Manifestation of Psychosis and Impairments of Executive Functions Emphasize the Interaction of Psychological and Neurological Dysfunctions in People Who Use Methamphetamine

Page: [388 - 400] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Aim: Cumulative evidence has demonstrated the neurotoxic effect of methamphetamine (Meth) on the central nervous system. Meth can induce psychotic symptoms and impairments of cognitive abilities, including executive function (EF).

Methods: In this study, we hypothesized the interaction of the neurotoxic effects of Meth on psychotic symptoms and EF performances. The Stroop test evaluated the EF performances, Go/No-Go task, one-back test (OBT), and Wisconsin Card Sorting Test (WCST) in people who use Meth with psychosis (MWP) and without psychosis (MWOP) compared with healthy control participants.

Result: The results showed that MWOP and MWP exhibited EF deficits in attention, working memory, and initial conceptualization. Moreover, a deficit in inhibition was observed in MWOP, while poorer processing speed and cognitive flexibility were found in MWP.

Conclusion: The correlation between psychotic symptoms and poor EF performances was observed in MWP. These findings underline the interaction of the mechanistic neurotoxic effect of Meth to induce psychological and neurological dysfunctions in people who use Meth.

Graphical Abstract

[1]
Courtney KE, Ray LA. Methamphetamine: An update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend 2014; 143: 11-21.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.08.003] [PMID: 25176528]
[2]
Du SH, Qiao DF, Chen CX, et al. Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes. Front Mol Neurosci 2017; 10(409): 409.
[http://dx.doi.org/10.3389/fnmol.2017.00409] [PMID: 29311802]
[3]
Wu XF, Wang AF, Chen L, et al. S-nitrosylating protein disulphide isomerase mediates α-synuclein aggregation caused by methamphetamine exposure in PC12 cells. Toxicol Lett 2014; 230(1): 19-27.
[http://dx.doi.org/10.1016/j.toxlet.2014.07.026] [PMID: 25090657]
[4]
Andres MA, Cooke IM, Bellinger FP, et al. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels. J Neurochem 2015; 134(1): 56-65.
[http://dx.doi.org/10.1111/jnc.13104] [PMID: 25807982]
[5]
Haber SN. McFARLAND NR. The concept of the ventral striatum in nonhuman primates. Ann N Y Acad Sci 1999; 877(1): 33-48.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb09259.x] [PMID: 10415641]
[6]
Fallon JH, Moore RY. Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 1978; 180(3): 545-79.
[http://dx.doi.org/10.1002/cne.901800310] [PMID: 659674]
[7]
Stephans SE, Yamamoto BK. Methamphetamine-induced neurotoxicity: Roles for glutamate and dopamine efflux. Synapse 1994; 17(3): 203-9.
[http://dx.doi.org/10.1002/syn.890170310] [PMID: 7974204]
[8]
Stephans SE, Yamamoto BK. Effect of repeated methamphetamine administrations on dopamine and glutamate efflux in rat prefrontal cortex. Brain Res 1995; 700(1-2): 99-106.
[http://dx.doi.org/10.1016/0006-8993(95)00938-M] [PMID: 8624733]
[9]
Silber BY, Croft RJ, Papafotiou K, Stough C. The acute effects of d-amphetamine and methamphetamine on attention and psychomotor performance. Psychopharmacology 2006; 187(2): 154-69.
[http://dx.doi.org/10.1007/s00213-006-0410-7] [PMID: 16761129]
[10]
Muly EC III, Szigeti K, Goldman-Rakic PS. D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 1998; 18(24): 10553-65.
[http://dx.doi.org/10.1523/JNEUROSCI.18-24-10553.1998] [PMID: 9852592]
[11]
Salo R, Nordahl TE, Possin K, et al. Preliminary evidence of reduced cognitive inhibition in methamphetamine-dependent individuals. Psychiatry Res 2002; 111(1): 65-74.
[http://dx.doi.org/10.1016/S0165-1781(02)00111-7] [PMID: 12140121]
[12]
Meredith CW, Jaffe C, Ang-Lee K, Saxon AJ. Implications of chronic methamphetamine use: A literature review. Harv Rev Psychiatry 2005; 13(3): 141-54.
[http://dx.doi.org/10.1080/10673220591003605] [PMID: 16020027]
[13]
Scott JC, Woods SP, Matt GE, et al. Neurocognitive effects of methamphetamine: A critical review and meta-analysis. Neuropsychol Rev 2007; 17(3): 275-97.
[http://dx.doi.org/10.1007/s11065-007-9031-0] [PMID: 17694436]
[14]
Jacobs E, Fujii D, Schiffman J, Bello I. An exploratory analysis of neurocognition in methamphetamine-induced psychotic disorder and paranoid schizophrenia. Cogn Behav Neurol 2008; 21(2): 98-103.
[http://dx.doi.org/10.1097/WNN.0b013e31816bdf90] [PMID: 18541986]
[15]
Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction 2009; 104(7): 1085-99.
[http://dx.doi.org/10.1111/j.1360-0443.2009.02564.x] [PMID: 19426289]
[16]
Sachdev PS, Blacker D, Blazer DG, et al. Classifying neurocognitive disorders: The DSM-5 approach. Nat Rev Neurol 2014; 10(11): 634-42.
[http://dx.doi.org/10.1038/nrneurol.2014.181] [PMID: 25266297]
[17]
Diamond A. Executive functions. Annu Rev Psychol 2013; 64(1): 135-68.
[http://dx.doi.org/10.1146/annurev-psych-113011-143750] [PMID: 23020641]
[18]
Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognit Psychol 2000; 41(1): 49-100.
[http://dx.doi.org/10.1006/cogp.1999.0734] [PMID: 10945922]
[19]
Paap KR, Sawi O. Bilingual advantages in executive functioning: Problems in convergent validity, discriminant validity, and the identification of the theoretical constructs. Front Psychol 2014; 5: 962.
[http://dx.doi.org/10.3389/fpsyg.2014.00962] [PMID: 25249988]
[20]
Collins A, Koechlin E. Reasoning, learning, and creativity: Frontal lobe function and human decision-making. PLoS Biol 2012; 10(3): e1001293.
[http://dx.doi.org/10.1371/journal.pbio.1001293] [PMID: 22479152]
[21]
Lunt L, Bramham J, Morris RG, et al. Prefrontal cortex dysfunction and ‘Jumping to Conclusions’: Bias or deficit? J Neuropsychol 2012; 6(1): 65-78.
[http://dx.doi.org/10.1111/j.1748-6653.2011.02005.x] [PMID: 22257612]
[22]
Wood RL, Worthington A. Neurobehavioral abnormalities associated with executive dysfunction after traumatic brain injury. Front Behav Neurosci 2017; 11: 195.
[http://dx.doi.org/10.3389/fnbeh.2017.00195] [PMID: 29123473]
[23]
Snyder HR, Miyake A, Hankin BL. Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Front Psychol 2015; 6: 328.
[http://dx.doi.org/10.3389/fpsyg.2015.00328] [PMID: 25859234]
[24]
Zelazo PD. Executive function: Reflection, iterative reprocessing, complexity, and the developing brain. Dev Rev 2015; 38: 55-68.
[http://dx.doi.org/10.1016/j.dr.2015.07.001]
[25]
Funahashi S, Andreau JM. Prefrontal cortex and neural mechanisms of executive function. J Physiol Paris 2013; 107(6): 471-82.
[http://dx.doi.org/10.1016/j.jphysparis.2013.05.001] [PMID: 23684970]
[26]
Chen CK, Lin SK, Sham PC, et al. Pre-morbid characteristics and co-morbidity of methamphetamine users with and without psychosis. Psychol Med 2003; 33(8): 1407-14.
[http://dx.doi.org/10.1017/S0033291703008353] [PMID: 14672249]
[27]
Grant KM, LeVan TD, Wells SM, et al. Methamphetamine-associated psychosis. J Neuroimmune Pharmacol 2012; 7(1): 113-39.
[http://dx.doi.org/10.1007/s11481-011-9288-1] [PMID: 21728034]
[28]
Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 2003; 479(1-3): 23-40.
[http://dx.doi.org/10.1016/j.ejphar.2003.08.054] [PMID: 14612135]
[29]
Pulver AE, Lasseter VK, Kasch L, et al. Schizophrenia: A genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995; 60(3): 252-60.
[http://dx.doi.org/10.1002/ajmg.1320600316] [PMID: 7573181]
[30]
Blouin JL, Dombroski BA, Nath SK, et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20(1): 70-3.
[http://dx.doi.org/10.1038/1734] [PMID: 9731535]
[31]
Kraiwattanapirom N, Siripornpanich V, Suwannapu W, et al. The quantitative analysis of EEG during resting and cognitive states related to neurological dysfunctions and cognitive impairments in methamphetamine abusers. Neurosci Lett 2022; 789: 136870.
[http://dx.doi.org/10.1016/j.neulet.2022.136870] [PMID: 36100041]
[32]
Hunter EE, Murphy M. Brief psychiatric rating scale. In: Kreutzer JS, DeLuca J, Caplan B, Eds. Encyclopedia of Clinical Neuropsychology. New York, NY: Springer 2011; pp. 447-9.
[http://dx.doi.org/10.1007/978-0-387-79948-3_1976]
[33]
Train the Brain Forum Committe Poungvarin NTA. Thai mentral state examination (TMSE). Siriraj Hosp Gaz 1993; 45: 359-74.
[34]
Muangpaisan W, Assantachai P, Sitthichai K, Richardson K, Brayne C. The distribution of thai mental state examination scores among non-demented elderly in suburban bangkok metropolitan and associated factors. J Med Assoc Thai 2015; 98(9): 916-24.
[PMID: 26591404]
[35]
Bench CJ, Frith CD, Grasby PM, et al. Investigations of the functional anatomy of attention using the stroop test. Neuropsychologia 1993; 31(9): 907-22.
[http://dx.doi.org/10.1016/0028-3932(93)90147-R] [PMID: 8232848]
[36]
Macleod C. The stroop task: The “gold standard” of attentional measures. J Exp Psychol Gen 2002; 121.
[37]
van Dijk F, Schellekens A, van den Broek P, Kan C, Verkes RJ, Buitelaar J. Do cognitive measures of response inhibition differentiate between attention deficit/hyperactivity disorder and borderline personality disorder? Psychiatry Res 2014; 215(3): 733-9.
[http://dx.doi.org/10.1016/j.psychres.2013.12.034] [PMID: 24418050]
[38]
Gonthier C, Macnamara BN, Chow M, et al. Inducing proactive control shifts in the AX-CPT. Front Psychol 1822; 2016: 7.
[PMID: 27920741]
[39]
Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005; 25(1): 46-59.
[http://dx.doi.org/10.1002/hbm.20131] [PMID: 15846822]
[40]
Faustino B, Oliveira J, Lopes P. Diagnostic precision of the Wisconsin Card Sorting Test in assessing cognitive deficits in substance use disorders. Appl Neuropsychol Adult 2019; 1-8.
[PMID: 31060391]
[41]
Eling P, Derckx K, Maes R. On the historical and conceptual background of the wisconsin card sorting test. Brain Cogn 2008; 67(3): 247-53.
[http://dx.doi.org/10.1016/j.bandc.2008.01.006] [PMID: 18328609]
[42]
Sturm W. Neuropsychological assessment. J Neurol 2007; 254(2): II12-4.
[PMID: 17503120]
[43]
Nyhus E. Barceló F. The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain Cogn 2009; 71(3): 437-51.
[http://dx.doi.org/10.1016/j.bandc.2009.03.005] [PMID: 19375839]
[44]
Rybakowski JK, Borkowska A, Czerski PM, Kapelski P, Dmitrzak-Weglarz M, Hauser J. An association study of dopamine receptors polymorphisms and the Wisconsin Card Sorting Test in schizophrenia. J Neural Transm 2005; 112(11): 1575-82.
[http://dx.doi.org/10.1007/s00702-005-0292-6] [PMID: 15785860]
[45]
Khanthiyong B, Thanoi S, Reynolds GP, Nudmamud-Thanoi S. Association study of the functional Catechol-O-Methyltranferase (COMT) Val158 Met polymorphism on executive cognitive function in a Thai sample. Int J Med Sci 2019; 16(11): 1461-5.
[http://dx.doi.org/10.7150/ijms.35789] [PMID: 31673237]
[46]
Thompson PM, Hayashi KM, Simon SL, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 2004; 24(26): 6028-36.
[http://dx.doi.org/10.1523/JNEUROSCI.0713-04.2004] [PMID: 15229250]
[47]
Kuiper LB, Frohmader KS, Coolen LM. Maladaptive sexual behavior following concurrent methamphetamine and sexual experience in male rats is associated with altered neural activity in frontal cortex. Neuropsychopharmacology 2017; 42(10): 2011-20.
[http://dx.doi.org/10.1038/npp.2017.1] [PMID: 28051103]
[48]
Kim YT, Lee JJ, Song HJ, et al. Alterations in cortical activity of male methamphetamine abusers performing an empathy task: fMRI study. Hum Psychopharmacol 2010; 25(1): 63-70.
[http://dx.doi.org/10.1002/hup.1083] [PMID: 20041477]
[49]
Tan H, Chen T, Du J, et al. Drug-related virtual reality cue reactivity is associated with gamma activity in reward and executive control circuit in methamphetamine use disorders. Arch Med Res 2019; 50(8): 509-17.
[http://dx.doi.org/10.1016/j.arcmed.2019.09.003] [PMID: 32028094]
[50]
London ED, Berman SM, Voytek B, et al. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biol Psychiatry 2005; 58(10): 770-8.
[http://dx.doi.org/10.1016/j.biopsych.2005.04.039] [PMID: 16095568]
[51]
Salo R, Fassbender C, Buonocore MH, Ursu S. Behavioral regulation in methamphetamine abusers: An fMRI study. Psychiatry Res Neuroimaging 2013; 211(3): 234-8.
[http://dx.doi.org/10.1016/j.pscychresns.2012.10.003] [PMID: 23149023]
[52]
Chung A, Lyoo IK, Kim SJ, et al. Decreased frontal white-matter integrity in abstinent methamphetamine abusers. Int J Neuropsychopharmacol 2007; 10(6): 765-75.
[http://dx.doi.org/10.1017/S1461145706007395] [PMID: 17147837]
[53]
Kim SJ, Lyoo IK, Hwang J, et al. Frontal glucose hypometabolism in abstinent methamphetamine users. Neuropsychopharmacology 2005; 30(7): 1383-91.
[http://dx.doi.org/10.1038/sj.npp.1300699] [PMID: 15726115]
[54]
Kim SJ, Lyoo IK, Hwang J, et al. Prefrontal grey-matter changes in short-term and long-term abstinent methamphetamine abusers. Int J Neuropsychopharmacol 2006; 9(2): 221-8.
[http://dx.doi.org/10.1017/S1461145705005699] [PMID: 15982446]
[55]
Liu X, Zhao X, Shen Y, et al. The effects of DLPFC-targeted repetitive transcranial magnetic stimulation on craving in male methamphetamine patients. Clin Transl Med 2020; 10(2): 48.
[56]
Vahed N. Synergistic effect of combined transcranial direct current stimulation and Matrix Model on the reduction of methamphetamine craving and improvement of cognitive functioning: A randomized sham-controlled study. Am J Drug Alcohol Abuse 2022; 2022: 1-10.
[57]
Verdejo-García A, Bechara A, Recknor EC, Pérez-García M. Executive dysfunction in substance dependent individuals during drug use and abstinence: An examination of the behavioral, cognitive and emotional correlates of addiction. J Int Neuropsychol Soc 2006; 12(3): 405-15.
[http://dx.doi.org/10.1017/S1355617706060486] [PMID: 16903133]
[58]
Chaidee N, Kraiwattanapirom N, Pannengpetch S, et al. Cognitive impairment and changes of red blood cell components and serum levels of IL-6, IL-18, and L-tryptophan in methamphetamine abusers. Am J Neurodegener Dis 2023; 12(1): 1-15.
[PMID: 36937109]
[59]
Hoffman WF, Moore M, Templin R, McFarland B, Hitzemann RJ, Mitchell SH. Neuropsychological function and delay discounting in methamphetamine-dependent individuals. Psychopharmacology 2006; 188(2): 162-70.
[http://dx.doi.org/10.1007/s00213-006-0494-0] [PMID: 16915378]
[60]
Monterosso JR, Aron AR, Cordova X, Xu J, London ED. Deficits in response inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend 2005; 79(2): 273-7.
[http://dx.doi.org/10.1016/j.drugalcdep.2005.02.002] [PMID: 15967595]
[61]
Jones HW, Dean AC, Price KA, London ED. Increased self-reported impulsivity in methamphetamine users maintaining drug abstinence. Am J Drug Alcohol Abuse 2016; 42(5): 500-6.
[http://dx.doi.org/10.1080/00952990.2016.1192639] [PMID: 27398730]
[62]
Kohno M, Okita K, Morales AM, et al. Midbrain functional connectivity and ventral striatal dopamine D2-type receptors: link to impulsivity in methamphetamine users. Mol Psychiatry 2016; 21(11): 1554-60.
[http://dx.doi.org/10.1038/mp.2015.223] [PMID: 26830141]
[63]
Kohno M, Morales AM, Ghahremani DG, Hellemann G, London ED. Risky decision making, prefrontal cortex, and mesocorticolimbic functional connectivity in methamphetamine dependence. JAMA Psychiatry 2014; 71(7): 812-20.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.399] [PMID: 24850532]
[64]
Alicata D, Chang L, Cloak C, Abe K, Ernst T. Higher diffusion in striatum and lower fractional anisotropy in white matter of methamphetamine users. Psychiatry Res Neuroimaging 2009; 174(1): 1-8.
[http://dx.doi.org/10.1016/j.pscychresns.2009.03.011] [PMID: 19782540]
[65]
Tobias MC, O’Neill J, Hudkins M, Bartzokis G, Dean AC, London ED. White-matter abnormalities in brain during early abstinence from methamphetamine abuse. Psychopharmacology 2010; 209(1): 13-24.
[http://dx.doi.org/10.1007/s00213-009-1761-7] [PMID: 20101394]
[66]
Roos A, Kwiatkowski MA, Fouche JP, et al. White matter integrity and cognitive performance in children with prenatal methamphetamine exposure. Behav Brain Res 2015; 279: 62-7.
[http://dx.doi.org/10.1016/j.bbr.2014.11.005] [PMID: 25446763]
[67]
Huang S, Yang W, Luo J, Yan C, Liu J. White matter abnormalities based on tbss and its correlation with impulsivity behavior of methamphetamine addicts. Front Psychiatry 2020; 11: 452.
[http://dx.doi.org/10.3389/fpsyt.2020.00452] [PMID: 32528325]
[68]
Liu W, Tian Y, Yan X, Yang J. Impulse inhibition ability with methamphetamine dependents varies at different abstinence stages. Front Psychiatry 2021; 12: 626535.
[http://dx.doi.org/10.3389/fpsyt.2021.626535] [PMID: 33679483]
[69]
Karbasforoushan H, Duffy B, Blackford JU, Woodward ND. Processing speed impairment in schizophrenia is mediated by white matter integrity. Psychol Med 2015; 45(1): 109-20.
[http://dx.doi.org/10.1017/S0033291714001111] [PMID: 25066842]
[70]
Weaver MF. Prescription sedative misuse and abuse. Yale J Biol Med 2015; 88(3): 247-56.
[PMID: 26339207]
[71]
Calcaterra NE, Barrow JC. Classics in chemical neuroscience: Diazepam (valium). ACS Chem Neurosci 2014; 5(4): 253-60.
[http://dx.doi.org/10.1021/cn5000056] [PMID: 24552479]
[72]
Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: Mechanisms and meaning. Neuropsychopharmacology 2011; 36(1): 316-38.
[http://dx.doi.org/10.1038/npp.2010.156] [PMID: 20844478]
[73]
Barch DM, Sheffield JM. Cognitive impairments in psychotic disorders: Common mechanisms and measurement. World Psychiatry 2014; 13(3): 224-32.
[http://dx.doi.org/10.1002/wps.20145] [PMID: 25273286]
[74]
Lewis DA, Cho RY, Carter CS, et al. Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry 2008; 165(12): 1585-93.
[http://dx.doi.org/10.1176/appi.ajp.2008.08030395] [PMID: 18923067]
[75]
Yamamuro K, Makinodan M, Kimoto S, et al. Differential patterns of blood oxygenation in the prefrontal cortex between patients with methamphetamine-induced psychosis and schizophrenia. Sci Rep 2015; 5(1): 12107.
[http://dx.doi.org/10.1038/srep12107] [PMID: 26178613]
[76]
Ezzatpanah Z, Shariat SV, Tehrani-Doost M. Cognitive functions in methamphetamine induced psychosis compared to schizophrenia and normal subjects. Iran J Psychiatry 2014; 9(3): 152-7.
[PMID: 25561956]
[77]
Chen CK, Lin SK, Sham PC, Ball D, Loh EW, Murray RM. Morbid risk for psychiatric disorder among the relatives of methamphetamine users with and without psychosis. Am J Med Genet B Neuropsychiatr Genet 2005; 136B(1): 87-91.
[http://dx.doi.org/10.1002/ajmg.b.30187] [PMID: 15892150]
[78]
Chen CK, Lin SK, Chen YC, et al. Persistence of psychotic symptoms as an indicator of cognitive impairment in methamphetamine users. Drug Alcohol Depend 2015; 148: 158-64.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.12.035] [PMID: 25601645]
[79]
Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther 2020; 205: 107426.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107426] [PMID: 31629007]