Current Medicinal Chemistry

Author(s): Mengming Xia, Ya-Nan Liu, Jie Chen, Ren-Ai Xu* and Gexin Dai*

DOI: 10.2174/0109298673268883231108062655

DownloadDownload PDF Flyer Cite As
The Pharmacokinetic Interaction of Tirabrutinib with Voriconazole, Itraconazole, and Fluconazole in SD Rats by UPLC-MS/MS

Page: [5612 - 5619] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Tirabrutinib is an orally effective, approved, and highly selective second-generation Bruton's tyrosine kinase (BTK) inhibitor for the treatment of recurrent or refractory primary central nervous system lymphoma (PCNSL).

Objective: This study aimed to develop an ultra-high performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS) method for the determination of tirabrutinib concentration in rat plasma, where zanubrutinib was used as an internal standard (IS). This method was also applied to study whether tirabrutinib would interact with voriconazole, itraconazole, and fluconazole in rats, providing a reference value for clinical medication guidance.

Methods: In the current study, the organic solvent protein precipitation method was used to treat plasma samples, which is simple and reproducible. Tirabrutinib (m/z 455.32 → 320.21) and zanubrutinib (m/z 472.13 → 455.04) were separated on a Waters Acquity BEH C18 column (2.1 × 50 mm, 1.7 μm) and detected by multiple reaction monitoring (MRM) in positive ionization mode.

Results: The method showed good linearity in the range of 5−3000 ng/mL for tirabrutinib with the lower limit of quantification (LLOQ) of 5 ng/mL. The recovery and matrix effects were 85.7-91.0% and 102.0-113.3%, respectively. The accuracy, precision, stability, and carry-over effect were also acceptable. The method could also be used for determining the pharmacokinetic interaction of tirabrutinib in rats. The results showed AUC0→∞ of tirabrutinib to be increased by 139.3% and 83.9% in the presence of voriconazole and fluconazole, respectively, while itraconazole had little effect.

Conclusion: It is necessary to monitor the concentration of tirabrutinib in patients when it is combined with voriconazole and fluconazole to achieve a better therapeutic effect and reduce the risk of adverse reaction. Further research should be conducted in the future.

Keywords: Tirabrutinib, BTK inhibitor, UPLC-MS/MS, drug-drug interaction, voriconazole, PCNSL.

[1]
Pal Singh, S.; Dammeijer, F.; Hendriks, R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer, 2018, 17(1), 57.
[http://dx.doi.org/10.1186/s12943-018-0779-z] [PMID: 29455639]
[2]
Liclican, A.; Serafini, L.; Xing, W.; Czerwieniec, G.; Steiner, B.; Wang, T.; Brendza, K.M.; Lutz, J.D.; Keegan, K.S.; Ray, A.S.; Schultz, B.E.; Sakowicz, R.; Feng, J.Y. Biochemical characterization of tirabrutinib and other irreversible inhibitors of Bruton’s tyrosine kinase reveals differences in on : And off : Target inhibition. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(4), 129531.
[http://dx.doi.org/10.1016/j.bbagen.2020.129531] [PMID: 31953125]
[3]
Castillo, J.J.; Treon, S.P.; Davids, M.S. Inhibition of the bruton tyrosine kinase pathway in B-cell lymphoproliferative disorders. Cancer J., 2016, 22(1), 34-39.
[http://dx.doi.org/10.1097/PPO.0000000000000170] [PMID: 26841015]
[4]
Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer, 2005, 5(4), 251-262.
[http://dx.doi.org/10.1038/nrc1589] [PMID: 15803153]
[5]
Liu, X.J.; Xu-Liu; Pang, X.J.; -Ying Yuan, X.; Yu, G.X.; Li, Y.R.; Guan, Y.F.; Zhang, Y.B.; Song, J.; Zhang, Q.R.; Zhang, S.Y. Progress in the development of small molecular inhibitors of the Bruton’s tyrosine kinase (BTK) as a promising cancer therapy. Bioorg. Med. Chem., 2021, 47, 116358.
[http://dx.doi.org/10.1016/j.bmc.2021.116358] [PMID: 34479103]
[6]
Dhillon, S. Tirabrutinib: First approval. Drugs, 2020, 80(8), 835-840.
[http://dx.doi.org/10.1007/s40265-020-01318-8] [PMID: 32382949]
[7]
Pharmaceutical, O. ONO Receives a Manufacturing and Marketing Approval for Velexbru® Tablet 80mg, a BTK inhibitor, for Treatment of Recurrent or Refractory Primary Central Nervous System Lymphoma in Japan; Ono Pharmaceutical Co., Ltd, 2020.
[8]
Holdhoff, M.; Mrugala, M.M.; Grommes, C.; Kaley, T.J.; Swinnen, L.J.; Perez-Heydrich, C.; Nayak, L. Challenges in the treatment of newly diagnosed and recurrent primary central nervous system lymphoma. J. Natl. Compr. Cancer. Netw., 2020, 18(11), 1571-1578.
[http://dx.doi.org/10.6004/jnccn.2020.7667] [PMID: 33152700]
[9]
Grommes, C.; DeAngelis, L.M.; Primary, C.N.S. Primary CNS Lymphoma. J. Clin. Oncol., 2017, 35(21), 2410-2418.
[http://dx.doi.org/10.1200/JCO.2017.72.7602] [PMID: 28640701]
[10]
Bashir, M.K.; Mustafa, Y.F.; Oglah, M.K. Synthesis and antitumor activity of new multifunctional coumarins. Periód. Tchê Quím., 2020, 17(36), 871-883.
[http://dx.doi.org/10.52571/PTQ.v17.n36.2020.886_Periodico36_pgs_871_883.pdf]
[11]
Langner-Lemercier, S.; Houillier, C.; Soussain, C.; Ghesquières, H.; Chinot, O.; Taillandier, L.; Soubeyran, P.; Lamy, T.; Morschhauser, F.; Benouaich-Amiel, A.; Ahle, G.; Moles-Moreau, M.P.; Moluçon-Chabrot, C.; Bourquard, P.; Damaj, G.; Jardin, F.; Larrieu, D.; Gyan, E.; Gressin, R.; Jaccard, A.; Choquet, S.; Brion, A.; Casasnovas, O.; Colin, P.; Reman, O.; Tempescul, A.; Marolleau, J.P.; Fabbro, M.; Naudet, F.; Hoang-Xuan, K.; Houot, R. Primary CNS lymphoma at first relapse/progression: characteristics, management, and outcome of 256 patients from the French LOC network. Neuro-oncol., 2016, 18(9), 1297-1303.
[http://dx.doi.org/10.1093/neuonc/now033] [PMID: 26951382]
[12]
Narita, Y.; Nagane, M.; Mishima, K.; Terui, Y.; Arakawa, Y.; Yonezawa, H.; Asai, K.; Fukuhara, N.; Sugiyama, K.; Shinojima, N.; Kitagawa, J.; Aoi, A.; Nishikawa, R. Phase I/II study of tirabrutinib, a second-generation Bruton’s tyrosine kinase inhibitor, in relapsed/refractory primary central nervous system lymphoma. Neuro-oncol., 2021, 23(1), 122-133.
[http://dx.doi.org/10.1093/neuonc/noaa145] [PMID: 32583848]
[13]
Pagano, L.; Caira, M.; Candoni, A.; Aversa, F.; Castagnola, C.; Caramatti, C.; Cattaneo, C.; Delia, M.; De Paolis, M.R.; Di Blasi, R.; Di Caprio, L.; Fanci, R.; Garzia, M.; Martino, B.; Melillo, L.; Mitra, M.E.; Nadali, G.; Nosari, A.; Picardi, M.; Potenza, L.; Salutari, P.; Trecarichi, E.M.; Tumbarello, M.; Verga, L.; Vianelli, N.; Busca, A.; Group, S. Evaluation of the practice of antifungal prophylaxis use in patients with newly diagnosed acute myeloid leukemia: results from the SEIFEM 2010-B registry. Clin. Infect. Dis., 2012, 55(11), 1515-1521.
[http://dx.doi.org/10.1093/cid/cis773] [PMID: 22955439]
[14]
Ono Pharmaceutical Co., L; Pharmaceutical Evaluation Division, Pharmaceutical Safety and Environmental Health Bureau, 2020.
[15]
Administration, U.F.a.D. Bioanalytical Method Validation Guidance for Industry. 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry