The Expression of Hsa-Mir-1225-5p Limits the Aggressive Biological Behaviour of Luminal Breast Cancer Cell Lines

Page: [124 - 131] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Numerous genetic and biological processes have been linked to the function of microRNAs (miRNAs), which regulate gene expression by targeting messenger RNA (mRNA). It is commonly acknowledged that miRNAs play a role in the development of disease and the embryology of mammals.

Method: To further understand its function in the oncogenic process, the expression of the miRNA profile in cancer has been investigated. Despite being referred to as a noteworthy miRNA in cancer, it is unknown whether hsa-miR-1225-5p plays a part in the in vitro progression of the luminal A and luminal B subtypes of breast cancer. We proposed that a synthetic hsa-miR-1225-5p molecule be expressed in breast cancer cell lines and its activity be evaluated with the aim of studying its function in the development of luminal breast cancer. In terms of the typical cancer progression stages, such as proliferation, survival, migration, and invasion, we investigated the role of hsa-miR-1225-5p in luminal A and B breast cancer cell lines.

Results: Additionally, using bioinformatics databases, we thoroughly explored the target score-based prediction of miRNA-mRNA interaction. Our study showed that the expression of miR-1225-5p significantly inhibited the in vitro growth of luminal A and B breast cancer cell lines.

Conclusion: The results were supported by a bioinformatic analysis and a detailed gene network that boosts the activation of signaling pathways required for cancer progression.

Graphical Abstract

[1]
Turajlic S, Sottoriva A, Graham T, Swanton C. Resolving genetic heterogeneity in cancer. Nat Rev Genet 2019; 20(7): 404-16.
[http://dx.doi.org/10.1038/s41576-019-0114-6] [PMID: 30918367]
[2]
Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med 2017; 4(DEC): 227.
[http://dx.doi.org/10.3389/fmed.2017.00227] [PMID: 29276709]
[3]
Pandit P, Patil R, Palwe V, Gandhe S, Patil R, Nagarkar R. Prevalence of molecular subtypes of breast cancer: A single institutional experience of 2062 patients. Eur J Breast Health 2020; 16(1): 39-43.
[http://dx.doi.org/10.5152/ejbh.2019.4997] [PMID: 31912012]
[4]
Gao JJ, Swain SM. Luminal a breast cancer and molecular assays: A review. Oncologist 2018; 23(5): 556-65.
[http://dx.doi.org/10.1634/theoncologist.2017-0535] [PMID: 29472313]
[5]
Bockmeyer CL, Christgen M, Müller M, et al. MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat 2011; 130(3): 735-45.
[http://dx.doi.org/10.1007/s10549-010-1303-3] [PMID: 21409395]
[6]
Ross CA. The trophoblast model of cancer. Nutr Cancer 2015; 67(1): 61-7.
[http://dx.doi.org/10.1080/01635581.2014.956257] [PMID: 25372465]
[7]
Vidal DO, Ramão A, Pinheiro DG, et al. Highly expressed placental miRNAs control key biological processes in human cancer cell lines. Oncotarget 2018; 9(34): 23554-63.
[http://dx.doi.org/10.18632/oncotarget.25264] [PMID: 29805755]
[8]
Costanzo V, Bardelli A, Siena S, Abrignani S. Exploring the links between cancer and placenta development. Open Biol 2018; 8(6): 180081.
[http://dx.doi.org/10.1098/rsob.180081] [PMID: 29950452]
[9]
Zhong R, Li S, Fang K, Yang L, Wang L. microRNA-1225 inhibit apoptosis of pancreatic cancer cells via targeting JAK1. Cell Cycle 2019; 18(9): 990-1000.
[http://dx.doi.org/10.1080/15384101.2019.1608127] [PMID: 30990343]
[10]
Gong Y, Wei Z, Liu J. Mirna-1225 inhibits osteosarcoma tumor growth and progression by targeting ywhaz. OncoTargets Ther 2021; 14: 15-27.
[http://dx.doi.org/10.2147/OTT.S282485] [PMID: 33442263]
[11]
Brix N, Samaga D, Belka C, Zitzelsberger H, Lauber K. Analysis of clonogenic growth in vitro. Nat Protoc 2021; 16(11): 4963-91.
[http://dx.doi.org/10.1038/s41596-021-00615-0] [PMID: 34697469]
[12]
Cho JH, Robinson JP, Arave RA, et al. AKT1 activation promotes development of melanoma metastases. Cell Rep 2015; 13(5): 898-905.
[http://dx.doi.org/10.1016/j.celrep.2015.09.057] [PMID: 26565903]
[13]
Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res 2015; 43(W1): W460-6.
[http://dx.doi.org/10.1093/nar/gkv403] [PMID: 25977294]
[14]
Schairer C, Mink PJ, Carroll L, Devesa SS. Probabilities of death from breast cancer and other causes among female breast cancer patients. J Natl Cancer Inst 2004; 96(17): 1311-21.
[http://dx.doi.org/10.1093/jnci/djh253] [PMID: 15339969]
[15]
Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal 2015; 8(368): re3.
[http://dx.doi.org/10.1126/scisignal.2005825]
[16]
Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol 2015; 213(4): S163-72.
[http://dx.doi.org/10.1016/j.ajog.2015.05.057] [PMID: 26428496]
[17]
Butt E, Howard CM, Raman D. LASP1 in cellular signaling and gene expression: More than just a cytoskeletal regulator. Cells 2022; 11(23): 3817.
[http://dx.doi.org/10.3390/cells11233817] [PMID: 36497077]
[18]
Chiyomaru T, Enokida H, Kawakami K, et al. Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer. Urol Oncol 2012; 30(4): 434-43.
[http://dx.doi.org/10.1016/j.urolonc.2010.05.008] [PMID: 20843712]
[19]
Chen K, Quan J, Yang J, Chen Z. The potential markers of endocrine resistance among HR+/HER2+ breast cancer patients. Clin Transl Oncol 2020; 22(4): 576-84.
[http://dx.doi.org/10.1007/s12094-019-02163-2] [PMID: 31209793]
[20]
Ruggieri V, Agriesti F, Tataranni T, Perris R, Mangieri D. Paving the path for invasion: The polyedric role of LASP1 in cancer. Tumour Biol 2017; 39(6)
[http://dx.doi.org/10.1177/1010428317705757] [PMID: 28621232]
[21]
Zheng J. LASP 1 promotes tumor proliferation and metastasis and is an independent unfavorable prognostic factor in gastric cancer. J Cancer Res Clin Oncol 2014; 140(11): 1891-9.
[http://dx.doi.org/10.1007/s00432-014-1759-3]
[22]
Wang C, Zheng X, Shen C, Shi Y. MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells. J Exp Clin Cancer Res 2012; 31(1): 58.
[http://dx.doi.org/10.1186/1756-9966-31-58]
[23]
Heinonen H, Nieminen A, Saarela M, et al. Deciphering downstream gene targets of PI3K/mTOR/p70S6K pathway in breast cancer. BMC Genomics 2008; 9(1): 348.
[http://dx.doi.org/10.1186/1471-2164-9-348] [PMID: 18652687]
[24]
Lux H, Flammann H, Hafner M, Lux A. Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation. PLoS One 2010; 5(1): e8686.
[http://dx.doi.org/10.1371/journal.pone.0008686] [PMID: 20084274]
[25]
Wang C, Xiao Y, Hu Z, Chen Y, Liu N, Hu G. PEG10 directly regulated by E2Fs might have a role in the development of hepatocellular carcinoma. FEBS Lett 2008; 582(18): 2793-8.
[http://dx.doi.org/10.1016/j.febslet.2008.07.009] [PMID: 18625225]
[26]
Bang H, Ha SY, Hwang SH, Park CK. Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat 2015; 47(4): 844-52.
[http://dx.doi.org/10.4143/crt.2014.124] [PMID: 25687862]
[27]
Li X, Xiao R, Tembo K, et al. PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol 2016; 48(5): 1933-42.
[http://dx.doi.org/10.3892/ijo.2016.3406] [PMID: 26934961]
[28]
Akamatsu S, Wyatt AW, Lin D, et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep 2015; 12(6): 922-36.
[http://dx.doi.org/10.1016/j.celrep.2015.07.012] [PMID: 26235627]
[29]
Xie T, Pan S, Zheng H, et al. PEG10 as an oncogene: Expression regulatory mechanisms and role in tumor progression. Cancer Cell Int 2018; 18(1): 112.
[http://dx.doi.org/10.1186/s12935-018-0610-3] [PMID: 30123090]
[30]
Evdokimova V, Tognon C, Ng T, et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 2009; 15(5): 402-15.
[http://dx.doi.org/10.1016/j.ccr.2009.03.017] [PMID: 19411069]
[31]
Li CM, Margolin AA, Salas M, et al. PEG10 is a c-MYC target gene in cancer cells. Cancer Res 2006; 66(2): 665-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1553] [PMID: 16423995]
[32]
Marcu KB, Bossone SA, Patel AJ. myc function and regulation. Annu Rev Biochem 1992; 61(1): 809-58.
[http://dx.doi.org/10.1146/annurev.bi.61.070192.004113] [PMID: 1497324]
[33]
Meital Gabay. MYC Activation is a hallmark of cancer initiation and maintenance meital 2009; 36(2): 186-94.
[34]
Ferraiuolo RM, Fifield BA, Hamm C, Porter LA. Stabilization of c-Myc by the atypical cell cycle regulator, Spy1, decreases efficacy of breast cancer treatments. Breast Cancer Res Treat 2022; 196(1): 17-30.
[http://dx.doi.org/10.1007/s10549-022-06715-z] [PMID: 36029387]
[35]
Chen Y. MYC in breast tumor progression. Expert Rev Anticancer Ther 2008; 8(10): 1689-98.
[http://dx.doi.org/10.1586/14737140.8.10.1689] [PMID: 18925859]
[36]
Gao F, Li X, Xu K, Wang R, Guan X. c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun Signal 2023; 21(1): 28.
[http://dx.doi.org/10.1186/s12964-023-01043-1] [PMID: 36597090]
[37]
Rebello R, Pearson R, Hannan R, Furic L. Therapeutic approaches targeting MYC-driven prostate cancer. Genes 2017; 8(2): 71.
[http://dx.doi.org/10.3390/genes8020071]
[38]
Schulze A, Oshi M, Endo I, Takabe K. Myc targets scores are associated with cancer aggressiveness and poor survival in er-positive primary and metastatic breast cancer. Int J Mol Sci 2020; 21(21): 8127.
[http://dx.doi.org/10.3390/ijms21218127] [PMID: 33143224]
[39]
Galiè M. RAS as supporting actor in breast cancer. Front Oncol 2019; 9(November): 1199.
[http://dx.doi.org/10.3389/fonc.2019.01199] [PMID: 31781501]
[40]
Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S. Signal transduction pathways in breast cancer: The important role of PI3K/Akt/mTOR. J Oncol 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/9258396] [PMID: 32211045]
[41]
Smith AE, Ferraro E, Safonov A, et al. HER2 + breast cancers evade anti-HER2 therapy via a switch in driver pathway. Nat Commun 2021; 12(1): 6667.
[http://dx.doi.org/10.1038/s41467-021-27093-y] [PMID: 34795269]
[42]
Hollern DP, Swiatnicki MR, Rennhack JP, et al. E2F1 drives breast cancer metastasis by regulating the target gene fgf13 and altering cell migration. Sci Rep 2019; 9(1): 10718.
[http://dx.doi.org/10.1038/s41598-019-47218-0] [PMID: 31341204]
[43]
Bao C, Chen J, Chen D, et al. MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death Dis 2020; 11(8): 618.
[http://dx.doi.org/10.1038/s41419-020-02855-6] [PMID: 32796817]
[44]
Piezzo M, Cocco S, Caputo R, et al. Targeting cell cycle in breast cancer: CDK4/6 inhibitors. Int J Mol Sci 2020; 21(18): 6479.
[http://dx.doi.org/10.3390/ijms21186479] [PMID: 32899866]
[45]
Carroll PA, Freie BW, Mathsyaraja H, Eisenman RN. The MYC transcription factor network: Balancing metabolism, proliferation and oncogenesis. Front Med 2018; 12(4): 412-25.
[46]
Razavipour SF, Harikumar KB, Slingerland JM. P27 as a transcriptional regulator: New roles in development and cancer. Cancer Res 2020; 80(17): 3451-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3663] [PMID: 32341036]
[47]
Duffy MJ, O’Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev 2021; 94: 102154.
[http://dx.doi.org/10.1016/j.ctrv.2021.102154]
[48]
Wang C, Zhang J, Yin J, et al. Alternative approaches to target Myc for cancer treatment. Signal Transduct Target Ther 2021; 6(1): 117.
[http://dx.doi.org/10.1038/s41392-021-00500-y] [PMID: 33692331]
[49]
Risom T, Wang X, Liang J, et al. Deregulating MYC in a model of HER2+ breast cancer mimics human intertumoral heterogeneity. J Clin Invest 2019; 130(1): 231-46.
[http://dx.doi.org/10.1172/JCI126390] [PMID: 31763993]