood-related cancers, breathing new life into this field of medical research. However, numerous obstacles limit chimeric antigen receptors T-cell therapy's efficacy, such as it cannot survive in the body long. It is prone to fatigue and exhaustion, leading to difficult tumor elimination and repeated recurrence, affecting solid tumors and hematological malignancies. The challenges posed by solid tumors, especially in the context of the complex solid-tumor microenvironment, require specific strategies. This review outlines recent advancements in improving chimeric antigen receptors T-cell therapy by focusing on the chimeric antigen receptors protein, modifying T-cells, and optimizing the interaction between T-cells and other components within the tumor microenvironment. This article aims to provide an extensive summary of the latest discoveries regarding CAR-T cell therapy, encompassing its application across various types of human cancers. Moreover, it will delve into the obstacles that have emerged in recent times, offering insights into the challenges faced by this innovative approach. Finally, it highlights novel therapeutic options in treating hematological and solid malignancies with chimeric antigen receptors T-cell therapies.

[1]
Nerlich A, Rohrbach H, Bachmeier B, Zink A. Malignant tumors in two ancient populations: An approach to historical tumor epidemiology. Oncol Rep 2006; 16(1): 197-202.
[http://dx.doi.org/10.3892/or.16.1.197] [PMID: 16786146]
[2]
Jafferji MS, Yang JC. Adoptive T-Cell Therapy for Solid Malignancies. Surg Oncol Clin N Am 2019; 28(3): 465-79.
[http://dx.doi.org/10.1016/j.soc.2019.02.012] [PMID: 31079800]
[3]
Abou-el-Enein M, Elsallab M, Feldman SA, et al. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discov 2021; 2(5): 408-22.
[http://dx.doi.org/10.1158/2643-3230.BCD-21-0084] [PMID: 34568831]
[4]
Acharya UH, Dhawale T, Yun S, et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev Hematol 2019; 12(3): 195-205.
[http://dx.doi.org/10.1080/17474086.2019.1585238] [PMID: 30793644]
[5]
Adachi K, Tamada K. Paving the road to make chimeric antigen receptor‐T‐cell therapy effective against solid tumors. Cancer Sci 2022; 113(12): 4020-9.
[http://dx.doi.org/10.1111/cas.15552] [PMID: 36047968]
[6]
Akbari P, Huijbers EJM, Themeli M, Griffioen AW, van Beijnum JR. The tumor vasculature an attractive CAR T cell target in solid tumors. Angiogenesis 2019; 22(4): 473-5.
[http://dx.doi.org/10.1007/s10456-019-09687-9] [PMID: 31628559]
[7]
Akhoundi M, Mohammadi M, Sahraei SS, Sheykhhasan M, Fayazi N. CAR T cell therapy as a promising approach in cancer immunotherapy: Challenges and opportunities. Cell Oncol 2021; 44(3): 495-523.
[http://dx.doi.org/10.1007/s13402-021-00593-1] [PMID: 33759063]
[8]
Al-Haideri M, Tondok SB, Safa SH, et al. CAR-T cell combination therapy: The next revolution in cancer treatment. Cancer Cell Int 2022; 22(1): 365.
[http://dx.doi.org/10.1186/s12935-022-02778-6] [PMID: 36419058]
[9]
Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-based approaches for cancer immunotherapy. Cancer Res 2021; 81(5): 1201-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2990] [PMID: 33203697]
[10]
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T cell genetic engineering strategies to overcome hurdles in solid tumors treatment. Front Immunol 2022; 13: 830292.
[http://dx.doi.org/10.3389/fimmu.2022.830292] [PMID: 35211124]
[11]
Anwar MY, Williams GR, Paluri RK. CAR T cell therapy in pancreaticobiliary cancers: A focused review of clinical data. J Gastrointest Cancer 2021; 52(1): 1-10.
[http://dx.doi.org/10.1007/s12029-020-00457-1] [PMID: 32700185]
[12]
Aparicio C, Belver M, Enríquez L, et al. Cell therapy for colorectal cancer: The promise of Chimeric Antigen Receptor (CAR)-T cells. Int J Mol Sci 2021; 22(21): 11781.
[http://dx.doi.org/10.3390/ijms222111781] [PMID: 34769211]
[13]
Azizi AA, Pillai M, Thistlethwaite FC. T-cell receptor and chimeric antigen receptor in solid cancers. Curr Opin Oncol 2019; 31(5): 430-8.
[http://dx.doi.org/10.1097/CCO.0000000000000562] [PMID: 31335828]
[14]
Baghery Saghchy Khorasani A, Yousefi AM, Bashash D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol 2022; 110: 109041.
[http://dx.doi.org/10.1016/j.intimp.2022.109041] [PMID: 35839565]
[15]
Bagley SJ, Desai AS, Linette GP, June CH, O’Rourke DM. CAR T-cell therapy for glioblastoma: Recent clinical advances and future challenges. Neuro-oncol 2018; 20(11): 1429-38.
[http://dx.doi.org/10.1093/neuonc/noy032] [PMID: 29509936]
[16]
Watanabe K, Nishikawa H. Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. Int Immunol 2021; 33(11): 551-62.
[http://dx.doi.org/10.1093/intimm/dxab052] [PMID: 34374779]
[17]
Safarzadeh Kozani P, Safarzadeh Kozani P, Ahmadi Najafabadi M, Yousefi F, Mirarefin SMJ, Rahbarizadeh F. Recent advances in solid tumor CAR-T cell therapy: Driving tumor cells from hero to zero? Front Immunol 2022; 13: 795164.
[http://dx.doi.org/10.3389/fimmu.2022.795164] [PMID: 35634281]
[18]
Nielsen AY, Ormhøj M, Traynor S, Gjerstorff MF. Augmenting engineered T-cell strategies in solid cancers through epigenetic priming. Cancer Immunol Immunother 2020; 69(11): 2169-78.
[http://dx.doi.org/10.1007/s00262-020-02661-1] [PMID: 32648166]
[19]
Maryamchik E, Gallagher KME, Preffer FI, Kadauke S, Maus MV. New directions in chimeric antigen receptor T cell [CAR‐T] therapy and related flow cytometry. Cytometry B Clin Cytom 2020; 98(4): 299-327.
[http://dx.doi.org/10.1002/cyto.b.21880] [PMID: 32352629]
[20]
Mi J, Ye Q, Min Y. Advances in nanotechnology development to overcome current roadblocks in CAR-T therapy for solid tumors. Front Immunol 2022; 13: 849759.
[http://dx.doi.org/10.3389/fimmu.2022.849759] [PMID: 35401561]
[21]
Mohanty R, Chowdhury C, Arega S, Sen P, Ganguly P, Ganguly N. CAR T cell therapy: A new era for cancer treatment (Review). Oncol Rep 2019; 42(6): 2183-95.
[http://dx.doi.org/10.3892/or.2019.7335] [PMID: 31578576]
[22]
Balagopal S, Sasaki K, Kaur P, Nikolaidi M, Ishihara J. Emerging approaches for preventing cytokine release syndrome in CAR-T cell therapy. J Mater Chem B Mater Biol Med 2022; 10(37): 7491-511.
[http://dx.doi.org/10.1039/D2TB00592A] [PMID: 35912720]
[23]
Baybutt TR, Flickinger JC Jr, Caparosa EM, Snook AE. Advances in chimeric antigen receptor T‐Cell therapies for solid tumors. Clin Pharmacol Ther 2019; 105(1): 71-8.
[http://dx.doi.org/10.1002/cpt.1280] [PMID: 30406956]
[24]
Bell M, Gottschalk S. CAR T cell therapy for solid tumors: Fatal attraction requires adhesion. Med 2022; 3(6): 353-4.
[http://dx.doi.org/10.1016/j.medj.2022.05.009] [PMID: 35690053]
[25]
Biederstädt A, Rezvani K. Engineering the next generation of CAR-NK immunotherapies. Int J Hematol 2021; 114(5): 554-71.
[http://dx.doi.org/10.1007/s12185-021-03209-4] [PMID: 34453686]
[26]
Boccalatte F, Mina R, Aroldi A, et al. Advances and hurdles in car T cell immune therapy for solid tumors. Cancers 2022; 14(20): 5108.
[http://dx.doi.org/10.3390/cancers14205108] [PMID: 36291891]
[27]
Brown LV, Gaffney EA, Ager A, Wagg J, Coles MC. Quantifying the limits of CAR T-cell delivery in mice and men. J R Soc Interface 2021; 18(176): 20201013.
[http://dx.doi.org/10.1098/rsif.2020.1013] [PMID: 33653113]
[28]
Chen J, Jiang H. Current challenges and strategies for chimeric antigen receptor-T-cell therapy for solid tumors. Crit Rev Immunol 2021; 41(1): 1-12.
[http://dx.doi.org/10.1615/CritRevImmunol.2020036178] [PMID: 33822521]
[29]
Chen L, Chen F, Niu H, et al. Chimeric Antigen Receptor (CAR)-T cell immunotherapy against thoracic malignancies: Challenges and opportunities. Front Immunol 2022; 13: 871661.
[http://dx.doi.org/10.3389/fimmu.2022.871661] [PMID: 35911706]
[30]
Chen Q, Lu L, Ma W. Efficacy, safety, and challenges of CAR T-cells in the treatment of solid tumors. Cancers 2022; 14(23): 5983.
[http://dx.doi.org/10.3390/cancers14235983] [PMID: 36497465]
[31]
Chen X, Li P, Tian B, Kang X. Serious adverse events and coping strategies of CAR-T cells in the treatment of malignant tumors. Front Immunol 2022; 13: 1079181.
[http://dx.doi.org/10.3389/fimmu.2022.1079181] [PMID: 36569917]
[32]
Chen Y, e CY, Gong ZW, et al. Chimeric antigen receptor-engineered T-cell therapy for liver cancer. Hepatobiliary Pancreat Dis Int 2018; 17(4): 301-9.
[http://dx.doi.org/10.1016/j.hbpd.2018.05.005] [PMID: 29861325]
[33]
Cherkassky L, Hou Z, Amador-Molina A, Adusumilli PS. Regional CAR T cell therapy: An ignition key for systemic immunity in solid tumors. Cancer Cell 2022; 40(6): 569-74.
[http://dx.doi.org/10.1016/j.ccell.2022.04.006] [PMID: 35487216]
[34]
Choi SI, Yin J. Prospective approaches to enhancing CAR T cell therapy for glioblastoma. Front Immunol 2022; 13: 1008751.
[http://dx.doi.org/10.3389/fimmu.2022.1008751] [PMID: 36275671]
[35]
Conejo-Garcia JR, Guevara-Patino JA. Barriers and opportunities for CAR T-cell targeting of solid tumors. Immunol Invest 2022; 51(8): 2215-25.
[http://dx.doi.org/10.1080/08820139.2022.2096463] [PMID: 35797428]
[36]
Cortés-Hernández A, Alvarez-Salazar EK, Soldevila G. Chimeric Antigen Receptor (CAR) T cell therapy for cancer. Challenges and opportunities: An overview. Methods Mol Biol 2021; 2174: 219-44.
[http://dx.doi.org/10.1007/978-1-0716-0759-6_14] [PMID: 32813253]
[37]
Cruz-Ramos M, García-Foncillas J. CAR-T cell and personalized medicine. Adv Exp Med Biol 2019; 1168: 131-45.
[http://dx.doi.org/10.1007/978-3-030-24100-1_9] [PMID: 31713169]
[38]
Date V, Nair S. Emerging vistas in CAR T-cell therapy: Challenges and opportunities in solid tumors. Expert Opin Biol Ther 2021; 21(2): 145-60.
[http://dx.doi.org/10.1080/14712598.2020.1819978] [PMID: 32882159]
[39]
de Miguel M, Umana P, Gomes de Morais AL, Moreno V, Calvo E. T-cell–engaging therapy for solid tumors. Clin Cancer Res 2021; 27(6): 1595-603.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2448] [PMID: 33082210]
[40]
Dees S, Ganesan R, Singh S, Grewal IS. Emerging CAR-T cell therapy for the treatment of triple-negative breast cancer. Mol Cancer Ther 2020; 19(12): 2409-21.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0385] [PMID: 33087511]
[41]
DeSelm CJ, Tano ZE, Varghese AM, Adusumilli PS. CAR T‐cell therapy for pancreatic cancer. J Surg Oncol 2017; 116(1): 63-74.
[http://dx.doi.org/10.1002/jso.24627] [PMID: 28346697]
[42]
Dolan JG, Paessler ME, Rheingold SR, Pillai V. Hematopathologic correlates of CAR T-cell therapy. Clin Lab Med 2021; 41(3): 325-39.
[http://dx.doi.org/10.1016/j.cll.2021.03.012] [PMID: 34304768]
[43]
Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor -T cell therapy: Applications and challenges in treatment of allergy and asthma. Biomed Pharmacother 2020; 123: 109685.
[http://dx.doi.org/10.1016/j.biopha.2019.109685] [PMID: 31862474]
[44]
Espie D, Donnadieu E. New insights into CAR T cell-mediated killing of tumor cells. Front Immunol 2022; 13: 1016208.
[http://dx.doi.org/10.3389/fimmu.2022.1016208] [PMID: 36189315]
[45]
Fan J, Wang MF, Chen HL, Shang D, Das JK, Song J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer 2020; 19(1): 32.
[http://dx.doi.org/10.1186/s12943-020-01151-3] [PMID: 32061257]
[46]
Fucà G, Reppel L, Landoni E, Savoldo B, Dotti G. Enhancing chimeric antigen receptor T-cell efficacy in solid tumors. Clin Cancer Res 2020; 26(11): 2444-51.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1835] [PMID: 32015021]
[47]
Fucà G, Spagnoletti A, Ambrosini M, de Braud F, Di Nicola M. Immune cell engagers in solid tumors: Promises and challenges of the next generation immunotherapy. ESMO Open 2021; 6(1): 100046.
[http://dx.doi.org/10.1016/j.esmoop.2020.100046] [PMID: 33508733]
[48]
Fultang L, Booth S, Yogev O, et al. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood 2020; 136(10): 1155-60.
[http://dx.doi.org/10.1182/blood.2019004500] [PMID: 32573723]
[49]
Gauthier J, Yakoub-Agha I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Curr Res Transl Med 2017; 65(3): 93-102.
[http://dx.doi.org/10.1016/j.retram.2017.08.003] [PMID: 28988742]
[50]
Ghahri-Saremi N, Akbari B, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Genetic modification of cytokine signaling to enhance efficacy of CAR T cell therapy in solid tumors. Front Immunol 2021; 12: 738456.
[http://dx.doi.org/10.3389/fimmu.2021.738456] [PMID: 34721401]
[51]
Gao TA, Chen YY. Engineering next-generation CAR-T cells: Overcoming tumor hypoxia and metabolism. Annu Rev Chem Biomol Eng 2022; 13(1): 193-216.
[http://dx.doi.org/10.1146/annurev-chembioeng-092120-092914] [PMID: 35700528]
[52]
Ye L, Park JJ, Peng L, et al. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metab 2022; 34(4): 595-614.e14.
[http://dx.doi.org/10.1016/j.cmet.2022.02.009] [PMID: 35276062]
[53]
Kawalekar OU, O’Connor RS, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 2016; 44(2): 380-90.
[http://dx.doi.org/10.1016/j.immuni.2016.01.021] [PMID: 26885860]
[54]
Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol 2022; 15(1): 38.
[http://dx.doi.org/10.1186/s13045-022-01255-x] [PMID: 35346311]
[55]
Yang Q, Hao J, Chi M, et al. Superior antitumor immunotherapy efficacy of kynureninase modified CAR-T cells through targeting kynurenine metabolism. OncoImmunology 2022; 11(1): 2055703.
[http://dx.doi.org/10.1080/2162402X.2022.2055703] [PMID: 35355679]
[56]
Li L, Li Q, Yan ZX, et al. Transgenic expression of IL-7 regulates CAR-T cell metabolism and enhances in vivo persistence against tumor cells. Sci Rep 2022; 12(1): 12506.
[http://dx.doi.org/10.1038/s41598-022-16616-2] [PMID: 35869100]
[57]
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156: 113861.
[http://dx.doi.org/10.1016/j.biopha.2022.113861] [PMID: 36228375]
[58]
Yuan P, Yang T, Mu J, et al. Circadian clock gene NPAS2 promotes reprogramming of glucose metabolism in hepatocellular carcinoma cells. Cancer Lett 2020; 469: 498-509.
[http://dx.doi.org/10.1016/j.canlet.2019.11.024] [PMID: 31765736]
[59]
Ding X, Wang L, Zhang X, et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J Hematol Oncol 2021; 14(1): 92.
[http://dx.doi.org/10.1186/s13045-021-01102-5] [PMID: 34118979]
[60]
Shao A, Lang Y, Wang M, et al. Bclaf1 is a direct target of HIF-1 and critically regulates the stability of HIF-1α under hypoxia. Oncogene 2020; 39(13): 2807-18.
[http://dx.doi.org/10.1038/s41388-020-1185-8] [PMID: 32029898]
[61]
Liu Z, Wang Y, Dou C, et al. Hypoxia-induced up-regulation of VASP promotes invasiveness and metastasis of hepatocellular carcinoma. Theranostics 2018; 8(17): 4649-63.
[http://dx.doi.org/10.7150/thno.26789] [PMID: 30279729]
[62]
Głowacki P, Rieske P. Application and design of switches used in CAR. Cells 2022; 11(12): 1910.
[http://dx.doi.org/10.3390/cells11121910] [PMID: 35741039]
[63]
Goldenson BH, Hor P, Kaufman DS. iPSC-derived natural killer cell therapies - expansion and targeting. Front Immunol 2022; 13: 841107.
[http://dx.doi.org/10.3389/fimmu.2022.841107] [PMID: 35185932]
[64]
Good CR, Aznar MA, Kuramitsu S, et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 2021; 184(25): 6081-6100.e26.
[http://dx.doi.org/10.1016/j.cell.2021.11.016] [PMID: 34861191]
[65]
Goto S, Sakoda Y, Adachi K, et al. Enhanced anti-tumor efficacy of IL-7/CCL19-producing human CAR-T cells in orthotopic and patient-derived xenograft tumor models. Cancer Immunol Immunother 2021; 70(9): 2503-15.
[http://dx.doi.org/10.1007/s00262-021-02853-3] [PMID: 33559069]
[66]
Grigor EJM, Fergusson D, Kekre N, et al. Risks and benefits of chimeric antigen receptor T-Cell (CAR-T) therapy in cancer: A systematic review and meta-analysis. Transfus Med Rev 2019; 33(2): 98-110.
[http://dx.doi.org/10.1016/j.tmrv.2019.01.005] [PMID: 30948292]
[67]
Grigor EJM, Fergusson DA, Haggar F, et al. Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in patients with haematological and solid malignancies: protocol for a systematic review and meta-analysis. BMJ Open 2017; 7(12): e019321.
[http://dx.doi.org/10.1136/bmjopen-2017-019321] [PMID: 29288188]
[68]
Gumber D, Wang LD. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine 2022; 77: 103941.
[http://dx.doi.org/10.1016/j.ebiom.2022.103941] [PMID: 35301179]
[69]
Guo F, Cui J. CAR-T in solid tumors: Blazing a new trail through the brambles. Life Sci 2020; 260: 118300.
[http://dx.doi.org/10.1016/j.lfs.2020.118300] [PMID: 32827541]
[70]
Guzman G, Reed MR, Bielamowicz K, Koss B, Rodriguez A. CAR-T therapies in solid tumors: Opportunities and challenges. Curr Oncol Rep 2023; 25(5): 479-89.
[http://dx.doi.org/10.1007/s11912-023-01380-x] [PMID: 36853475]
[71]
Hernani R, Benzaquén A, Solano C. Toxicities following CART therapy for hematological malignancies. Cancer Treat Rev 2022; 111: 102479.
[http://dx.doi.org/10.1016/j.ctrv.2022.102479] [PMID: 36308910]
[72]
Hong DS, Van Tine BA, Biswas S, et al. Autologous T cell therapy for MAGE-A4+ solid cancers in HLA-A*02+ patients: A phase 1 trial. Nat Med 2023; 29(1): 104-14.
[http://dx.doi.org/10.1038/s41591-022-02128-z] [PMID: 36624315]
[73]
Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 2020; 38(4): 473-88.
[http://dx.doi.org/10.1016/j.ccell.2020.07.005] [PMID: 32735779]
[74]
Huan T, Chen D, Liu G, et al. Activation-induced cell death in CAR-T cell therapy. Hum Cell 2022; 35(2): 441-7.
[http://dx.doi.org/10.1007/s13577-022-00670-z] [PMID: 35032297]
[75]
Hyrenius-Wittsten A, Su Y, Park M, et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci Transl Med 2021; 13(591): eabd8836.
[http://dx.doi.org/10.1126/scitranslmed.abd8836] [PMID: 33910981]
[76]
Isidori A, Cerchione C, Daver N, et al. Immunotherapy in acute myeloid leukemia: Where we stand. Front Oncol 2021; 11: 656218.
[http://dx.doi.org/10.3389/fonc.2021.656218] [PMID: 34041025]
[77]
Jindal V, Arora E, Gupta S. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors. Med Oncol 2018; 35(6): 87.
[http://dx.doi.org/10.1007/s12032-018-1149-9] [PMID: 29730801]
[78]
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: New perspectives, challenges, and clinical developments. Front Immunol 2022; 13: 925985.
[http://dx.doi.org/10.3389/fimmu.2022.925985] [PMID: 35936003]
[79]
Keshavarz A, Salehi A, Khosravi S, et al. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther 2022; 13(1): 482.
[http://dx.doi.org/10.1186/s13287-022-03163-w] [PMID: 36153626]
[80]
Khorasani ABS, Sanaei MJ, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges. Int Immunopharmacol 2021; 101(Pt B): 108260.
[http://dx.doi.org/10.1016/j.intimp.2021.108260] [PMID: 34678690]
[81]
Kim TJ, Lee YH, Koo KC. Current and future perspectives on CAR-T cell therapy for renal cell carcinoma: A comprehensive review. Investig Clin Urol 2022; 63(5): 486-98.
[http://dx.doi.org/10.4111/icu.20220103] [PMID: 36067994]
[82]
Kirtane K, Elmariah H, Chung CH, Abate-Daga D. Adoptive cellular therapy in solid tumor malignancies: Review of the literature and challenges ahead. J Immunother Cancer 2021; 9(7): e002723.
[http://dx.doi.org/10.1136/jitc-2021-002723] [PMID: 34301811]
[83]
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020; 38(8): 947-53.
[http://dx.doi.org/10.1038/s41587-020-0462-y] [PMID: 32361713]
[84]
Knochelmann HM, Smith AS, Dwyer CJ, Wyatt MM, Mehrotra S, Paulos CM. CAR T cells in solid tumors: Blueprints for building effective therapies. Front Immunol 2018; 9: 1740.
[http://dx.doi.org/10.3389/fimmu.2018.01740] [PMID: 30140266]
[85]
Kouro T, Himuro H, Sasada T. Exhaustion of CAR T cells: Potential causes and solutions. J Transl Med 2022; 20(1): 239.
[http://dx.doi.org/10.1186/s12967-022-03442-3] [PMID: 35606821]
[86]
Kruger S, Ilmer M, Kobold S, et al. Advances in cancer immunotherapy 2019-latest trends. J Exp Clin Cancer Res 2019; 38(1): 268.
[http://dx.doi.org/10.1186/s13046-019-1266-0] [PMID: 31217020]
[87]
Kulczycka M, Derlatka K, Tasior J, Lejman M, Zawitkowska J. CAR T-cell therapy in children with solid tumors. J Clin Med 2023; 12(6): 2326.
[http://dx.doi.org/10.3390/jcm12062326] [PMID: 36983330]
[88]
Lanitis E, Coukos G, Irving M. All systems go: Converging synthetic biology and combinatorial treatment for CAR-T cell therapy. Curr Opin Biotechnol 2020; 65: 75-87.
[http://dx.doi.org/10.1016/j.copbio.2020.01.009] [PMID: 32109718]
[89]
Li H, Fu Q, Muluh TA, Shinge SAU, Fu S, Wu J. The application of nanotechnology in immunotherapy based combinations for cancer treatment. Recent Patents Anticancer Drug Discov 2023; 18(1): 53-65.
[http://dx.doi.org/10.2174/1574892817666220308090954] [PMID: 35260063]
[90]
Li Y, Ming Y, Fu R, et al. The pathogenesis, diagnosis, prevention, and treatment of CAR-T cell therapy-related adverse reactions. Front Pharmacol 2022; 13: 950923.
[http://dx.doi.org/10.3389/fphar.2022.950923] [PMID: 36313336]
[91]
Lian G, Mak TSK, Yu X, Lan HY. Challenges and recent advances in NK cell-targeted immunotherapies in solid tumors. Int J Mol Sci 2021; 23(1): 164.
[http://dx.doi.org/10.3390/ijms23010164] [PMID: 35008589]
[92]
Lin YJ, Mashouf LA, Lim M. CAR T cell therapy in primary brain tumors: Current investigations and the future. Front Immunol 2022; 13: 817296.
[http://dx.doi.org/10.3389/fimmu.2022.817296] [PMID: 35265074]
[93]
Lindo L, Wilkinson LH, Hay KA. Befriending the hostile tumor microenvironment in CAR T-cell therapy. Front Immunol 2021; 11: 618387.
[http://dx.doi.org/10.3389/fimmu.2020.618387] [PMID: 33643299]
[94]
Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol 2021; 18(5): 1085-95.
[http://dx.doi.org/10.1038/s41423-021-00655-2] [PMID: 33785843]
[95]
Liu J, Tu X, Liu L, Fang W. Advances in CAR-T cell therapy for malignant solid tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51(2): 175-84.
[http://dx.doi.org/10.3724/zdxbyxb-2022-0044] [PMID: 36161290]
[96]
Liu Z, Zhou Z, Dang Q, et al. Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics 2022; 12(14): 6273-90.
[http://dx.doi.org/10.7150/thno.76854] [PMID: 36168626]
[97]
Long B, Qin L, Zhang B, et al. CAR T cell therapy for gastric cancer: Potential and perspective (Review). Int J Oncol 2020; 56(4): 889-99.
[http://dx.doi.org/10.3892/ijo.2020.4982] [PMID: 32319561]
[98]
Luginbuehl V, Abraham E, Kovar K, Flaaten R, Müller AMS. Better by design: What to expect from novel CAR-engineered cell therapies? Biotechnol Adv 2022; 58: 107917.
[http://dx.doi.org/10.1016/j.biotechadv.2022.107917] [PMID: 35149146]
[99]
Long KB, Young RM, Boesteanu AC, et al. CAR T cell therapy of non-hematopoietic malignancies: Detours on the road to clinical success. Front Immunol 2018; 9: 2740.
[http://dx.doi.org/10.3389/fimmu.2018.02740] [PMID: 30559740]
[100]
Luo Z, Yao X, Li M, et al. Modulating tumor physical microenvironment for fueling CART cell therapy. Adv Drug Deliv Rev 2022; 185: 114301.
[http://dx.doi.org/10.1016/j.addr.2022.114301] [PMID: 35439570]
[101]
Ma L, Dichwalkar T, Chang JYH, et al. Enhanced CAR–T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 2019; 365(6449): 162-8.
[http://dx.doi.org/10.1126/science.aav8692] [PMID: 31296767]
[102]
Ma S, Li X, Wang X, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci 2019; 15(12): 2548-60.
[http://dx.doi.org/10.7150/ijbs.34213] [PMID: 31754328]
[103]
Maalej KM, Merhi M, Inchakalody VP, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22(1): 20.
[http://dx.doi.org/10.1186/s12943-023-01723-z] [PMID: 36717905]
[104]
Marofi F, Abdul-Rasheed OF, Rahman HS, et al. CAR‐NK cell in cancer immunotherapy; A promising frontier. Cancer Sci 2021; 112(9): 3427-36.
[http://dx.doi.org/10.1111/cas.14993] [PMID: 34050690]
[105]
Marofi F, Motavalli R, Safonov VA, et al. CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Res Ther 2021; 12(1): 81.
[http://dx.doi.org/10.1186/s13287-020-02128-1] [PMID: 33494834]
[106]
Marofi F, Rahman HS, Al-Obaidi ZMJ, et al. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12(1): 465.
[http://dx.doi.org/10.1186/s13287-021-02420-8] [PMID: 34412685]
[107]
Mehrabadi AZ, Ranjbar R, Farzanehpour M, et al. Therapeutic potential of CAR T cell in malignancies: A scoping review. Biomed Pharmacother 2022; 146: 112512.
[http://dx.doi.org/10.1016/j.biopha.2021.112512] [PMID: 34894519]
[108]
Abramson JS. Anti-CD19 car T-Cell therapy for B-cell non-hodgkin lymphoma. Transfus Med Rev 2020; 34(1): 29-33.
[http://dx.doi.org/10.1016/j.tmrv.2019.08.003] [PMID: 31677848]
[109]
Denlinger N, Bond D, Jaglowski S. CAR T-cell therapy for B-cell lymphoma. Curr Probl Cancer 2022; 46(1): 100826.
[http://dx.doi.org/10.1016/j.currproblcancer.2021.100826] [PMID: 35012754]
[110]
Roschewski M, Longo DL, Wilson WH. CAR T-cell therapy for large B-cell lymphoma — who, when, and how? N Engl J Med 2022; 386(7): 692-6.
[http://dx.doi.org/10.1056/NEJMe2118899] [PMID: 34904797]
[111]
Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 2019; 16(6): 372-85.
[http://dx.doi.org/10.1038/s41571-019-0184-6] [PMID: 30837712]
[112]
Westin J, Sehn LH. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift? Blood 2022; 139(18): 2737-46.
[http://dx.doi.org/10.1182/blood.2022015789] [PMID: 35240677]
[113]
Jacobson CA, Chavez JC, Sehgal AR, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol 2022; 23(1): 91-103.
[http://dx.doi.org/10.1016/S1470-2045(21)00591-X] [PMID: 34895487]
[114]
Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med 2022; 386(7): 640-54.
[http://dx.doi.org/10.1056/NEJMoa2116133] [PMID: 34891224]
[115]
Kamdar M, Solomon SR, Arnason J, et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet 2022; 399(10343): 2294-308.
[http://dx.doi.org/10.1016/S0140-6736(22)00662-6] [PMID: 35717989]
[116]
Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020; 396(10254): 839-52.
[http://dx.doi.org/10.1016/S0140-6736(20)31366-0] [PMID: 32888407]
[117]
Wang M. CAR T-cell therapy effective in B acute lymphoblastic leukaemia. Lancet Oncol 2017; 18(6): e314.
[http://dx.doi.org/10.1016/S1470-2045(17)30364-9] [PMID: 28528746]
[118]
Yang S, Huang X, Gale RP. Cell therapy of chronic lymphocytic leukaemia: Transplants and chimeric antigen receptor (CAR)-T cells. Blood Rev 2022; 51: 100884.
[http://dx.doi.org/10.1016/j.blre.2021.100884] [PMID: 34489116]
[119]
Tan AP. CAR T‐cell therapy‐related neurotoxicity in paediatric acute lymphocytic leukaemia. Pediatr Blood Cancer 2020; 67(11): e28635.
[http://dx.doi.org/10.1002/pbc.28635] [PMID: 32770654]
[120]
Liu S, Yin Z, Yu X, Zhao Y, Pan J, Song Y. CD19-specific CAR-T cell therapy for relapsed/refractory non-B-cell acute leukaemia with CD19 antigen expression. Eur J Cancer 2021; 153: 1-4.
[http://dx.doi.org/10.1016/j.ejca.2021.04.042] [PMID: 34126332]
[121]
Rogosic S, Ghorashian S. CAR‐T cell therapy in paediatric acute lymphoblastic leukaemia-past, present and future. Br J Haematol 2020; 191(4): 617-26.
[http://dx.doi.org/10.1111/bjh.17153] [PMID: 33190266]
[122]
Gauthier J. Post-CAR-T cell therapy (Consolidation and Relapse): Acute lymphoblastic leukaemia. In: Kröger N, Gribben J, Chabannon C, Yakoub-Agha I, Einsele H, Eds. The EBMT/EHA CAR-T Cell Handbook. Cham (CH): Springer 2022; pp. 165-8.
[123]
Chua CC, Cheok KPL. Taking a step forward in CAR T-cell therapy for acute myeloid leukaemia and myelodysplastic syndrome. Lancet Haematol 2023; 10(3): e161-2.
[http://dx.doi.org/10.1016/S2352-3026(23)00002-9] [PMID: 36764324]
[124]
Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 2021; 398(10297): 314-24.
[http://dx.doi.org/10.1016/S0140-6736(21)00933-8] [PMID: 34175021]
[125]
Choi T, Kang Y. Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma. Pharmacol Ther 2022; 232: 108007.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108007] [PMID: 34582835]
[126]
Teoh PJ, Chng WJ. CAR T-cell therapy in multiple myeloma: More room for improvement. Blood Cancer J 2021; 11(4): 84.
[http://dx.doi.org/10.1038/s41408-021-00469-5] [PMID: 33927192]
[127]
Watanabe N, Mo F, McKenna MK. Impact of manufacturing procedures on CAR T cell functionality. Front Immunol 2022; 13: 876339.
[http://dx.doi.org/10.3389/fimmu.2022.876339] [PMID: 35493513]
[128]
Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple Myeloma. N Engl J Med 2021; 384(8): 705-16.
[http://dx.doi.org/10.1056/NEJMoa2024850] [PMID: 33626253]
[129]
Manier S, Ingegnere T, Escure G, et al. Current state and next-generation CAR-T cells in multiple myeloma. Blood Rev 2022; 54: 100929.
[http://dx.doi.org/10.1016/j.blre.2022.100929] [PMID: 35131139]
[130]
Holstein SA, Lunning MA. CAR T‐cell therapy in hematologic malignancies: A voyage in progress. Clin Pharmacol Ther 2020; 107(1): 112-22.
[http://dx.doi.org/10.1002/cpt.1674] [PMID: 31622496]
[131]
Kegyes D, Constantinescu C, Vrancken L, et al. Patient selection for CAR T or BiTE therapy in multiple myeloma: Which treatment for each patient? J Hematol Oncol 2022; 15(1): 78.
[http://dx.doi.org/10.1186/s13045-022-01296-2] [PMID: 35672793]
[132]
Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol 2021; 14(1): 161.
[http://dx.doi.org/10.1186/s13045-021-01170-7] [PMID: 34627333]
[133]
van de Donk NWCJ, Usmani SZ, Yong K. CAR T-cell therapy for multiple myeloma: State of the art and prospects. Lancet Haematol 2021; 8(6): e446-61.
[http://dx.doi.org/10.1016/S2352-3026(21)00057-0] [PMID: 34048683]
[134]
Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med 2019; 380(18): 1726-37.
[http://dx.doi.org/10.1056/NEJMoa1817226] [PMID: 31042825]
[135]
Roex G, Timmers M, Wouters K, et al. Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. J Hematol Oncol 2020; 13(1): 164.
[http://dx.doi.org/10.1186/s13045-020-01001-1] [PMID: 33272302]
[136]
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378(5): 439-48.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[137]
Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-Cell lymphoma. N Engl J Med 2019; 380(1): 45-56.
[http://dx.doi.org/10.1056/NEJMoa1804980] [PMID: 30501490]
[138]
Wang Y, Jain P, Locke FL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: Results from the US lymphoma CAR T consortium. J Clin Oncol 2023; 41(14): 2594-606.
[http://dx.doi.org/10.1200/JCO.22.01797] [PMID: 36753699]
[139]
Bajgain P, Tawinwung S, D’Elia L, et al. CAR T cell therapy for breast cancer: Harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 2018; 6(1): 34.
[http://dx.doi.org/10.1186/s40425-018-0347-5] [PMID: 29747685]
[140]
Corti C, Venetis K, Sajjadi E, Zattoni L, Curigliano G, Fusco N. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: Preclinical and clinical progress. Expert Opin Investig Drugs 2022; 31(6): 593-605.
[http://dx.doi.org/10.1080/13543784.2022.2054326] [PMID: 35311430]
[141]
Yang YH, Liu JW, Lu C, Wei JF. CAR-T cell therapy for breast cancer: From basic research to clinical application. Int J Biol Sci 2022; 18(6): 2609-26.
[http://dx.doi.org/10.7150/ijbs.70120] [PMID: 35414783]
[142]
Schepisi G, Gianni C, Palleschi M, et al. The new frontier of immunotherapy: Chimeric Antigen Receptor T (CAR-T) Cell and Macrophage (CAR-M) Therapy against Breast Cancer. Cancers 2023; 15(5): 1597.
[http://dx.doi.org/10.3390/cancers15051597] [PMID: 36900394]
[143]
Xie Y, Hu Y, Zhou N, et al. CAR T-cell therapy for triple-negative breast cancer: Where we are. Cancer Lett 2020; 491: 121-31.
[http://dx.doi.org/10.1016/j.canlet.2020.07.044] [PMID: 32795486]
[144]
Nalawade SA, Shafer P, Bajgain P, et al. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer. J Immunother Cancer 2021; 9(11): e003237.
[http://dx.doi.org/10.1136/jitc-2021-003237] [PMID: 34815355]
[145]
Nasiri F, Kazemi M, Mirarefin SMJ, et al. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13: 1018786.
[http://dx.doi.org/10.3389/fimmu.2022.1018786] [PMID: 36483567]
[146]
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan C, Zhu Z. CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022; 41(1): 119.
[http://dx.doi.org/10.1186/s13046-022-02327-z] [PMID: 35361234]
[147]
Domínguez-Prieto V, Qian S, Villarejo-Campos P, et al. Understanding CAR T cell therapy and its role in ovarian cancer and peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13: 1104547.
[http://dx.doi.org/10.3389/fonc.2023.1104547] [PMID: 37274261]
[148]
Owens GL, Sheard VE, Kalaitsidou M, et al. Preclinical assessment of CAR T-cell therapy targeting the tumor antigen 5T4 in ovarian cancer. J Immunother 2018; 41(3): 130-40.
[http://dx.doi.org/10.1097/CJI.0000000000000203] [PMID: 29239915]
[149]
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T cells in the treatment of ovarian cancer: A promising cell therapy. Biomolecules 2023; 13(3): 465.
[http://dx.doi.org/10.3390/biom13030465] [PMID: 36979400]
[150]
Zhu X, Cai H, Zhao L, Ning L, Lang J. CAR-T cell therapy in ovarian cancer: From the bench to the bedside. Oncotarget 2017; 8(38): 64607-21.
[http://dx.doi.org/10.18632/oncotarget.19929] [PMID: 28969098]
[151]
Jaspers JE, Khan JF, Godfrey WD, et al. IL-18–secreting CAR T cells targeting DLL3 are highly effective in small cell lung cancer models. J Clin Invest 2023; 133(9): e166028.
[http://dx.doi.org/10.1172/JCI166028] [PMID: 36951942]
[152]
Taromi S, Firat E, Simonis A, et al. Enhanced AC133-specific CAR T cell therapy induces durable remissions in mice with metastatic small cell lung cancer. Cancer Lett 2022; 538: 215697.
[http://dx.doi.org/10.1016/j.canlet.2022.215697] [PMID: 35487310]
[153]
Wallstabe L, Göttlich C, Nelke LC, et al. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight 2019; 4(18): e126345.
[http://dx.doi.org/10.1172/jci.insight.126345] [PMID: 31415244]
[154]
Xiao BF, Zhang JT, Zhu YG, et al. Chimeric antigen receptor T-cell therapy in lung cancer: Potential and challenges. Front Immunol 2021; 12: 782775.
[http://dx.doi.org/10.3389/fimmu.2021.782775] [PMID: 34790207]
[155]
Adusumilli PS, Zauderer MG, Rivière I, et al. A Phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the Anti–PD-1 agent Pembrolizumab. Cancer Discov 2021; 11(11): 2748-63.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0407] [PMID: 34266984]
[156]
Chen L, Chen F, Li J, et al. CAR‐T cell therapy for lung cancer: Potential and perspective. Thorac Cancer 2022; 13(7): 889-99.
[http://dx.doi.org/10.1111/1759-7714.14375] [PMID: 35289077]
[157]
Qu J, Mei Q, Chen L, Zhou J. Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future perspectives. Cancer Immunol Immunother 2021; 70(3): 619-31.
[http://dx.doi.org/10.1007/s00262-020-02735-0] [PMID: 33025047]
[158]
Li H, Harrison EB, Li H, et al. Targeting brain lesions of non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell migration. Nat Commun 2022; 13(1): 2154.
[http://dx.doi.org/10.1038/s41467-022-29647-0] [PMID: 35443752]
[159]
Fan A, Wang B, Wang X, et al. Immunotherapy in colorectal cancer: Current achievements and future perspective. Int J Biol Sci 2021; 17(14): 3837-49.
[http://dx.doi.org/10.7150/ijbs.64077] [PMID: 34671202]
[160]
Qin X, Wu F, Chen C, Li Q. Recent advances in CAR-T cells therapy for colorectal cancer. Front Immunol 2022; 13: 904137.
[http://dx.doi.org/10.3389/fimmu.2022.904137] [PMID: 36238297]
[161]
Zhang C, Wang Z, Yang Z, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther 2017; 25(5): 1248-58.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.010] [PMID: 28366766]
[162]
Picard E, Verschoor CP, Ma GW, Pawelec G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front Immunol 2020; 11: 369.
[http://dx.doi.org/10.3389/fimmu.2020.00369] [PMID: 32210966]
[163]
Juat DJ, Hachey SJ, Billimek J, et al. Adoptive T-cell Therapy in advanced colorectal cancer: A systematic review. Oncologist 2022; 27(3): 210-9.
[http://dx.doi.org/10.1093/oncolo/oyab038] [PMID: 35274719]
[164]
Johdi NA, Sukor NF. Colorectal cancer immunotherapy: Options and strategies. Front Immunol 2020; 11: 1624.
[http://dx.doi.org/10.3389/fimmu.2020.01624] [PMID: 33042104]
[165]
Cutmore LC, Brown NF, Raj D, et al. Pancreatic Cancer UK Grand Challenge: Developments and challenges for effective CAR T cell therapy for pancreatic ductal adenocarcinoma. Pancreatology 2020; 20(3): 394-408.
[http://dx.doi.org/10.1016/j.pan.2020.02.006] [PMID: 32173257]
[166]
Akce M, Zaidi MY, Waller EK, El-Rayes BF, Lesinski GB. The potential of CAR T cell therapy in pancreatic cancer. Front Immunol 2018; 9: 2166.
[http://dx.doi.org/10.3389/fimmu.2018.02166] [PMID: 30319627]
[167]
Wrona E, Borowiec M, Potemski P. CAR-NK cells in the treatment of solid tumors. Int J Mol Sci 2021; 22(11): 5899.
[http://dx.doi.org/10.3390/ijms22115899] [PMID: 34072732]
[168]
Sabbah M, Jondreville L, Lacan C, et al. CAR-NK cells: A chimeric hope or a promising therapy? Cancers 2022; 14(15): 3839.
[http://dx.doi.org/10.3390/cancers14153839] [PMID: 35954502]
[169]
Verma A, Rafiq S. Chimeric Antigen Receptor (CAR) T cell therapy for glioblastoma. Cancer Treat Res 2022; 183: 161-84.
[http://dx.doi.org/10.1007/978-3-030-96376-7_5] [PMID: 35551659]
[170]
Agliardi G, Liuzzi AR, Hotblack A, et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun 2021; 12(1): 444.
[http://dx.doi.org/10.1038/s41467-020-20599-x] [PMID: 33469002]
[171]
Choe JH, Watchmaker PB, Simic MS, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med 2021; 13(591): eabe7378.
[http://dx.doi.org/10.1126/scitranslmed.abe7378] [PMID: 33910979]
[172]
Larson RC, Kann MC, Bailey SR, et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 2022; 604(7906): 563-70.
[http://dx.doi.org/10.1038/s41586-022-04585-5] [PMID: 35418687]
[173]
Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine 2020; 59: 102975.
[http://dx.doi.org/10.1016/j.ebiom.2020.102975] [PMID: 32853984]
[174]
Richards RM, Sotillo E, Majzner RG. CAR T cell therapy for neuroblastoma. Front Immunol 2018; 9: 2380.
[http://dx.doi.org/10.3389/fimmu.2018.02380] [PMID: 30459759]
[175]
Künkele A, Taraseviciute A, Finn LS, et al. Preclinical assessment of CD171-directed CAR T-cell adoptive therapy for childhood neuroblastoma: CE7 epitope target safety and product manufacturing feasibility. Clin Cancer Res 2017; 23(2): 466-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0354] [PMID: 27390347]
[176]
Sun M, Cao Y, Okada R, et al. Preclinical optimization of a GPC2-targeting CAR T-cell therapy for neuroblastoma. J Immunother Cancer 2023; 11(1): e005881.
[http://dx.doi.org/10.1136/jitc-2022-005881] [PMID: 36631162]
[177]
Tanaka J, Miller JS. Recent progress in and challenges in cellular therapy using NK cells for hematological malignancies. Blood Rev 2020; 44: 100678.
[http://dx.doi.org/10.1016/j.blre.2020.100678] [PMID: 32229065]
[178]
Zhang C, Hu Y, Xiao W, Tian Z. Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell Mol Immunol 2021; 18(9): 2083-100.
[http://dx.doi.org/10.1038/s41423-021-00732-6] [PMID: 34267335]
[179]
Lu J, Jiang G. The journey of CAR-T therapy in hematological malignancies. Mol Cancer 2022; 21(1): 194.
[http://dx.doi.org/10.1186/s12943-022-01663-0] [PMID: 36209106]
[180]
Young RM, Engel NW, Uslu U, Wellhausen N, June CH. Next-generation CAR T-cell therapies. Cancer Discov 2022; 12(7): 1625-33.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1683] [PMID: 35417527]
[181]
Yilmaz A, Cui H, Caligiuri MA, Yu J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol 2020; 13(1): 168.
[http://dx.doi.org/10.1186/s13045-020-00998-9] [PMID: 33287875]
[182]
Xu Q, Harto H, Berahovich R, et al. Generation of CAR-T cells for cancer immunotherapy. Methods Mol Biol 2019; 1884: 349-60.
[http://dx.doi.org/10.1007/978-1-4939-8885-3_24] [PMID: 30465215]
[183]
Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol 2020; 13(1): 54.
[http://dx.doi.org/10.1186/s13045-020-00890-6] [PMID: 32423475]
[184]
Zhang E, Gu J, Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 2018; 17(1): 7.
[http://dx.doi.org/10.1186/s12943-018-0759-3] [PMID: 29329591]