Genetic Determinants of Response to Statins in Cardiovascular Diseases

Article ID: e090124225395 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Despite extensive efforts to identify patients with cardiovascular disease (CVD) who could most benefit from the treatment approach, patients vary in their benefit from therapy and propensity for adverse drug events. Genetic variability in individual responses to drugs (pharmacogenetics) is considered an essential determinant in responding to a drug. Thus, understanding these pharmacogenomic relationships has led to a substantial focus on mechanisms of disease and drug response. In turn, understanding the genomic and molecular bases of variables that might be involved in drug response is the main step in personalized medicine. There is a growing body of data evaluating drug-gene interactions in recent years, some of which have led to FDA recommendations and detection of markers to predict drug responses (e.g., genetic variant in VKORC1 and CYP2C9 genes for prediction of drug response in warfarin treatment). Also, statins are widely prescribed drugs for the prevention of CVD. Atorvastatin, fluvastatin, rosuvastatin, simvastatin, and lovastatin are the most common statins used to manage dyslipidemia. This review provides an overview of the current knowledge on the pharmacogenetics of statins, which are being used to treat cardiovascular diseases.

[1]
Lu YF, Goldstein DB, Angrist M, Cavalleri G. Personalized medicine and human genetic diversity. Cold Spring Harb Perspect Med 2014; 4(9): a008581.
[http://dx.doi.org/10.1101/cshperspect.a008581] [PMID: 25059740]
[2]
Dias MM, Sorich MJ, Rowland A, Wiese MD, McKinnon RA. The routine clinical use of pharmacogenetic tests: What it will require? Pharm Res 2017; 34(8): 1544-50.
[http://dx.doi.org/10.1007/s11095-017-2128-0] [PMID: 28236061]
[3]
Dávila-Fajardo CL, Díaz-Villamarín X, Antúnez-Rodríguez A, et al. Pharmacogenetics in the treatment of cardiovascular diseases and its current progress regarding implementation in the clinical routine. Genes 2019; 10(4): 261.
[http://dx.doi.org/10.3390/genes10040261] [PMID: 30939847]
[4]
Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1459-544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[5]
Lamoureux F, Duflot T. Pharmacogenetics in cardiovascular diseases: State of the art and implementation-recommendations of the french national network of pharmacogenetics (RNPGx). Therapie 2017; 72(2): 257-67.
[http://dx.doi.org/10.1016/j.therap.2016.09.017] [PMID: 28237404]
[6]
Zaiou M, El Amri H. Cardiovascular pharmacogenetics: A promise for genomically‐guided therapy and personalized medicine. Clin Genet 2017; 91(3): 355-70.
[http://dx.doi.org/10.1111/cge.12881] [PMID: 27714756]
[7]
Ye YC, Zhao XL, Zhang SY. Use of atorvastatin in lipid disorders and cardiovascular disease in Chinese patients. Chin Med J 2015; 128(2): 259-66.
[http://dx.doi.org/10.4103/0366-6999.149226] [PMID: 25591572]
[8]
Mangravite LM, Thorn CF, Krauss RM. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenomics J 2006; 6(6): 360-74.
[http://dx.doi.org/10.1038/sj.tpj.6500384] [PMID: 16550210]
[9]
Hutz MH, Fiegenbaum M. Impact of genetic polymorphisms on theefficacy of HMG-CoA reductase inhibitors. American journal of cardiovascular drugs : drugs, devices, and other interventions 2008; 8(3): 161-70.
[10]
Barber MJ, Mangravite LM, Hyde CL, et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One 2010; 5(3): e9763.
[http://dx.doi.org/10.1371/journal.pone.0009763] [PMID: 20339536]
[11]
Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 2008; 359(8): 789-99.
[http://dx.doi.org/10.1056/NEJMoa0801936] [PMID: 18650507]
[12]
Thompson JF, Hyde CL, Wood LS, et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ Cardiovasc Genet 2009; 2(2): 173-81.
[http://dx.doi.org/10.1161/CIRCGENETICS.108.818062] [PMID: 20031582]
[13]
Mohassel P, Mammen AL. Statin‐associated autoimmune myopathy and anti‐HMGCR autoantibodies. Muscle Nerve 2013; 48(4): 477-83.
[http://dx.doi.org/10.1002/mus.23854] [PMID: 23519993]
[14]
Su J, Xu H, Yang J, et al. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: A meta-analysis. Lipids Health Dis 2015; 14(1): 122.
[http://dx.doi.org/10.1186/s12944-015-0114-2] [PMID: 26438079]
[15]
Lim MYC, Tee JR, Yau WP, Ho HK. A meta-analysis of the pooled impact of CYP7A1 single nucleotide polymorphisms on serum lipid responses to statins. Front Genet 2023; 14: 1199549.
[http://dx.doi.org/10.3389/fgene.2023.1199549] [PMID: 37377593]
[16]
Mega JL, Morrow DA, Brown A, Cannon CP, Sabatine MS. Identification of genetic variants associated with response to statin therapy. Arterioscler Thromb Vasc Biol 2009; 29(9): 1310-5.
[http://dx.doi.org/10.1161/ATVBAHA.109.188474] [PMID: 19667110]
[17]
Bennet AM, Di Angelantonio E, Ye Z, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 2007; 298(11): 1300-11.
[http://dx.doi.org/10.1001/jama.298.11.1300] [PMID: 17878422]
[18]
Nieminen T, Kähönen M, Viiri LE, Grönroos P, Lehtimäki T. Pharmacogenetics of apolipoprotein E gene during lipid-lowering therapy: Lipid levels and prevention of coronary heart disease. Pharmacogenomics 2008; 9(10): 1475-86.
[http://dx.doi.org/10.2217/14622416.9.10.1475] [PMID: 18855536]
[19]
Zintzaras E, Kitsios GD, Triposkiadis F, Lau J, Raman G. APOE gene polymorphisms and response to statin therapy. Pharmacogenomics J 2009; 9(4): 248-57.
[http://dx.doi.org/10.1038/tpj.2009.25] [PMID: 19529002]
[20]
Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. Polymorphisms in the multidrug resistance-1 (MDR1) gene influence the response to atorvastatin treatment in a gender-specific manner. Am J Cardiol 2004; 93(8): 1046-50.
[http://dx.doi.org/10.1016/j.amjcard.2004.01.014] [PMID: 15081455]
[21]
Poduri A, Khullar M, Bahl A, Sehrawat BS, Sharma Y, Talwar KK. Common variants of HMGCR, CETP, APOAI, ABCB1, CYP3A4, and CYP7A1 genes as predictors of lipid-lowering response to atorvastatin therapy. DNA Cell Biol 2010; 29(10): 629-37.
[http://dx.doi.org/10.1089/dna.2009.1008] [PMID: 20578904]
[22]
Hadjiphilippou S, Ray KK. Cholesterol-lowering agents. Circ Res 2019; 124(3): 354-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313245] [PMID: 30702991]
[23]
Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol 2020; 16(9): 809-22.
[http://dx.doi.org/10.1080/17425255.2020.1801634] [PMID: 32729746]
[24]
Hirota T, Ieiri I. Drug–drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol 2015; 11(9): 1435-47.
[http://dx.doi.org/10.1517/17425255.2015.1056149] [PMID: 26058399]
[25]
Bellosta S, Paoletti R, Corsini A. Safety of Statins. Circulation 2004; 109(23_suppl_1) (Suppl. 1): III50-7.
[http://dx.doi.org/10.1161/01.CIR.0000131519.15067.1f] [PMID: 15198967]
[26]
Fallah A, Deep M, Smallwood D, Hughes P. Life-threatening rhabdomyolysis following the interaction of two commonly prescribed medications. Australas Med J 2013; 6(3): 112-4.
[http://dx.doi.org/10.4066/AMJ.2013.1616] [PMID: 23589735]
[27]
Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol 2004; 93(1): 104-7.
[http://dx.doi.org/10.1016/j.amjcard.2003.08.078] [PMID: 14697480]
[28]
Thompson JF, Man M, Johnson KJ, et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J 2005; 5(6): 352-8.
[http://dx.doi.org/10.1038/sj.tpj.6500328] [PMID: 16103896]
[29]
Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 2011; 11(4): 274-86.
[http://dx.doi.org/10.1038/tpj.2010.28] [PMID: 20386561]
[30]
Frudakis TN, Thomas MJ, Ginjupalli SN, Handelin B, Gabriel R, Gomez HJ. CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharmacogenet Genomics 2007; 17(9): 695-707.
[http://dx.doi.org/10.1097/FPC.0b013e328012d0a9] [PMID: 17700359]
[31]
Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. Interactions between common genetic polymorphisms in ABCG5/G8 and CYP7A1 on LDL cholesterol-lowering response to atorvastatin. Atherosclerosis 2004; 175(2): 287-93.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.03.015] [PMID: 15262185]
[32]
Wei KK, Zhang LR, Zhang Y, Hu XJ. Interactions between CYP7A1 A-204C and ABCG8 C1199A polymorphisms on lipid lowering with atorvastatin. J Clin Pharm Ther 2011; 36(6): 725-33.
[http://dx.doi.org/10.1111/j.1365-2710.2010.01227.x] [PMID: 21128988]
[33]
Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 2009; 158(3): 693-705.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00430.x] [PMID: 19785645]
[34]
Pasanen MK, Miettinen TA, Gylling H, Neuvonen PJ, Niemi M. Polymorphism of the hepatic influx transporter organic anion transporting polypeptide 1B1 is associated with increased cholesterol synthesis rate. Pharmacogenet Genomics 2008; 18(10): 921-6.
[http://dx.doi.org/10.1097/FPC.0b013e32830c1b5f] [PMID: 18794729]
[35]
Keskitalo JE, Kurkinen KJ, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol 2009; 68(2): 207-13.
[http://dx.doi.org/10.1111/j.1365-2125.2009.03440.x] [PMID: 19694740]
[36]
Hougaard Christensen MM, Bruun Haastrup M, Øhlenschlæger T, et al. Interaction potential between clarithromycin and individual statins—A systematic review. Basic Clin Pharmacol Toxicol 2020; 126(4): 307-17.
[http://dx.doi.org/10.1111/bcpt.13343] [PMID: 31628882]
[37]
Bercovich D, Friedlander Y, Korem S, et al. The association of common SNPs and haplotypes in the CETP and MDR1 genes with lipids response to fluvastatin in familial hypercholesterolemia. Atherosclerosis 2006; 185(1): 97-107.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.05.025] [PMID: 16002074]
[38]
Winkelmann BR, Hoffmann MM, Nauck M, et al. Haplotypes of the cholesteryl ester transfer protein gene predict lipid-modifying response to statin therapy. Pharmacogenomics J 2003; 3(5): 284-96.
[http://dx.doi.org/10.1038/sj.tpj.6500195] [PMID: 14583798]
[39]
Mukai Y, Narita M, Akiyama E, et al. Co-administration of fluvastatin and CYP3A4 and CYP2C8 inhibitors may increase the exposure to fluvastatin in carriers of CYP2C9 genetic variants. Biol Pharm Bull 2017; 40(7): 1078-85.
[http://dx.doi.org/10.1248/bpb.b17-00150] [PMID: 28674251]
[40]
Neuvonen PJ, Backman JT, Niemi M. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin Pharmacokinet 2008; 47(7): 463-74.
[http://dx.doi.org/10.2165/00003088-200847070-00003] [PMID: 18563955]
[41]
Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A. Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins. Int J Mol Sci 2017; 18(1): 104.
[http://dx.doi.org/10.3390/ijms18010104] [PMID: 28067828]
[42]
Miroševic Skvrce N, Božina N, Zibar L, Barišic I, Pejnovic L, Macolic Šarinic V. CYP2C9 and ABCG2 polymorphisms as risk factors for developing adverse drug reactions in renal transplant patients taking fluvastatin: A case–control study. Pharmacogenomics 2013; 14(12): 1419-31.
[http://dx.doi.org/10.2217/pgs.13.135] [PMID: 24024895]
[43]
Zuccaro P, Mombelli G, Calabresi L, Baldassarre D, Palmi I, Sirtori CR. Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacol Res 2007; 55(4): 310-7.
[http://dx.doi.org/10.1016/j.phrs.2006.12.009] [PMID: 17289397]
[44]
Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 2009; 10(10): 1617-24.
[http://dx.doi.org/10.2217/pgs.09.85] [PMID: 19842935]
[45]
Donnelly LA, Doney ASF, Dannfald J, et al. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: A GoDARTS study. Pharmacogenet Genomics 2008; 18(12): 1021-6.
[http://dx.doi.org/10.1097/FPC.0b013e3283106071] [PMID: 18815589]
[46]
Cortese F, Gesualdo M, Cortese A, et al. Rosuvastatin: Beyond the cholesterol-lowering effect. Pharmacol Res 2016; 107(01): 1-18.
[http://dx.doi.org/10.1016/j.phrs.2016.02.012] [PMID: 26930419]
[47]
Taheri R, Razmjou A, Szekely G, Hou J, Ghezelbash GR. Biodesalination —On harnessing the potential of nature’s desalination processes. Bioinspir Biomim 2016; 11(4): 041001.
[http://dx.doi.org/10.1088/1748-3190/11/4/041001] [PMID: 27387607]
[48]
Tomlinson B, Hu M, Lee VWY, et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 2010; 87(5): 558-62.
[http://dx.doi.org/10.1038/clpt.2009.232] [PMID: 20130569]
[49]
Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet 2012; 5(2): 257-64.
[http://dx.doi.org/10.1161/CIRCGENETICS.111.961144] [PMID: 22331829]
[50]
Ferrari M, Guasti L, Maresca A, et al. Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur J Clin Pharmacol 2014; 70(5): 539-47.
[http://dx.doi.org/10.1007/s00228-014-1661-6] [PMID: 24595600]
[51]
Lee HK, Hu M, Lui SSH, Ho CS, Wong CK, Tomlinson B. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics 2013; 14(11): 1283-94.
[http://dx.doi.org/10.2217/pgs.13.115] [PMID: 23930675]
[52]
Rose RH, Neuhoff S, Abduljalil K, Chetty M, Rostami-Hodjegan A, Jamei M. Application of a physiologically based pharmacokinetic model to predict OATP1B1 ‐related variability in pharmacodynamics of rosuvastatin. CPT Pharmacometrics Syst Pharmacol 2014; 3(7): 1-9.
[http://dx.doi.org/10.1038/psp.2014.24] [PMID: 25006781]
[53]
Kim TE, Shin D, Gu N, et al. The effect of genetic polymorphisms in SLCO2B1 on the lipid‐lowering efficacy of rosuvastatin in healthy adults with elevated low‐density lipoprotein. Basic Clin Pharmacol Toxicol 2017; 121(3): 195-201.
[http://dx.doi.org/10.1111/bcpt.12826] [PMID: 28627804]
[54]
Hu M, Lui SSH, Mak VWL, et al. Pharmacogenetic analysis of lipid responses to rosuvastatin in Chinese patients. Pharmacogenet Genomics 2010; 20(10): 634-7.
[http://dx.doi.org/10.1097/FPC.0b013e32833de489] [PMID: 20679960]
[55]
Zhou Q, Ruan ZR, Yuan H, Xu DH, Zeng S. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie 2013; 68(2): 129-34. [eng.].
[PMID: 23469685]
[56]
Duarte T, da Cruz IBM, Barbisan F, Capelleto D, Moresco RN, Duarte MMMF. The effects of rosuvastatin on lipid-lowering, inflammatory, antioxidant and fibrinolytics blood biomarkers are influenced by Val16Ala superoxide dismutase manganese-dependent gene polymorphism. Pharmacogenomics J 2016; 16(6): 501-6.
[http://dx.doi.org/10.1038/tpj.2015.91] [PMID: 26882122]
[57]
Shek A, Alieva R, Kurbanov R, et al. Burden of familial heterozygous hypercholesterolemia in Uzbekistan: Time is muscle. Atherosclerosis 2018; 277: 524-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.08.016] [PMID: 30270094]
[58]
Peters BJM, Pett H, Klungel OH, et al. Genetic variability within the cholesterol lowering pathway and the effectiveness of statins in reducing the risk of MI. Atherosclerosis 2011; 217(2): 458-64.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.06.023] [PMID: 21741043]
[59]
Ruiz-Iruela C, Padró-Miquel A, Pintó-Sala X, et al. KIF6 gene as a pharmacogenetic marker for lipid-lowering effect in statin treatment. PLoS One 2018; 13(10): e0205430.
[http://dx.doi.org/10.1371/journal.pone.0205430] [PMID: 30304062]
[60]
Westlind-Johnsson A, Malmebo S, Johansson A, et al. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab Dispos 2003; 31(6): 755-61.
[http://dx.doi.org/10.1124/dmd.31.6.755] [PMID: 12756208]
[61]
Jacobsen W, Kirchner G, Hallensleben K, et al. Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Dispos 1999; 27(2): 173-9.
[PMID: 9929499]
[62]
Prueksaritanont T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans SBT identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25(10): 1191-9.
[PMID: 9321523]
[63]
Jacobsen W, Kuhn B, Soldner A, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 2000; 28(11): 1369-78.
[PMID: 11038166]
[64]
Kivistö KT, Niemi M, Schaeffeler E, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14(8): 523-5.
[http://dx.doi.org/10.1097/01.fpc.0000114762.78957.a5] [PMID: 15284534]
[65]
Xiong Z, Cao X, Wen Q, et al. An overview of the bioactivity of monacolin K / lovastatin. Food Chem Toxicol 2019; 131: 110585.
[http://dx.doi.org/10.1016/j.fct.2019.110585] [PMID: 31207306]
[66]
De Angelis G. The influence of statin characteristics on their safety and tolerability. Int J Clin Pract 2004; 58(10): 945-55.
[http://dx.doi.org/10.1111/j.1368-5031.2004.00355.x] [PMID: 15587774]
[67]
Zhang W, Chen BL, Ozdemir V, et al. SLCO1B1 521T→C functional genetic polymorphism and lipid‐lowering efficacy of multiple‐dose pravastatin in Chinese coronary heart disease patients. Br J Clin Pharmacol 2007; 64(3): 346-52.
[http://dx.doi.org/10.1111/j.1365-2125.2007.02892.x] [PMID: 17439540]
[68]
Tachibana-Iimori R, Tabara Y, Kusuhara H, et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004; 19(5): 375-80.
[http://dx.doi.org/10.2133/dmpk.19.375] [PMID: 15548849]
[69]
Takane H, Miyata M, Burioka N, et al. Pharmacogenetic determinants of variability in lipid-lowering response to pravastatin therapy. J Hum Genet 2006; 51(9): 822-6.
[http://dx.doi.org/10.1007/s10038-006-0025-1] [PMID: 16917677]
[70]
Jukema JW, van Boven AJ, Groenemeijer B, et al. The Asp9 Asn mutation in the lipoprotein lipase gene is associated with increased progression of coronary atherosclerosis. REGRESS Study Group, Interuniversity Cardiology Institute, Utrecht, The Netherlands. Regression Growth Evaluation Statin Study. Circulation 1996; 94(8): 1913-8.
[http://dx.doi.org/10.1161/01.CIR.94.8.1913] [PMID: 8873668]
[71]
Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr, Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004; 291(23): 2821-7.
[http://dx.doi.org/10.1001/jama.291.23.2821] [PMID: 15199031]
[72]
Malin R, Laaksonen R, Knuuti J, et al. Paraoxonase genotype modifies the effect of pravastatin on high-density lipoprotein cholesterol. Pharmacogenetics 2001; 11(7): 625-33.
[http://dx.doi.org/10.1097/00008571-200110000-00009] [PMID: 11668222]
[73]
Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors. Ageing Res Rev 2017; 37: 146-61.
[http://dx.doi.org/10.1016/j.arr.2017.06.002] [PMID: 28647612]
[74]
Peña R, Lahoz C, Mostaza JM, et al. Effect of apoE genotype on the hypolipidaemic response to pravastatin in an outpatient setting. J Intern Med 2002; 251(6): 518-25.
[http://dx.doi.org/10.1046/j.1365-2796.2002.00991.x] [PMID: 12028507]
[75]
Kuivenhoven JA, Jukema JW, Zwinderman AH, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. N Engl J Med 1998; 338(2): 86-93.
[http://dx.doi.org/10.1056/NEJM199801083380203] [PMID: 9420339]
[76]
Lahoz C, Peña R, Mostaza JM, et al. The − 514C/T polymorphism of the hepatic lipase gene significantly modulates the HDL-cholesterol response to statin treatment. Atherosclerosis 2005; 182(1): 129-34.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.02.001] [PMID: 16115483]
[77]
Boekholdt SM, Agema WRP, Peters RJG, et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 2003; 107(19): 2416-21.
[http://dx.doi.org/10.1161/01.CIR.0000068311.40161.28] [PMID: 12742999]
[78]
Iakoubova OA, Tong CH, Rowland CM, et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol 2008; 51(4): 435-43.
[http://dx.doi.org/10.1016/j.jacc.2007.05.057] [PMID: 18222353]
[79]
Regieli JJ, Jukema JW, Grobbee DE, et al. CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction. Eur Heart J 2008; 29(22): 2792-9.
[http://dx.doi.org/10.1093/eurheartj/ehn465] [PMID: 18957472]