Mechanism of Compound Kushen Injection in the Treatment of Acute Myeloid Leukemia from the Analysis Perspectives
  • * (Excluding Mailing and Handling)

Abstract

Background: Chemotherapy resistance often occurs in the conventional treatment with AML and results in poor cure rates. CKI was found to have a good therapeutic effect when it was combined with other chemotherapy drugs in the clinical treatment of AML. However, the underlying mechanism is unclear. Therefore, this study aims to preliminarily describe the pharmacological activity and mechanism of CKI through comprehensive network pharmacology methods.

Objective: This study aimed to explore the possible mechanism of Compound Kushen Injection (CKI) in the treatment of acute myeloid leukemia (AML) by using network pharmacology, molecular docking, and molecular dynamics techniques.

Methods: Active compounds of CKI were identified based on the Traditional Chinese Medicine Systems Pharmacy (TCMSP) database, and the related targets of the active compounds were predicted using Swiss Target Prediction; AML-related targets from Gene Cards and Online Mendelian Inheritance in Man (OMIM) were collected. Protein-protein interaction (PPI) network was constructed, and its mechanism was predicted through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. The protein-protein interaction (PPI) network construction, module partitioning, and hub node screening were visualized by using the Cytoscape software and its plugins. These module partitionings were also verified by using molecular docking and molecular dynamics.

Results: Fifty-six active ingredients corresponding to 223 potential targets were identified. Biological function analysis showed that 731, 70, and 137 GO entries were associated with biological processes, cellular components, and molecular functions, respectively. A total of 163 KEGG pathways were identified. Network analysis showed that the key anti-AML targets of CKI are MAPK3, EGFR, SRC, PIK3CA, and PIK3R1 targets, which are involved in the PI3K/Akt and Ras/MAPK signaling pathways or related crosstalk pathways.

Conclusion: Our results suggested that the key anti-AML targets of CKI, such as MAPK3, EGFR, SRC, PIK3CA and PIK3R1, are involved in the PI3K/Akt and Ras/MAPK signaling pathways or related crosstalk pathways. Concentrating on the dynamic and complex crosstalk regulation between PI3K/Akt and Ras/MAPK signal pathways and related signal pathways may be a new direction in anti-AML therapy in the future.

[1]
Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. Lancet 2013; 381(9865): 484-95.
[http://dx.doi.org/10.1016/S0140-6736(12)61727-9] [PMID: 23399072]
[2]
De Kouchkovsky I, Abdul-Hay M. ‘Acute myeloid leukemia: A comprehensive review and 2016 update’. Blood Cancer J 2016; 6(7): e441.
[http://dx.doi.org/10.1038/bcj.2016.50] [PMID: 27367478]
[3]
Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet 2018; 392(10147): 593-606.
[http://dx.doi.org/10.1016/S0140-6736(18)31041-9] [PMID: 30078459]
[4]
Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional chinese medicine: Review and assessment. Front Pharmacol 2019; 10: 123.
[http://dx.doi.org/10.3389/fphar.2019.00123] [PMID: 30846939]
[5]
Short NJ, Konopleva M, Kadia TM, et al. Advances in the treatment of acute myeloid leukemia: New drugs and new challenges. Cancer Discov 2020; 10(4): 506-25.
[http://dx.doi.org/10.1158/2159-8290.CD-19-1011] [PMID: 32014868]
[6]
Niu J, Peng D, Liu L. Drug resistance mechanisms of acute myeloid leukemia stem cells. Front Oncol 2022; 12: 896426.
[http://dx.doi.org/10.3389/fonc.2022.896426] [PMID: 35865470]
[7]
McLornan DP, McMullin MF, Johnston P, Longley DB. Molecular mechanisms of drug resistance in acute myeloid leukaemia. Expert Opin Drug Metab Toxicol 2007; 3(3): 363-77.
[http://dx.doi.org/10.1517/17425255.3.3.363] [PMID: 17539744]
[8]
Yang M, Zhu S, Shen C, et al. Clinical application of chinese herbal injection for cancer care: Evidence-mapping of the systematic reviews, meta-analyses, and randomized controlled trials. Front Pharmacol 2021; 12: 666368.
[http://dx.doi.org/10.3389/fphar.2021.666368] [PMID: 34025425]
[9]
Wang W, You R, Qin W, et al. Anti-tumor activities of active ingredients in compound kushen injection. Acta Pharmacol Sin 2015; 36(6): 676-9.
[http://dx.doi.org/10.1038/aps.2015.24] [PMID: 25982630]
[10]
Wang H, Hu H, Rong H, Zhao X. Effects of compound Kushen injection on pathology and angiogenesis of tumor tissues. Oncol Lett 2019; 17(2): 2278-82.
[PMID: 30719109]
[11]
Jin Y, Yang Q, Liang L, et al. Compound kushen injection suppresses human acute myeloid leukaemia by regulating the Prdxs/ROS/Trx1 signalling pathway. J Exp Clin Cancer Res 2018; 37(1): 277.
[http://dx.doi.org/10.1186/s13046-018-0948-3] [PMID: 30454068]
[12]
Tu H, Lei B, Meng S, et al. Efficacy of compound kushen injection in combination with induction chemotherapy for treating adult patients newly diagnosed with acute leukemia. Evid Based Complement Alternat Med 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/3121402] [PMID: 27738441]
[13]
Hui W, Binya S, Xiaohong Z, et al. Clinical observation of acute myeloid leukemia treated by compound Kushen injection. Modern Oncol 2017; 25: 2311-4.
[14]
Shen H, Qu Z, Harata-Lee Y, et al. Understanding the mechanistic contribution of herbal extracts in compound kushen injection with transcriptome analysis. Front Oncol 2019; 9: 632.
[http://dx.doi.org/10.3389/fonc.2019.00632] [PMID: 31380274]
[15]
Liu X, Bai M, Li H, et al. Single-cell RNA-sequencing uncovers compound kushen injection synergistically improves the efficacy of chemotherapy by modulating the tumor environment of breast cancer. Front Immunol 2022; 13: 965342.
[http://dx.doi.org/10.3389/fimmu.2022.965342] [PMID: 36389835]
[16]
Li Y, Wang K, Chen Y, et al. A system pharmacology model for decoding the synergistic mechanisms of compound kushen injection in treating breast cancer. Front Pharmacol 2021; 12: 723147.
[http://dx.doi.org/10.3389/fphar.2021.723147] [PMID: 34899291]
[17]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[18]
Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012; 13(6): 6964-82.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[19]
Gong P, Wang D, Cui D, et al. Anti-aging function and molecular mechanism of Radix Astragali and Radix Astragali preparata via network pharmacology and PI3K/Akt signaling pathway. Phytomedicine 2021; 84: 153509.
[http://dx.doi.org/10.1016/j.phymed.2021.153509] [PMID: 33636579]
[20]
Tian S, Wang J, Li Y, Li D, Xu L, Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 2015; 86: 2-10.
[http://dx.doi.org/10.1016/j.addr.2015.01.009] [PMID: 25666163]
[21]
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform 2011; 3(1): 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[22]
Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 2019; 47(W1): W357-64.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[23]
Safran M, Rosen N, Twik M. The genecards suite. In: Abugessaisa I, Kasukawa T, Eds. Practical Guide to Life Science Databases. Singapore: Springer Nature Singapore 2021; pp. 27-56.
[http://dx.doi.org/10.1007/978-981-16-5812-9_2]
[24]
Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res 2019; 47(D1): D1038-43.
[http://dx.doi.org/10.1093/nar/gky1151] [PMID: 30445645]
[25]
Sherman BT, Hao M, Qiu J, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022; 50(W1): W216-21.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[26]
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019; 47(W1): W556-60.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[27]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[28]
Varadi M, Anyango S, Deshpande M, et al. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022; 50(D1): D439-44.
[http://dx.doi.org/10.1093/nar/gkab1061] [PMID: 34791371]
[29]
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[30]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[31]
Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008; 4(3): 435-47.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[32]
Yu Y, Krämer A, Venable RM, et al. Semi-automated optimization of the CHARMM36 lipid force field to include explicit treatment of long-range dispersion. J Chem Theory Comput 2021; 17(3): 1562-80.
[http://dx.doi.org/10.1021/acs.jctc.0c01326] [PMID: 33620214]
[33]
Bisht A, Tewari D, Kumar S, Chandra S. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia. Mol Divers 2023.
[http://dx.doi.org/10.1007/s11030-023-10684-w] [PMID: 37439907]
[34]
Dixit N, Motwani H, Patel SK, Rawal RM, Solanki HA. Decoding the mechanism of andrographolide to combat hepatocellular carcinoma: A network pharmacology integrated molecular docking and dynamics approach. J Biomol Struct Dyn 2023; 20: 1-19.
[http://dx.doi.org/10.1080/07391102.2023.2256866] [PMID: 37728545]
[35]
Nepstad I, Hatfield KJ, Grønningsæter IS, Reikvam H. The PI3K-Akt-mTOR signaling pathway in human Acute Myeloid Leukemia (AML) cells. Int J Mol Sci 2020; 21(8): 2907.
[http://dx.doi.org/10.3390/ijms21082907] [PMID: 32326335]
[36]
Xie C, He Y, Zhen M, Wang Y, Xu Y, Lou L. Puquitinib, a novel orally available PI 3Kδ inhibitor, exhibits potent antitumor efficacy against acute myeloid leukemia. Cancer Sci 2017; 108(7): 1476-84.
[http://dx.doi.org/10.1111/cas.13263] [PMID: 28418085]
[37]
Wang P, Zhang J, Zhang H, Zhang F. The role of MACF1 on acute myeloid leukemia cell proliferation is involved in Runx2-targeted PI3K/Akt signaling. Mol Cell Biochem 2023; 478(3): 433-41.
[http://dx.doi.org/10.1007/s11010-022-04517-x] [PMID: 35857251]
[38]
Martelli AM, Evangelisti C, Chiarini F, McCubrey JA. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 2010; 1(2): 89-103.
[http://dx.doi.org/10.18632/oncotarget.114] [PMID: 20671809]
[39]
Tabe Y, Tafuri A, Sekihara K, Yang H, Konopleva M. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia. Expert Opin Ther Targets 2017; 21(7): 705-14.
[http://dx.doi.org/10.1080/14728222.2017.1333600] [PMID: 28537457]
[40]
Nepstad I, Hatfield KJ, Aasebø E, et al. Two acute myeloid leukemia patient subsets are identified based on the constitutive PI3K-Akt-mTOR signaling of their leukemic cells; a functional, proteomic, and transcriptomic comparison. Expert Opin Ther Targets 2018; 22(7): 639-53.
[http://dx.doi.org/10.1080/14728222.2018.1487401] [PMID: 29889583]
[41]
Bertacchini J, Heidari N, Mediani L, et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci 2015; 72(12): 2337-47.
[http://dx.doi.org/10.1007/s00018-015-1867-5] [PMID: 25712020]
[42]
Ye Q, Zhang N, Chen K, Zhu J, Jiang H. Effects of portulacerebroside a on apoptosis of human leukemia HL60 cells and p38/JNK signaling pathway. Int J Clin Exp Pathol 2015; 8(11): 13968-77.
[PMID: 26823708]
[43]
Taghiloo S, Norozi S, Asgarian-Omran H. The Effects of PI3K/Akt/mTOR signaling pathway inhibitors on the expression of immune checkpoint ligands in acute myeloid leukemia cell line. Iran J Allergy Asthma Immunol 2022; 21(2): 178-88.
[http://dx.doi.org/10.18502/ijaai.v21i2.9225] [PMID: 35490271]
[44]
Steelman LS, Franklin RA, Abrams SL, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 2011; 25(7): 1080-94.
[http://dx.doi.org/10.1038/leu.2011.66] [PMID: 21494257]
[45]
Daver N, Cortes J. Molecular targeted therapy in acute myeloid leukemia. Hematology 2012; 17(sup1): s59-62.
[http://dx.doi.org/10.1179/102453312X13336169155619] [PMID: 22507781]
[46]
Kadia TM, Kantarjian H, Kornblau S, et al. Clinical and proteomic characterization of acute myeloid leukemia with mutated RAS. Cancer 2012; 118(22): 5550-9.
[http://dx.doi.org/10.1002/cncr.27596] [PMID: 22569880]
[47]
Khoury JD, Tashakori M, Yang H, et al. Pan-RAF inhibition shows anti-leukemic activity in RAS-mutant acute myeloid leukemia cells and potentiates the effect of sorafenib in cells with FLT3 mutation. Cancers 2020; 12(12): 3511.
[http://dx.doi.org/10.3390/cancers12123511] [PMID: 33255818]
[48]
Kam AYF, Piryani SO, Lee CL, et al. Selective ERBB2 and BCL2 inhibition is synergistic for mitochondrial-mediated apoptosis in MDS and AML cells. Mol Cancer Res 2021; 19(5): 886-99.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0973] [PMID: 33514658]
[49]
Wang H, Hu H, Zhang Q, et al. Dynamic transcriptomes of human myeloid leukemia cells. Genomics 2013; 102(4): 250-6.
[http://dx.doi.org/10.1016/j.ygeno.2013.06.004] [PMID: 23806289]
[50]
Hazafa A, Rehman KU, Jahan N, Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr Cancer 2020; 72(3): 386-97.
[http://dx.doi.org/10.1080/01635581.2019.1637006] [PMID: 31287738]
[51]
Li J, Zhang X, Shen X, et al. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait. Fitoterapia 2020; 143: 104556.
[http://dx.doi.org/10.1016/j.fitote.2020.104556] [PMID: 32194169]
[52]
Zhang L, Zhao X, Tao GJ, Chen J, Zheng ZP. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chem 2017; 223: 40-8.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.017] [PMID: 28069121]
[53]
Ko HH, Tsai YT, Yen MH, et al. Norartocarpetin from a folk medicine Artocarpus communis plays a melanogenesis inhibitor without cytotoxicity in B16F10 cell and skin irritation in mice. BMC Complement Altern Med 2013; 13(1): 348.
[http://dx.doi.org/10.1186/1472-6882-13-348] [PMID: 24325567]
[54]
Ryu YB, Ha TJ, Curtis-Long MJ, Ryu HW, Gal SW, Park KH. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz. J Enzyme Inhib Med Chem 2008; 23(6): 922-30.
[http://dx.doi.org/10.1080/14756360701810207] [PMID: 18608767]
[55]
Nguyen HX, Nguyen NT, Nguyen MHK, et al. Tyrosinase inhibitory activity of flavonoids from Artocarpus heterophyllous. Chem Cent J 2016; 10(1): 2.
[http://dx.doi.org/10.1186/s13065-016-0150-7] [PMID: 26834825]
[56]
Hariri R, Saeedi M, Akbarzadeh T. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. J Pept Sci 2021; 27(7): e3329.
[http://dx.doi.org/10.1002/psc.3329] [PMID: 33860571]
[57]
Torello CO, Alvarez MC, Olalla Saad ST. Polyphenolic flavonoid compound quercetin effects in the treatment of acute myeloid leukemia and myelodysplastic syndromes. Molecules 2021; 26(19): 5781.
[http://dx.doi.org/10.3390/molecules26195781] [PMID: 34641325]
[58]
Shi H, Li XY, Chen Y, et al. Quercetin induces apoptosis via downregulation of vascular endothelial growth factor/Akt signaling pathway in acute myeloid leukemia cells. Front Pharmacol 2020; 11: 534171.
[http://dx.doi.org/10.3389/fphar.2020.534171] [PMID: 33362534]
[59]
Chen LC, Huang HL, HuangFu WC, et al. Biological evaluation of selected flavonoids as inhibitors of mnks targeting acute myeloid leukemia. J Nat Prod 2020; 83(10): 2967-75.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00516] [PMID: 33026809]
[60]
Jia G, Jiang X, Li Z, et al. Decoding the mechanism of shen qi sha bai decoction in treating acute myeloid leukemia based on network pharmacology and molecular docking. Front Cell Dev Biol 2021; 9: 796757.
[http://dx.doi.org/10.3389/fcell.2021.796757] [PMID: 34988084]
[61]
De Ford C, Ulloa JL, Catalán CAN, et al. The sesquiterpene lactone polymatin B from Smallanthus sonchifolius induces different cell death mechanisms in three cancer cell lines. Phytochemistry 2015; 117: 332-9.
[http://dx.doi.org/10.1016/j.phytochem.2015.06.020] [PMID: 26125943]
[62]
Arafeh R, Samuels Y. PIK3CA in cancer: The past 30 years. Semin Cancer Biol 2019; 59: 36-49.
[http://dx.doi.org/10.1016/j.semcancer.2019.02.002] [PMID: 30742905]
[63]
Vallejo-Díaz J, Chagoyen M, Olazabal-Morán M, González-García A, Carrera AC. The Opposing Roles of PIK3R1/p85α and PIK3R2/p85β in Cancer. Trends Cancer 2019; 5(4): 233-44.
[http://dx.doi.org/10.1016/j.trecan.2019.02.009] [PMID: 30961830]
[64]
Lee JW, Soung YH, Kim SY, et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005; 24(8): 1477-80.
[http://dx.doi.org/10.1038/sj.onc.1208304] [PMID: 15608678]
[65]
Fan HY, Liu Z, Shimada M, et al. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 2009; 324(5929): 938-41.
[http://dx.doi.org/10.1126/science.1171396] [PMID: 19443782]
[66]
Oyeniran C, Tanfin Z. MAPK14 cooperates with MAPK3/1 to regulate endothelin-1-mediated prostaglandin synthase 2 induction and survival in leiomyoma but not in normal myometrial cells. Biol Reprod 2011; 84(3): 495-504.
[http://dx.doi.org/10.1095/biolreprod.110.089011] [PMID: 21084714]
[67]
Du Y, Zhang J, Meng Y, Huang M, Yan W, Wu Z. MicroRNA-143 targets MAPK3 to regulate the proliferation and bone metastasis of human breast cancer cells. AMB Express 2020; 10(1): 134.
[http://dx.doi.org/10.1186/s13568-020-01072-w] [PMID: 32737620]
[68]
Yu TT, Wang CY, Tong R. ERBB2 gene expression silencing involved in ovarian cancer cell migration and invasion through mediating MAPK1/MAPK3 signaling pathway. Eur Rev Med Pharmacol Sci 2020; 24(10): 5267-80.
[PMID: 32495860]
[69]
Park E, Park J, Han SW, et al. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations. Int J Oncol 2012; 40(4): 1259-66.
[http://dx.doi.org/10.3892/ijo.2011.1290] [PMID: 22159814]
[70]
Shi Y, He M. PfIRR interacts with HrIGF-I and activates the MAP-kinase and PI3-kinase signaling pathways to regulate glycogen metabolism in pinctada fucata. Sci Rep 2016; 6(1): 22063.
[http://dx.doi.org/10.1038/srep22063] [PMID: 26911653]
[71]
Aksamitiene E, Kiyatkin A, Kholodenko BN. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance. Biochem Soc Trans 2012; 40(1): 139-46.
[http://dx.doi.org/10.1042/BST20110609] [PMID: 22260680]
[72]
Erickson KE, Rukhlenko OS, Posner RG, Hlavacek WS, Kholodenko BN. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling. Semin Cancer Biol 2019; 54: 162-73.
[http://dx.doi.org/10.1016/j.semcancer.2018.02.008] [PMID: 29518522]
[73]
López-Díaz FJ, Gascard P, Balakrishnan SK, et al. Coordinate transcriptional and translational repression of p53 by TGF-β1 impairs the stress response. Mol Cell 2013; 50(4): 552-64.
[http://dx.doi.org/10.1016/j.molcel.2013.04.029] [PMID: 23706820]