Metal-organic Frameworks: Emerging Luminescent Sensors

Page: [73 - 89] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Metal-organic frameworks (MOFs), a crystalline material, are a new type of inorganicorganic hybrid material. MOFs are of great interest to researchers in chemistry and material science due to their various chemical and physical properties, and features include their remarkable surface area, high porosity, flexibility, structural variety, flexibility, extreme porosity, a large surface area, augmented adsorption/desorption kinetics, biocompatibility and functional tunability. MOFs are multi-dimensional crystals and have extended net-like frameworks from molecular building units such as inorganic metal nodes and organic linkers. The structurally diverse MOFs have found applications in chemical sensing and several other fields, such as energy applications, biomedicine, and catalysis. Numerous researchers from other fields have been drawn to this topic by the intrinsic potential to absorb gas molecules, which has led to the applications of gas storage and heterogeneous catalysis. Because of their low framework density, open metal sites for interaction, adjustable pore size, fast response with high sensitivity and selectivity, and real-time monitoring, luminescent metalorganic frameworks, or LMOFs, have piqued the interest of a large scientific community as a promising candidate for sensor applications. A number of characteristics, including non-toxicity, biodegradability, and reasonably priced, varied functionality, are important factors in the use of MOFs in chemo- and biosensing. MOFs can be very promising candidates as selective and sensitive chemosensors for the detection of cations, anions, small molecules, gases and explosives. In this manuscript, we address recent research advances in the use of metal-organic-framework-based luminescent sensors for detecting some small molecules and various metal ions in aqueous biological and environmental samples. A wide range of materials may be reached in the emerging field of synthetic and material chemistry, thanks to the capacity to change the pore size and chemically functionalize its nature without changing its architecture.

Graphical Abstract

[1]
Rowsell, J.L.C.; Yaghi, O.M. Metal-organic frameworks: A new class of porous materials. Microporous Mesoporous Mater., 2004, 73(1-2), 3-14.
[http://dx.doi.org/10.1016/j.micromeso.2004.03.034]
[2]
Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751), 1166-1170.
[http://dx.doi.org/10.1126/science.1120411]
[3]
Tajahmadi, S.; Molavi, H.; Ahmadijokani, F.; Shamloo, A.; Shojaei, A.; Sharifzadeh, M.; Rezakazemi, M.; Fatehizadeh, A.; Aminabhavi, T.M.; Arjmand, M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer’s disease. J. Control. Release, 2023, 353, 1-29.
[http://dx.doi.org/10.1016/j.jconrel.2022.11.002] [PMID: 36343762]
[4]
Ahmadijokani, F.; Molavi, H.; Rezakazemi, M.; Aminabhavi, T.M.; Arjmand, M. Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents. Coord. Chem. Rev., 2021, 445, 214037.
[http://dx.doi.org/10.1016/j.ccr.2021.214037]
[5]
Czaja, A.U.; Trukhan, N.; Müller, U. Industrial applications of metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1284-1293.
[http://dx.doi.org/10.1039/b804680h] [PMID: 19384438]
[6]
Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev., 2009, 38(5), 1450-1459.
[http://dx.doi.org/10.1039/b807080f] [PMID: 19384447]
[7]
Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res., 2010, 43(8), 1115-1124.
[http://dx.doi.org/10.1021/ar100023y] [PMID: 20450174]
[8]
Wang, Z.; Chen, G.; Ding, K.L. 40-Fold enhanced intrinsic proton conductivity in coordination polymers with the same proton-conducting pathway by tuning metal cation nodes. Chem. Rev., 2009, 109, 322-359.
[http://dx.doi.org/10.1021/cr800406u] [PMID: 19099451]
[9]
Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1248-1256.
[http://dx.doi.org/10.1039/b807083k] [PMID: 19384436]
[10]
Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal-organic framework materials as chemical sensors. Chem. Rev., 2012, 112(2), 1105-1125.
[http://dx.doi.org/10.1021/cr200324t] [PMID: 22070233]
[11]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[12]
Gitis, V.; Rothenberg, G. Handbook of Porous Materials; World Scientific, 2020.
[13]
Hartlieb, K.J.; Ferris, D.P.; Holcroft, J.M.; Kandela, I.; Stern, C.L.; Nassar, M.S.; Botros, Y.Y.; Stoddart, J.F. Encapsulation of ibuprofen in CD-MOF and related bioavailability studies. Mol. Pharm., 2017, 14(5), 1831-1839.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00168] [PMID: 28355489]
[14]
Wu, M.X.; Yang, Y.W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater., 2017, 29(23), 1606134.
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[15]
Batten, S.R.; Champness, N.R.; Chen, X.M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem., 2013, 85(8), 1715-1724.
[http://dx.doi.org/10.1351/PAC-REC-12-11-20]
[16]
James, S.L. Metal-organic frameworks. Chem. Soc. Rev., 2003, 32(5), 276-288.
[http://dx.doi.org/10.1039/b200393g] [PMID: 14518181]
[17]
Xiao, J.; Wu, Y.; Li, M.; Liu, B.Y.; Huang, X.C.; Li, D. Crystalline structural intermediates of a breathing metal-organic framework that functions as a luminescent sensor and gas reservoir. Chemistry, 2013, 19(6), 1891-1895.
[http://dx.doi.org/10.1002/chem.201203515] [PMID: 23293052]
[18]
Chen, E.X.; Yang, H.; Zhang, J. Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem., 2014, 53(11), 5411-5413.
[http://dx.doi.org/10.1021/ic500474j] [PMID: 24813234]
[19]
Nagarkar, S.S.; Desai, A.V.; Ghosh, S.K. Stimulus-responsive metal-organic frameworks. Chem. Asian J., 2014, 9(9), 2358-2376.
[http://dx.doi.org/10.1002/asia.201402004] [PMID: 24844581]
[20]
Pal, T.K.; Chatterjee, N.; Bharadwaj, P.K. Linker-induced structural diversity and photophysical property of MOFs for selective and sensitive detection of nitroaromatics. Inorg. Chem., 2016, 55(4), 1741-1747.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02645] [PMID: 26828771]
[21]
Yu, Q.; Li, Z.; Cao, Q.; Qu, S.; Jia, Q. Advances in luminescent metal-organic framework sensors based on post-synthetic modification. Trends Analyt. Chem., 2020, 129, 115939.
[http://dx.doi.org/10.1016/j.trac.2020.115939]
[22]
Saraf, M.; Rajak, R.; Mobin, S.M. A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(42), 16432-16445.
[http://dx.doi.org/10.1039/C6TA06470A]
[23]
Okur, S.; Qin, P.; Chandresh, A.; Li, C.; Zhang, Z.; Lemmer, U.; Heinke, L. An enantioselective e-nose: An array of nanoporous homochiral MOF films for stereospecific sensing of chiral odors; Angew. Chem., 2020.
[24]
Dawood, S.; Yarbrough, R.; Davis, K.; Rathnayake, H. Self-assembly and optoelectronic properties of isoreticular MOF nanocrystals. Synth. Met., 2019, 252, 107-112.
[http://dx.doi.org/10.1016/j.synthmet.2019.04.018]
[25]
Ma, S.; Zhou, H-C.; Jiang, H.L.; Xu, Q. Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun., 2010, 46(1), 44-53.
[http://dx.doi.org/10.1039/B916295J]
[26]
Jiao, L.; Wang, Y.; Jiang, H.L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater., 2018, 30(37), 1703663.
[http://dx.doi.org/10.1002/adma.201703663] [PMID: 29178384]
[27]
Xu, C.; Fang, R.; Luque, R.; Chen, L.; Li, Y. Functional metal-organic frameworks for catalytic applications. Coord. Chem. Rev., 2019, 388, 268-292.
[http://dx.doi.org/10.1016/j.ccr.2019.03.005]
[28]
Mallakpour, S.; Nikkhoo, E.; Hussain, C.M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev., 2022, 451, 214262.
[http://dx.doi.org/10.1016/j.ccr.2021.214262]
[29]
Li, X.; Zhou, R.; Wang, Z.; Zhang, M.; He, T. Electrospun metal-organic framework based nanofibers for energy storage and environmental applications: Current approaches and challenges. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(4), 1642-1681.
[http://dx.doi.org/10.1039/D1TA08413E]
[30]
Zhu, L.; Meng, L.; Shi, J.; Li, J.; Zhang, X.; Feng, M. Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. J. Environ. Manage., 2019, 232, 964-977.
[http://dx.doi.org/10.1016/j.jenvman.2018.12.004] [PMID: 33395765]
[31]
Zhou, J.; Fang, M.; Yang, K.; Lu, K.; Fei, H.; Mu, P.; He, R. A novel MOF/RGO-based composite phase change material for battery thermal management. Appl. Therm. Eng., 2023, 227, 120383.
[http://dx.doi.org/10.1016/j.applthermaleng.2023.120383]
[32]
Hanikel, N.; Prévot, M.S.; Yaghi, O.M. MOF water harvesters. Nat. Nanotechnol., 2020, 15(5), 348-355.
[http://dx.doi.org/10.1038/s41565-020-0673-x] [PMID: 32367078]
[33]
Liu, H.; Wang, Y.; Qin, Z.; Liu, D.; Xu, H.; Dong, H.; Hu, W. Electrically conductive coordination polymers for electronic and optoelectronic device applications. J. Phys. Chem. Lett., 2021, 12(6), 1612-1630.
[http://dx.doi.org/10.1021/acs.jpclett.0c02988] [PMID: 33555195]
[34]
Li, Y.; Xiao, A.S.; Zou, B.; Zhang, H.X.; Yan, K.L.; Lin, Y. Advances of metal-organic frameworks for gas sensing. Polyhedron, 2018, 154, 83-97.
[http://dx.doi.org/10.1016/j.poly.2018.07.028]
[35]
Chen, Z.; Kirlikovali, K.O.; Idrees, K.B.; Wasson, M.C.; Farha, O.K. Porous materials for hydrogen storage. Chem, 2022, 8(3), 693-716.
[http://dx.doi.org/10.1016/j.chempr.2022.01.012]
[36]
Wales, D.J.; Grand, J.; Ting, V.P.; Burke, R.D.; Edler, K.J.; Bowen, C.R.; Mintova, S.; Burrows, A.D. Gas sensing using porous materials for automotive applications. Chem. Soc. Rev., 2015, 44(13), 4290-4321.
[http://dx.doi.org/10.1039/C5CS00040H] [PMID: 25982991]
[37]
Wu, T.; Liu, X.; Liu, Y.; Cheng, M.; Liu, Z.; Zeng, G.; Shao, B.; Liang, Q.; Zhang, W.; He, Q.; Zhang, W. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coord. Chem. Rev., 2020, 403, 213097.
[http://dx.doi.org/10.1016/j.ccr.2019.213097]
[38]
Demir Duman, F.; Forgan, R.S. Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(16), 3423-3449.
[http://dx.doi.org/10.1039/D1TB00358E] [PMID: 33909734]
[39]
Huang, S.; Ye, Y.; Jiang, C.; Wang, R.; Hu, W.; Raza, S.; Ouyang, J.; Pan, Y.; Liu, J. Current and promising applications of MOFs loaded with PTAs on photothermal therapy. React. Funct. Polym., 2023, 193, 105743.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105743]
[40]
Radwan, A.; Jin, H.; He, D.; Mu, S. Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett., 2021, 13(1), 132.
[http://dx.doi.org/10.1007/s40820-021-00656-w] [PMID: 34138365]
[41]
Ahmadijokani, F.; Tajahmadi, S.; Bahi, A.; Molavi, H.; Rezakazemi, M.; Ko, F.; Aminabhavi, T.M.; Arjmand, M. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Chemosphere, 2021, 264(Pt 2), 128466.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128466] [PMID: 33065327]
[42]
Ahmadijokani, F.; Ahmadipouya, S.; Haris, M.H.; Rezakazemi, M.; Bokhari, A.; Molavi, H.; Ahmadipour, M.; Pung, S.Y.; Klemeš, J.J.; Aminabhavi, T.M.; Arjmand, M. Magnetic nitrogen-rich UiO-66 metal-organic framework: An efficient adsorbent for water treatment. ACS Appl. Mater. Interfaces, 2023, 15(25), 30106-30116.
[http://dx.doi.org/10.1021/acsami.3c02171] [PMID: 37319265]
[43]
Ahmadijokani, F.; Tajahmadi, S.; Rezakazemi, M.; Sehat, A.A.; Molavi, H.; Aminabhavi, T.M.; Arjmand, M. Aluminum-based metal-organic frameworks for adsorptive removal of anti-cancer (methotrexate) drug from aqueous solutions. Chemosphere, 2021, 264, 128466.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128466] [PMID: 33065327]
[44]
O’Keeffe, M.; Yaghi, O.M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev., 2012, 112(2), 675-702.
[http://dx.doi.org/10.1021/cr200205j] [PMID: 21916513]
[45]
He, Z.; Gao, E.Q.; Wang, Z.M.; Yan, C.H.; Kurmoo, M. Coordination polymers based on inorganic lanthanide(II) sulfate skeletons and an organic isonicotinate N-oxide connector: Segregation into three structural types by the lanthanide contraction effect. Inorg. Chem., 2005, 44(4), 862-874.
[http://dx.doi.org/10.1021/ic0487575] [PMID: 15859263]
[46]
Marchal, C.; Filinchuk, Y.; Imbert, D.; Bünzli, J.C.G.; Mazzanti, M. Toward the rational design of lanthanide coordination polymers: A new topological approach. Inorg. Chem., 2007, 46(16), 6242-6244.
[http://dx.doi.org/10.1021/ic7009918] [PMID: 17616187]
[47]
Kuppler, R.J.; Timmons, D.J.; Fang, Q.R.; Li, J.R.; Makal, T.A.; Young, M.D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H.C. Potential applications of metal-organic frameworks. Coord. Chem. Rev., 2009, 253(23-24), 3042-3066.
[http://dx.doi.org/10.1016/j.ccr.2009.05.019]
[48]
Bradshaw, D.; Garai, A.; Huo, J. Metal-organic framework growth at functional interfaces: Thin films and composites for diverse applications. Chem. Soc. Rev., 2012, 41(6), 2344-2381.
[http://dx.doi.org/10.1039/C1CS15276A] [PMID: 22182916]
[49]
Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev., 2012, 112(2), 1126-1162.
[http://dx.doi.org/10.1021/cr200101d] [PMID: 21688849]
[50]
Kanan, S.M.; Malkawi, A. Recent advances in nanocomposite luminescent metal-organic framework sensors for detecting metal ions. Comm. Inorg. Chem., 2021, 41, 1-66.
[51]
Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1330-1352.
[http://dx.doi.org/10.1039/b802352m] [PMID: 19384441]
[52]
Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev., 2009, 109(9), 4283-4374.
[http://dx.doi.org/10.1021/cr8003983] [PMID: 19650663]
[53]
de Lill, D.T.; de Bettencourt-Dias, A.; Cahill, C.L. Exploring lanthanide luminescence in metal-organic frameworks: Synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. Inorg. Chem., 2007, 46(10), 3960-3965.
[http://dx.doi.org/10.1021/ic062019u] [PMID: 17439205]
[54]
Yanai, N.; Kitayama, K.; Hijikata, Y.; Sato, H.; Matsuda, R.; Kubota, Y.; Takata, M.; Mizuno, M.; Uemura, T.; Kitagawa, S. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nat. Mater., 2011, 10(10), 787-793.
[http://dx.doi.org/10.1038/nmat3104] [PMID: 21892178]
[55]
Jayaramulu, K.; Narayanan, R.P.; George, S.J.; Maji, T.K. Luminescent microporous metal-organic framework with functional lewis basic sites on the pore surface: Specific sensing and removal of metal ions. Inorg. Chem., 2012, 51(19), 10089-10091.
[http://dx.doi.org/10.1021/ic3017547] [PMID: 22988809]
[56]
Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian, G.; Lobkovsky, E.B. Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv. Mater., 2007, 19(13), 1693-1696.
[http://dx.doi.org/10.1002/adma.200601838]
[57]
Xu, H.; Liu, F.; Cui, Y.; Chen, B.; Qian, G. A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. Chem. Commun., 2011, 47(11), 3153-3155.
[http://dx.doi.org/10.1039/c0cc05166g] [PMID: 21271003]
[58]
Wong, K.L.; Law, G.L.; Yang, Y.Y.; Wong, W.T. A highly porous luminescent terbium-organic framework for reversible anion sensing. Adv. Mater., 2006, 18(8), 1051-1054.
[http://dx.doi.org/10.1002/adma.200502138]
[59]
Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T.J.; Li, J.J. Responsive two-photon induced europium emission as fluorescent indicator for paralytic shellfish saxitoxin. Am. Chem. Soc., 2011, 133, 4153-4155.
[http://dx.doi.org/10.1021/ja106851d]
[60]
Lu, Z.Z.; Zhang, R.; Li, Y.Z.; Guo, Z.J.; Zheng, H.G. Solvatochromic behavior of a nanotubular meta-organic framework for sensing small molecules. J. Am. Chem. Soc., 2011, 133(12), 4172-4174.
[http://dx.doi.org/10.1021/ja109437d] [PMID: 21375252]
[61]
Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E.B. A luminescent microporous metal-organic framework for the recognition and sensing of anions. J. Am. Chem. Soc., 2008, 130(21), 6718-6719.
[http://dx.doi.org/10.1021/ja802035e] [PMID: 18452294]
[62]
Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F.R.; Xue, M.; Cui, Y.; Qian, G. A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed., 2009, 48(3), 500-503.
[http://dx.doi.org/10.1002/anie.200805101] [PMID: 19072806]
[63]
Janiak, C. Engineering coordination polymers towards applications. Dalton Trans., 2003, 14(14), 2781-2804.
[http://dx.doi.org/10.1039/b305705b]
[64]
Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Old materials with new tricks: Multifunctional open-framework materials. Chem. Soc. Rev., 2007, 36(5), 770-818.
[http://dx.doi.org/10.1039/b501600m] [PMID: 17471401]
[65]
Suh, M.P.; Cheon, Y.E.; Lee, E.Y. Syntheses and functions of porous metallosupramolecular networks. Coord. Chem. Rev., 2008, 252(8-9), 1007-1026.
[http://dx.doi.org/10.1016/j.ccr.2008.01.032]
[66]
Cahill, C.L.; de Lill, D.T.; Frisch, M. Homo- and heterometallic coordination polymers from the f elements. CrystEngComm, 2007, 9(1), 15-26.
[http://dx.doi.org/10.1039/B615696G]
[67]
Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev., 2014, 114(8), 4564-4601.
[http://dx.doi.org/10.1021/cr400546e] [PMID: 24588137]
[68]
Zhao, X.L.; Tian, D.; Gao, Q.; Sun, H.W.; Xu, J.; Bu, X.H. A chiral lanthanide metal-organic framework for selective sensing of Fe(III) ions. Dalton Trans., 2016, 45(3), 1040-1046.
[http://dx.doi.org/10.1039/C5DT03283K] [PMID: 26649625]
[69]
Xu, H.; Gao, J.; Qian, X.; Wang, J.; He, H.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe 3+. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(28), 10900-10905.
[http://dx.doi.org/10.1039/C6TA03065C]
[70]
McCall, K.A.; Huang, C.; Fierke, C.A. Function and mechanism of zinc metalloenzymes. J. Nutr., 2000, 130(5), 1437S-1446S.
[http://dx.doi.org/10.1093/jn/130.5.1437S] [PMID: 10801957]
[71]
Imtaiyaz Hassan, M.; Shajee, B.; Waheed, A.; Ahmad, F.; Sly, W.S. Structure, function and applications of carbonic anhydrase isozymes. Bioorg. Med. Chem., 2013, 21(6), 1570-1582.
[http://dx.doi.org/10.1016/j.bmc.2012.04.044] [PMID: 22607884]
[72]
Lindskog, S. Structure and mechanism of carbonic anhydrase. Pharmacol. Ther., 1997, 74(1), 1-20.
[http://dx.doi.org/10.1016/S0163-7258(96)00198-2] [PMID: 9336012]
[73]
Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr., 1990, 51(2), 225-227.
[http://dx.doi.org/10.1093/ajcn/51.2.225] [PMID: 2407097]
[74]
Krężel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys., 2016, 611, 3-19.
[http://dx.doi.org/10.1016/j.abb.2016.04.010] [PMID: 27117234]
[75]
Penner-Hahn, J.E. Characterization of “spectroscopically quiet” metals in biology. Coord. Chem. Rev., 2005, 249(1-2), 161-177.
[http://dx.doi.org/10.1016/j.ccr.2004.03.011]
[76]
Majee, P.; Singha, D.K.; Mondal, S.K.; Mahata, P. Effect of charge transfer and structural rigidity on divergent luminescence response of a metal organic framework towards different metal ions: Luminescence lifetime decay experiments and DFT calculations. Photochem. Photobiol. Sci., 2019, 18(5), 1110-1121.
[http://dx.doi.org/10.1039/c9pp00024k] [PMID: 30747203]
[77]
El-Sewify, I.M.; Shenashen, M.A.; Shahat, A.; Yamaguchi, H.; Selim, M.M.; Khalil, M.M.H.; El-Safty, S.A. Ratiometric fluorescent chemosensor for Zn2+ ions in environmental samples using supermicroporous organicinorganic structures as potential platforms. Chem. Select., 2017, 2, 11083-11090.
[78]
El-Sewify, I.M.; Shenashen, M.A.; Shahat, A.; Selim, M.M.; Khalil, M.M.H.; El-Safty, S.A.; El-Safty, S.A. Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. Microchem. J., 2018, 139, 24-33.
[http://dx.doi.org/10.1016/j.microc.2018.02.002]
[79]
Liu, C.; Yan, B. A novel photofunctional hybrid material of pyrene functionalized metal-organic framework with conformation change for fluorescence sensing of Cu2+. Sens. Actuators B Chem., 2016, 235, 541-546.
[http://dx.doi.org/10.1016/j.snb.2016.05.127]
[80]
Doebrich, J. Copper - A metal for the ages; U.S. Geol. Surv., 2009, pp. 1-4.
[81]
Krämer, R. Fluorescent chemosensors for Cu2+ ions: Fast, selective, and highly sensitive. Angew. Chem. Int. Ed., 1998, 37(6), 772-773.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980403)37:6<772:AID-ANIE772>3.0.CO;2-Z] [PMID: 29711397]
[82]
Bag, B.; Bharadwaj, P.K. Attachment of electron-withdrawing 2,4-dinitrobenzene groups to a cryptand-based receptor for Cu(II)/H+ specific exciplex and monomer emissions. Org. Lett., 2005, 7(8), 1573-1576.
[http://dx.doi.org/10.1021/ol050254v] [PMID: 15816755]
[83]
Zheng, Y.; Orbulescu, J.; Ji, X.; Andreopoulos, F.M.; Pham, S.M.; Leblanc, R.M. Development of fluorescent film sensors for the detection of divalent copper. J. Am. Chem. Soc., 2003, 125(9), 2680-2686.
[http://dx.doi.org/10.1021/ja0293610] [PMID: 12603155]
[84]
Zhu, Y.M.; Zeng, C.H.; Chu, T.S.; Wang, H.M.; Yang, Y.Y.; Tong, Y.X.; Su, C.Y.; Wong, W.T. A novel highly luminescent LnMOF film: A convenient sensor for Hg2+ detecting. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(37), 11312-11319.
[http://dx.doi.org/10.1039/c3ta11925d]
[85]
Feng, D.; Chung, W.C.; Wei, Z.; Gu, Z.Y.; Jiang, H.L.; Chen, Y.P.; Darensbourg, D.J.; Zhou, H.C. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc., 2013, 135(45), 17105-17110.
[http://dx.doi.org/10.1021/ja408084j] [PMID: 24125517]
[86]
Yang, J.; Wang, Z.; Li, Y.; Zhuang, Q.; Zhao, W.; Gu, J. Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(II) ions in aqueous phase. RSC Advances, 2016, 6(74), 69807-69814.
[http://dx.doi.org/10.1039/C6RA13766K]
[87]
Li, L.; Chen, Q.; Niu, Z.; Zhou, X.; Yang, T.; Huang, W. Lanthanide metal–organic frameworks assembled from a fluorene-based ligand: selective sensing of Pb 2+ and Fe 3+ ions. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(9), 1900-1905.
[http://dx.doi.org/10.1039/C5TC04320D]
[88]
Du, N.; Song, J.; Li, S.; Chi, Y.X.; Bai, F.Y.; Xing, Y.H. A highly stable 3D luminescent indium–polycarboxylic framework for the turn-off detection of UO22+, Ru3+, and biomolecule thiamines. ACS Appl. Mater. Interfaces, 2016, 8(42), 28718-28726.
[http://dx.doi.org/10.1021/acsami.6b09456] [PMID: 27748584]
[89]
Shustova, N.B.; Cozzolino, A.F.; Reineke, S.; Baldo, M.; Dincă, M. Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites. J. Am. Chem. Soc., 2013, 135(36), 13326-13329.
[http://dx.doi.org/10.1021/ja407778a] [PMID: 23981174]
[90]
Zhao, S.S.; Yang, J.; Liu, Y.Y.; Ma, J.F. Fluorescent aromatic tag-functionalized MOFs for highly selective sensing of metal ions and small organic molecules. Inorg. Chem., 2016, 55(5), 2261-2273.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02666] [PMID: 26895464]
[91]
Zhao, C.W.; Ma, J.P.; Liu, Q.K.; Wang, X.R.; Liu, Y.; Yang, J.; Yang, J.S.; Dong, Y.B. An in situ self-assembled Cu4I4–MOF-based mixed matrix membrane: A highly sensitive and selective naked-eye sensor for gaseous HCl. Chem. Commun., 2016, 52(30), 5238-5241.
[http://dx.doi.org/10.1039/C6CC00189K] [PMID: 26923526]
[92]
Li, Y.; Zhang, S.; Song, D. A luminescent metal-organic framework as a turn-on sensor for DMF vapor. Angew. Chem. Int. Ed., 2013, 52(2), 710-713.
[http://dx.doi.org/10.1002/anie.201207610] [PMID: 23165755]
[93]
Zhang, X.; Hu, Q.; Xia, T.; Zhang, J.; Yang, Y.; Cui, Y.; Chen, B.; Qian, G. Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks. ACS Appl. Mater. Interfaces, 2016, 8(47), 32259-32265.
[http://dx.doi.org/10.1021/acsami.6b12118] [PMID: 27933828]
[94]
Gassensmith, J.J.; Kim, J.Y.; Holcroft, J.M.; Farha, O.K.; Stoddart, J.F.; Hupp, J.T.; Jeong, N.C. A metal-organic framework-based material for electrochemical sensing of carbon dioxide. J. Am. Chem. Soc., 2014, 136(23), 8277-8282.
[http://dx.doi.org/10.1021/ja5006465] [PMID: 24827031]