Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Guowu Ren, Jie Han*, Jian Mo, Zhiwei Xu, Xinjian Feng, Feng Chen, Yukun Wu and Qinglin Peng

DOI: 10.2174/0118715303266951231206114153

Differential Gene Expression and Immune Cell Infiltration in Patients with Steroid-induced Necrosis of the Femoral Head

Page: [1377 - 1394] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Objective: The study aimed to study the differential gene expression and immune cell infiltration in patients with steroid-induced necrosis of the femoral head (SANFH), identify the key genes and immune cells of SANFH, and explore the relationship between immune cells and SANFH.

Methods: The high-throughput gene chip dataset GSE123568 was downloaded from the GEO database, and the differential gene expression was analyzed with the R language. The STRING database and Cytoscape software were used to analyze the protein interaction network and screen key genes, and enrichment analysis was carried out on key genes. The infiltration of immune cells in SANFH patients was analyzed and verified by immunohistochemistry.

Results: EP300, TRAF6, STAT1, JAK1, CASP8, and JAK2 are key genes in the pathogenesis of SANFH, which mainly involve myeloid cell differentiation, cytokine-mediated signaling pathway, tumor necrosis factor-mediated signaling pathway, and cellular response to tumor necrosis factor through JAK-STAT, NOD-like receptor, toll-like receptor, and other signaling pathways, leading to the occurrence of diseases; immune infiltration and immunohistochemical results have shown the expression of memory B cells and activated dendritic cells as reduced in SANFH patients, while in the same SANFH samples, M1 macrophages have been positively correlated with monocytes, and neutrophils have been negatively correlated with monocytes expression.

Conclusion: EP300, TRAF6, STAT1, JAK1, CASP8, and JAK2 have exhibited significant differences in SANFH (spontaneous osteonecrosis of the femoral head). Memory B cells, activated dendritic cells, M1 macrophages, monocytes, and neutrophils have shown abnormal expression in SANFH.

Graphical Abstract

[1]
Tan, B.; Li, W.; Zeng, P.; Guo, H.; Huang, Z.; Fu, F.; Gao, H.; Wang, R.; Chen, W. Epidemiological study based on china osteonecrosis of the femoral head database. Orthop. Surg., 2021, 13(1), 153-160.
[http://dx.doi.org/10.1111/os.12857] [PMID: 33347709]
[2]
Konarski, W.; Poboży, T.; Kotela, A.; Śliwczyński, A.; Kotela, I.; Hordowicz, M.; Krakowiak, J. The risk of avascular necrosis following the stabilization of femoral neck fractures: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health, 2022, 19(16), 10050.
[http://dx.doi.org/10.3390/ijerph191610050] [PMID: 36011686]
[3]
Hines, J.T.; Jo, W.L.; Cui, Q.; Mont, M.A.; Koo, K.H.; Cheng, E.Y.; Goodman, S.B.; Ha, Y.C.; Hernigou, P.; Jones, L.C.; Kim, S.Y.; Sakai, T.; Sugano, N.; Yamamoto, T.; Lee, M.S.; Zhao, D.; Drescher, W.; Kim, T.Y.; Lee, Y.K.; Yoon, B.H.; Baek, S.H.; Ando, W.; Kim, H.S.; Park, J.W. Osteonecrosis of the femoral head: An updated review of ARCO on pathogenesis, staging and treatment. J. Korean Med. Sci., 2021, 36(24), e177.
[http://dx.doi.org/10.3346/jkms.2021.36.e177] [PMID: 34155839]
[4]
Liu, N.; Zheng, C.; Wang, Q.; Huang, Z. Treatment of non traumatic avascular necrosis of the femoral head. (Review). Exp. Ther. Med., 2022, 23(5), 321.
[http://dx.doi.org/10.3892/etm.2022.11250] [PMID: 35386618]
[5]
Cui, Q.; Jo, W.L.; Koo, K.H.; Cheng, E.Y.; Drescher, W.; Goodman, S.B.; Ha, Y.C.; Hernigou, P.; Jones, L.C.; Kim, S.Y.; Lee, K.S.; Lee, M.S.; Lee, Y.J.; Mont, M.A.; Sugano, N.; Taliaferro, J.; Yamamoto, T.; Zhao, D. ARCO consensus on the pathogenesis of non-traumatic osteonecrosis of the femoral head. J. Korean Med. Sci., 2021, 36(10), e65.
[http://dx.doi.org/10.3346/jkms.2021.36.e65] [PMID: 33724736]
[6]
Guggenbuhl, P.; Robin, F.; Cadiou, S.; Albert, J.D. Etiology of avascular osteonecrosis of the femoral head. Morphologie, 2021, 105(349), 80-84.
[http://dx.doi.org/10.1016/j.morpho.2020.12.002] [PMID: 33451882]
[7]
Chang, C. Greenspan, A:, Beltran, J. Osteonecrosis. In: Kelley and Firestein's Textbook of Rheumatology; , 2017; pp. 1764-1787. e5.
[http://dx.doi.org/10.1016/B978-0-323-31696-5.00103-0]
[8]
Bohndorf, K.; Roth, A. Imaging and classification of aseptic necrosis of the femoral head. Orthopade, 2018, 47, 729-734.
[http://dx.doi.org/10.1007/s00132-018-3615-7]
[9]
Wang, X.Y.; Hua, B.X.; Jiang, C.; Yuan, H.F.; Zhu, L.; Fan, W.S.; Ji, Z.F.; Wang, Z.; Yan, Z.Q. Serum biomarkers related to glucocorticoid‐induced osteonecrosis of the femoral head: A Prospective nested case‐control study. J. Orthop. Res., 2019, 37(11), 2348-2357.
[http://dx.doi.org/10.1002/jor.24400] [PMID: 31254413]
[10]
Chen, Y.N.; Wei, P.; Yu Bs, J. Higher concentration of serum C-terminal cross-linking telopeptide of type I collagen is positively related with inflammatory factors in postmenopausal women with H-type hypertension and osteoporosis. Orthop. Surg., 2019, 11(6), 1135-1141.
[http://dx.doi.org/10.1111/os.12567] [PMID: 31823500]
[11]
Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol., 2020, 80, 106210.
[http://dx.doi.org/10.1016/j.intimp.2020.106210] [PMID: 31972425]
[12]
Geng, W.; Zhang, W.; Ma, J. IL-9 exhibits elevated expression in osteonecrosis of femoral head patients and promotes cartilage degradation through activation of JAK-STAT signaling in vitro. Int. Immunopharmacol., 2018, 60, 228-234.
[http://dx.doi.org/10.1016/j.intimp.2018.05.005] [PMID: 29775946]
[13]
Chen, B.; Liu, Y.; Cheng, L. IL-21 enhances the degradation of cartilage through the JAK-STAT signaling pathway during osteonecrosis of femoral head cartilage. Inflammation, 2018, 41(2), 595-605.
[http://dx.doi.org/10.1007/s10753-017-0715-1] [PMID: 29247327]
[14]
Kim, K.M.; Wagle, S.; Moon, Y.J. Interferon β protects against avascular osteonecrosis through interleukin 6 inhibition and silent information regulator transcript-1 upregulation. Oncotarget, 2018, 9(3), 3562-3575.
[http://dx.doi.org/10.18632/oncotarget.23337]
[15]
Du, J.; Liu, Y.; Wu, X.; Sun, J.; Shi, J.; Zhang, H.; Zheng, A.; Zhou, M.; Jiang, X. BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism. Nat. Commun., 2023, 14(1), 1413.
[http://dx.doi.org/10.1038/s41467-023-37116-5] [PMID: 36918560]
[16]
Yim, M. The role of toll-like receptors in osteoclastogenesis. J. Bone Metab., 2020, 27(4), 227-235.
[http://dx.doi.org/10.11005/jbm.2020.27.4.227] [PMID: 33317226]
[17]
Zhang, Y.; Liang, X.; Bao, X.; Xiao, W.; Chen, G. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. Eur. J. Med. Chem., 2022, 235, 114291.
[http://dx.doi.org/10.1016/j.ejmech.2022.114291] [PMID: 35307617]
[18]
Coutinho-Wolino, K.S.; Almeida, P.P.; Mafra, D.; Stockler-Pinto, M.B. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: Pathways involved and future perspectives. Nutr. Res., 2022, 107, 96-116.
[http://dx.doi.org/10.1016/j.nutres.2022.09.001] [PMID: 36209684]
[19]
Pei, J.; Fan, L. Nan, K Excessive activation of TLR4/NF-κB interactively suppresses the canonical Wnt/β-catenin pathway and induces SANFH in SD rats. Sci. Rep., 2017, 7(1), 11928.
[http://dx.doi.org/10.1038/s41598-017-12196-8]
[20]
Tian, L.; Wen, Q.; Dang, X.; You, W.; Fan, L.; Wang, K. Immune response associated with Toll-like receptor 4 signaling pathway leads to steroid-induced femoral head osteonecrosis. BMC Musculoskelet. Disord., 2014, 15, 18.
[http://dx.doi.org/10.1186/1471-2474-15-18]
[21]
Tian, L.; Zhou, D.; Wang, K.; Zhang, W.; Shi, Z.; Fan, L.; Sun, S. Association of toll-like receptor 4 signaling pathway with steroid-induced femoral head osteonecrosis in rats. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, 34(5), 679-686.
[http://dx.doi.org/10.1007/s11596-014-1336-7] [PMID: 25318877]
[22]
Potnis, P.A.; Dutta, D.K.; Wood, S.C. Toll-like receptor 4 signaling pathway mediates proinflammatory immune response to cobalt-alloy particles. Cell. Immunol., 2013, 282(1), 53-65.
[http://dx.doi.org/10.1016/j.cellimm.2013.04.003] [PMID: 23680697]
[23]
Lupfer, C.R.; Anand, P.K.; Qi, X.; Zaki, H. Editorial: Role of NOD-like receptors in infectious and immunological diseases. Front. Immunol., 2020, 11, 923.
[http://dx.doi.org/10.3389/fimmu.2020.00923]
[24]
Murakami, T.; Nakaminami, Y.; Takahata, Y.; Hata, K.; Nishimura, R. Activation and function of NLRP3 inflammasome in bone and joint-related diseases. Int. J. Mol. Sci., 2022, 23(10), 5365.
[http://dx.doi.org/10.3390/ijms23105365] [PMID: 35628185]
[25]
Liang, S.; Nian, Z.; Shi, K. Inhibition of RIPK1/RIPK3 ameliorates osteoclastogenesis through regulating NLRP3-dependent NF-κB and MAPKs signaling pathways. Biochem. Biophys. Res. Commun., 2020, 526(4), 1028-1035.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.177] [PMID: 32321638]
[26]
Xue, S.; Xu, Y.; Xu, S.; Zhong, Y.; Ruan, G.; Ma, J.; Hu, Y.; Ding, C.; Sang, W. Mitophagy impairment mediates the pathogenesis of CoCrMo particle-induced osteolysis via NLRP3/caspase-1/GSDMD-dependent pyroptosis in macrophages. Chem. Eng. J., 2022, 435(2), 135115.
[http://dx.doi.org/10.1016/j.cej.2022.135115]
[27]
Zheng, L.W.; Wang, W.C.; Mao, X.Z.; Luo, Y.H.; Tong, Z.Y.; Li, D. TNF‐α regulates the early development of avascular necrosis of the femoral head by mediating osteoblast autophagy and apoptosis via the p38 MAPK/NF‐κB signaling pathway. Cell Biol. Int., 2020, 44(9), 1881-1889.
[http://dx.doi.org/10.1002/cbin.11394] [PMID: 32437045]
[28]
Zhao, Y.; Quan, Y.; Lei, T.; Fan, L.; Ge, X.; Hu, S. The role of inflammasome NLPR3 in the development and therapy of periodontitis. Int. J. Med. Sci., 2022, 19(10), 1603-1614.
[http://dx.doi.org/10.7150/ijms.74575] [PMID: 36185327]
[29]
Detzen, L.; Cheat, B.; Besbes, A.; Hassan, B.; Marchi, V.; Baroukh, B.; Lesieur, J.; Sadoine, J.; Torrens, C.; Rochefort, G.; Bouchet, J.; Gosset, M. NLRP3 is involved in long bone edification and the maturation of osteogenic cells. J. Cell. Physiol., 2021, 236(6), 4455-4469.
[http://dx.doi.org/10.1002/jcp.30162] [PMID: 33319921]
[30]
Hu, Z.; Wang, Y.; Sun, Z. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Sci. Rep., 2015, 5, 18655.
[http://dx.doi.org/10.1038/srep18655]
[31]
Huo, S.; Liu, X.; Zhang, S.; Lyu, Z.; Zhang, J.; Wang, Y.; Nie, B.; Yue, B. p300/CBP inhibitor A-485 inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. Int. Immunopharmacol., 2021, 94, 107458.
[http://dx.doi.org/10.1016/j.intimp.2021.107458] [PMID: 33626422]
[32]
Bartoszewska, S.; Rochan, K.; Piotrowski, A.; Kamysz, W.; Ochocka, R.J.; Collawn, J.F.; Bartoszewski, R. The hypoxia‐inducible miR‐429 regulates hypoxia‐inducible factor‐1α expression in human endothelial cells through a negative feedback loop. FASEB J., 2015, 29(4), 1467-1479.
[http://dx.doi.org/10.1096/fj.14-267054] [PMID: 25550463]
[33]
Zhu, Z.H.; Gao, Y.S.; Zeng, B.F.; Zhang, C.Q. The effect of dexamethasone and hypoxic stress on MC3T3-E1 cells. Front. Biosci. (Landmark Ed), 2011, 16(7), 2747-2755.
[http://dx.doi.org/10.2741/3883]
[34]
Ma, M.; Tan, Z.; Li, W.; Zhang, H.; Liu, Y.; Yue, C. Osteoimmunology and osteonecrosis of the femoral head. Bone Joint Res., 2022, 11(1), 26-28.
[http://dx.doi.org/10.1302/2046-3758.111.BJR-2021-0467.R1] [PMID: 35045723]
[35]
Dar, H.Y.; Azam, Z.; Anupam, R.; Mondal, R.K.; Srivastava, R.K. Osteoimmunology: The Nexus between bone and immune system. Front. Biosci., 2018, 23(3), 464-492.
[PMID: 28930556]
[36]
Kroner, J.; Kovtun, A.; Kemmler, J.; Messmann, J.J.; Strauss, G.; Seitz, S.; Schinke, T.; Amling, M.; Kotrba, J.; Froebel, J.; Dudeck, J.; Dudeck, A.; Ignatius, A. Mast cells are critical regulators of bone fracture–induced inflammation and osteoclast formation and activity. J. Bone Miner. Res., 2017, 32(12), 2431-2444.
[http://dx.doi.org/10.1002/jbmr.3234] [PMID: 28777474]
[37]
Vicaş, R.M.; Bodog, F.D.; Fugaru, F.O.; Grosu, F.; Badea, O.; Lazăr, L.; Cevei, M.L.; Nistor-Cseppento, C.D.; Beiuşanu, G.C.; Holt, G.; Voiţă-Mekereş, F.; Buzlea, C.D.; Ţica, O.; Ciursaş, A.N.; Dinescu, S.N. Histopathological and immunohistochemical aspects of bone tissue in aseptic necrosis of the femoral head. Rom. J. Morphol. Embryol., 2021, 61(4), 1249-1258.
[http://dx.doi.org/10.47162/RJME.61.4.26] [PMID: 34171073]
[38]
Ma, J.; Ge, J.; Gao, F. The role of immune regulatory cells in nontraumatic osteonecrosis of the femoral head: A retrospective clinical study. BioMed Res. Int., 2019, 2019, 1302015.
[http://dx.doi.org/10.1155/2019/1302015]
[39]
Tao, J.; Dong, B.; Yang, L.X.; Xu, K.Q.; Ma, S.; Lu, J. TGF-β1 expression in adults with non-traumatic osteonecrosis of the femoral head. Mol. Med. Rep., 2017, 16(6), 9539-9544.
[http://dx.doi.org/10.3892/mmr.2017.7817] [PMID: 29152655]
[40]
Chen, G.; Deng, C.; Li, Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci., 2012, 8(2), 272-288.
[http://dx.doi.org/10.7150/ijbs.2929] [PMID: 22298955]
[41]
Rabquer, B.J.; Tan, G.J.; Shaheen, P.J.; Haines, G.K., III; Urquhart, A.G.; Koch, A.E. Synovial inflammation in patients with osteonecrosis of the femoral head. Clin. Transl. Sci., 2009, 2(4), 273-278.
[http://dx.doi.org/10.1111/j.1752-8062.2009.00133.x] [PMID: 20443906]
[42]
Zou, D.; Zhang, K.; Yang, Y.; Ren, Y.; Zhang, L.; Xiao, X.; Zhang, H.; Liu, S.; Li, J. Th17 and IL-17 exhibit higher levels in osteonecrosis of the femoral head and have a positive correlation with severity of pain. Endokrynol. Pol., 2018, 69(3), 283-290.
[http://dx.doi.org/10.5603/EP.a2018.0031] [PMID: 29952419]
[43]
Samarpita, S.; Doss, H.M.; Ganesan, R.; Rasool, M. Interleukin 17 under hypoxia mimetic condition augments osteoclast mediated bone erosion and expression of HIF-1α and MMP-9. Cell. Immunol., 2018, 332, 39-50.
[http://dx.doi.org/10.1016/j.cellimm.2018.07.005] [PMID: 30029761]
[44]
Funaki, Y.; Hasegawa, Y.; Okazaki, R.; Yamasaki, A.; Sueda, Y.; Yamamoto, A.; Yanai, M.; Fukushima, T.; Harada, T.; Makino, H.; Shimizu, E. Resolvin E1 inhibits osteoclastogenesis and bone resorption by suppressing IL-17-induced RANKL expression in osteoblasts and RANKL-induced osteoclast differentiation. Yonago Acta Med., 2018, 61(1), 008-018.
[http://dx.doi.org/10.33160/yam.2018.03.002] [PMID: 29599617]
[45]
Nonokawa, M.; Shimizu, T.; Yoshinari, M.; Hashimoto, Y.; Nakamura, Y.; Takahashi, D.; Asano, T.; Nishibata, Y.; Masuda, S.; Nakazawa, D.; Tanaka, S.; Tomaru, U.; Iwasaki, N.; Ishizu, A. Association of neutrophil extracellular traps with the development of idiopathic osteonecrosis of the femoral head. Am. J. Pathol., 2020, 190(11), 2282-2289.
[http://dx.doi.org/10.1016/j.ajpath.2020.07.008] [PMID: 32702358]
[46]
Kamal, D.; Trăistaru, R.; Kamal, C.K.; Alexandru, D.O.; Ion, D.A.; Grecu, D.C. Macrophage response in patients diagnosed with aseptic necrosis of the femoral head presenting different risk factors. Rom. J. Morphol. Embryol., 2015, 56(1), 163-168.
[PMID: 25826501]
[47]
Tan, Z.; Wang, Y.; Chen, Y. The dynamic feature of macrophage M1/M2 imbalance facilitates the progression of non-traumatic osteonecrosis of the femoral head. Front. Bioeng. Biotechnol., 2022, 10, 912133.
[http://dx.doi.org/10.3389/fbioe.2022.912133]
[48]
Schulz, C.; Petzold, T.; Ishikawa-Ankerhold, H. Macrophage regulation of granulopoiesis and neutrophil functions. Antioxid. Redox Signal., 2021, 35(3), 182-191.
[http://dx.doi.org/10.1089/ars.2020.8203] [PMID: 33107319]
[49]
Ito, T. PAMPs and DAMPs as triggers for DIC. J. Intensive Care, 2014, 2(1), 67.
[http://dx.doi.org/10.1186/s40560-014-0065-0]
[50]
Lv, Y.; Kim, K.; Sheng, Y.; Cho, J.; Qian, Z.; Zhao, Y.Y.; Hu, G.; Pan, D.; Malik, A.B.; Hu, G. YAP controls endothelial activation and vascular inflammation through TRAF6. Circ. Res., 2018, 123(1), 43-56.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313143] [PMID: 29794022]
[51]
Nakazawa, D.; Shida, H.; Kusunoki, Y.; Miyoshi, A.; Nishio, S.; Tomaru, U.; Atsumi, T.; Ishizu, A. The responses of macrophages in interaction with neutrophils that undergo netosis. J. Autoimmun., 2016, 67, 19-28.
[http://dx.doi.org/10.1016/j.jaut.2015.08.018] [PMID: 26347075]
[52]
Phipps, M.C.; Huang, Y.; Yamaguchi, R.; Kamiya, N.; Adapala, N.S.; Tang, L.; Kim, H.K.W. In vivo monitoring of activated macrophages and neutrophils in response to ischemic osteonecrosis in a mouse model. J. Orthop. Res., 2016, 34(2), 307-313.
[http://dx.doi.org/10.1002/jor.22952] [PMID: 26016440]
[53]
Kumar, S.; Gupta, E.; Kaushik, S.; Jyoti, A. Neutrophil extracellular traps: Formation and involvement in disease progression. Iran. J. Allergy Asthma Immunol., 2018, 17(3), 208-220.
[PMID: 29908538]
[54]
Hu, K.; Shang, Z.; Yang, X.; Zhang, Y.; Cao, L. Macrophage polarization and the regulation of bone immunity in bone homeostasis. J. Inflamm. Res., 2023, 16, 3563-3580.
[http://dx.doi.org/10.2147/JIR.S423819] [PMID: 37636272]
[55]
Chen, K.; Liu, Y.; He, J.; Pavlos, N.; Wang, C.; Kenny, J.; Yuan, J.; Zhang, Q.; Xu, J.; He, W. Steroid-induced osteonecrosis of the femoral head reveals enhanced reactive oxygen species and hyperactive osteoclasts. Int. J. Biol. Sci., 2020, 16(11), 1888-1900.
[http://dx.doi.org/10.7150/ijbs.40917] [PMID: 32398957]
[56]
Tian, G.; Liu, C.; Gong, Q.; Yu, Z.; Wang, H.; Zhang, D.; Cong, H. Human umbilical cord mesenchymal stem cells improve the necrosis and osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head model through reducing the macrophage polarization. Int. J. Stem Cells, 2022, 15(2), 195-202.
[http://dx.doi.org/10.15283/ijsc21120] [PMID: 34965999]
[57]
Liechti, T.; Roederer, M. OMIP‐051 – 28‐color flow cytometry panel to characterize B cells and myeloid cells. Cytometry A, 2019, 95(2), 150-155.
[http://dx.doi.org/10.1002/cyto.a.23689] [PMID: 30549419]
[58]
Cancro, M.P.; Tomayko, M.M. Memory B cells and plasma cells: The differentiative continuum of humoral immunity. Immunol. Rev., 2021, 303(1), 72-82.
[http://dx.doi.org/10.1111/imr.13016] [PMID: 34396546]
[59]
Ripperger, T.J.; Bhattacharya, D. Transcriptional and metabolic control of memory B cells and plasma cells. Annu. Rev. Immunol., 2021, 39(1), 345-368.
[http://dx.doi.org/10.1146/annurev-immunol-093019-125603] [PMID: 33556247]
[60]
Zhang, H.; Xiao, F.; Liu, Y.; Zhao, D.; Shan, Y.; Jiang, Y. A higher frequency of peripheral blood activated B cells in patients with non-traumatic osteonecrosis of the femoral head. Int. Immunopharmacol., 2014, 20(1), 95-100.
[http://dx.doi.org/10.1016/j.intimp.2014.02.016] [PMID: 24583150]
[61]
Horowitz, M.C.; Fretz, J.A.; Lorenzo, J.A. How B cells influence bone biology in health and disease. Bone, 2010, 47(3), 472-479.
[http://dx.doi.org/10.1016/j.bone.2010.06.011] [PMID: 20601290]
[62]
Zheng, S.W.; Sun, C.H.; Wen, Z.J.; Liu, W.L.; Li, X.; Chen, T.Y.; Zou, Y.C.; Zhong, H.B.; Shi, Z.J. Decreased serum CXCL12/SDF-1 concentrations may reflect disease severity of non-traumatic osteonecrosis of femoral head. Clin. Chim. Acta, 2022, 529, 87-95.
[http://dx.doi.org/10.1016/j.cca.2022.02.009] [PMID: 35183527]
[63]
Ahlström, M.; Pekkinen, M.; Lamberg-Allardt, C. Dexamethasone downregulates the expression of parathyroid hormone-related protein (PTHrP) in mesenchymal stem cells. Steroids, 2009, 74(2), 277-282.
[http://dx.doi.org/10.1016/j.steroids.2008.12.002] [PMID: 19121329]
[64]
Zhu, L.; Chen, J. Zhang, J Parathyroid Hormone (PTH) induces autophagy to protect osteocyte cell survival from dexamethasone damage. Med. Sci. Monit., 2017, 23, 4034-4040.
[http://dx.doi.org/10.12659/MSM.903432]
[65]
Boeglin, E.; Smulski, C.R.; Brun, S.; Milosevic, S.; Schneider, P.; Fournel, S. Toll-like receptor agonists synergize with CD40L to induce either proliferation or plasma cell differentiation of mouse B cells. PLoS One, 2011, 6(10), e25542.
[http://dx.doi.org/10.1371/journal.pone.0025542] [PMID: 21991317]
[66]
Ohto, U. Activation and regulation mechanisms of NOD-like receptors based on structural biology. Front. Immunol., 2022, 13, 953530.
[http://dx.doi.org/10.3389/fimmu.2022.953530] [PMID: 36189327]
[67]
Cline, A.M.; Radic, M.Z. Apoptosis, subcellular particles, and autoimmunity. Clin. Immunol., 2004, 112(2), 175-182.
[http://dx.doi.org/10.1016/j.clim.2004.02.017] [PMID: 15240161]
[68]
Cocca, B.A.; Cline, A.M.; Radic, M.Z. Blebs and apoptotic bodies are B cell autoantigens. J. Immunol., 2002, 169(1), 159-166.
[http://dx.doi.org/10.4049/jimmunol.169.1.159] [PMID: 12077241]
[69]
Yu, H.; Liu, P.; Zuo, W. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head. BMC Musculoskelet. Disord., 2020, 21(1), 277.
[http://dx.doi.org/10.1186/s12891-020-03225-1]
[70]
Wang, B.; Dong, Y.; Tian, Z.; Chen, Y.; Dong, S. The role of dendritic cells derived osteoclasts in bone destruction diseases. Genes Dis., 2020, 8(4), 401-411.
[http://dx.doi.org/10.1016/j.gendis.2020.03.009]
[71]
Mueller, C.G.; Voisin, B. Of skin and bone: Did Langerhans cells and osteoclasts evolve from a common ancestor? J. Anat., 2019, 235(2), 412-417.
[http://dx.doi.org/10.1111/joa.12543] [PMID: 27620531]
[72]
Xiong, Q.; Zhang, L.; Ge, W.; Tang, P. The roles of interferons in osteoclasts and osteoclastogenesis. Joint Bone Spine, 2016, 83(3), 276-281.
[http://dx.doi.org/10.1016/j.jbspin.2015.07.010] [PMID: 26832190]
[73]
Yao, Z.; Getting, S.J.; Locke, I.C. Regulation of TNF-induced osteoclast differentiation. Cells, 2021, 11(1), 132.
[http://dx.doi.org/10.3390/cells11010132] [PMID: 35011694]
[74]
Tateda, K.; Okazaki, S.; Nagoya, S.; Katada, R.; Mizuo, K.; Watanabe, S.; Yamashita, T.; Matsumoto, H. The suppression of TRIM21 and the accumulation of IFN-α play crucial roles in the pathogenesis of osteonecrosis of the femoral head. Lab. Invest., 2012, 92(9), 1318-1329.
[http://dx.doi.org/10.1038/labinvest.2012.89] [PMID: 22825687]
[75]
Ren, G. Shuaibo Wen: Jie, H et al. Differential gene expression and immune cell infiltration in patients with steroid-induced necrosis of the femoral head; Res Square, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-2241594/v1]