A Systematic Study of Pyracantha crenulata Phytoconstituents for their Anti-Diabetic Activity Using Computational Techniques

Page: [318 - 334] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Diabetes mellitus is a significant medical condition with rising incidence and fatality rates. According to WHO, around 422 million individuals globally have diabetes, the majority of whom live in low and middle-income economies. Diabetes is entirely responsible for 1.5 million fatalities yearly. Researchers are concentrating on plant derivatives due to the higher toxicity of conventional allopathic medicines. Antidiabetic agents and other medications, including from plants, are significant. Pyracantha crenulata is a significant plant recognized for its various therapeutic applications. It contains many phytoconstituents that give antidiabetic efficiency. In order to investigate the antidiabetic efficacy of Pyracantha crenulata phytoconstituents, a study was conducted using PDB IDs IUOK. The research was focused on the analysis of molecular docking and ADME and toxicity studies.

Objective: This study aimed to propose a mechanism for the antidiabetic activity of Pyracantha crenulata phytoconstituents based on molecular docking studies.

Methods: The phytoconstituents of Pyracantha crenulata were docked using the PyRx Virtual Screening software, and the ADME study was evaluated.

Results: The results of molecular docking showed that many phytocosntituents of Pyracantha crenulata have higher dock scores against antidiabetic action than conventional drugs.

Conclusion: Based on molecular docking study, different chemical constituents may act as potent inhibitors of diabetic proteins IUOK. By using the outcome of the research, new anti-diabetic medications could be designed.

Graphical Abstract

[1]
Kavidayal, H.; Uniyal, N. A survey on traditional knowledge and the status of medicinal plants in garhwal and kumaon regions of Uttarakhand. Biosci. Trends, 2020, 13(2), 96-101.
[2]
Joshi, S.K.; Ballabh, B.; Negi, P.S.; Dwivedi, S.K. Diversity, distribution, use pattern and evaluation of wild edible plants of Uttarakhand, India. Def. Life Sci. J., 2018, 3(2), 126-135.
[http://dx.doi.org/10.14429/dlsj.3.12579]
[3]
Sharma, I.P.; Kanta, C.; Semwal, S.; Goswami, N. Wild fruits of Uttarakhand (India): Ethnobotanical and medicinal uses. Int. J. Complement. Altern. Med., 2017, 8(3), 1-8.
[http://dx.doi.org/10.15406/ijcam.2017.08.00260]
[4]
Amit, S.; Sweta, N.; Dheeraj, J.; Aman, K. Evaluation of antibacterial activity of combined plant extract of pyracantha crenulata and zanthoxylum armatum., 2020, 2(29), 32-36.
[5]
Rawat, N.; Upadhaya, M.L. Diversity of the medicinal plants of Almora district, Uttarakhand and their Ethno-medicinal use. J. Med. Plants Stud., 2020, 8, 89-101.
[6]
Saklani, S.; Chandra, S.; Mishra, A. Evaluation of antioxidant activity, quantitative estimation of phenols, anthocynins and flavonoids of wild edible fruits of Garhwal Himalaya. J. Pharm. Res., 2011, 4, 4083-4086.
[7]
Dwivedi, T.; Kanta, C.; Singh, L.R.; Prakash, I. A list of some important medicinal plants with their medicinal uses from himalayan state Uttarakhand, India. Faslnamah-i Giyahan-i Daruyi, 2019, 7, 106-116.
[8]
Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther., 2008, 88(11), 1254-1264.
[http://dx.doi.org/10.2522/ptj.20080020] [PMID: 18801858]
[9]
Association, A.D. Economic consequences of diabetes mellitus in the US in 1997. Diabetes Care, 1998, 21(2), 296-309.
[http://dx.doi.org/10.2337/diacare.21.2.296]
[10]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[11]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013, 36(Suppl. 1), S67-S74.
[http://dx.doi.org/10.2337/dc13-S067] [PMID: 23264425]
[12]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2010, 33(Suppl. 1), S62-S69.
[http://dx.doi.org/10.2337/dc10-S062] [PMID: 20042775]
[13]
Balaji, R.; Duraisamy, R.; Kumar, M. Complications of diabetes mellitus: A review. Drug Invent. Today, 2019, 12(1), 98-103.
[14]
DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; Simonson, D.C.; Testa, M.A.; Weiss, R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers, 2015, 1(1), 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[15]
Chauhan, A.; Sharma, P.; Srivastava, P.; Kumar, N.; Dudhe, R. Plants having potential antidiabetic activity: A review. Pharm. Lett., 2010, 2, 369-387.
[16]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[17]
Bloomgarden, Z.T. Type 2 diabetes in the young: The evolving epidemic. Diabetes Care, 2004, 27(4), 998-1010.
[http://dx.doi.org/10.2337/diacare.27.4.998] [PMID: 15047665]
[18]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol., 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[19]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed., 2012, 2(5), 411-420.
[http://dx.doi.org/10.1016/S2221-1691(12)60067-7] [PMID: 23569941]
[20]
Malviya, N.; Jain, S.; Malviya, S. Antidiabetic potential of medicinal plants. Acta Pol. Pharm., 2010, 67(2), 113-118.
[PMID: 20369787]
[21]
Li, W.L.; Zheng, H.C.; Bukuru, J.; De Kimpe, N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol., 2004, 92(1), 1-21.
[http://dx.doi.org/10.1016/j.jep.2003.12.031] [PMID: 15099842]
[22]
Tiwari, A.K.; Rao, J.M. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Curr. Sci., 2002, 83(1), 30-38.
[23]
Habte, B.M.; Kebede, T.; Fenta, T.G.; Boon, H. Explanatory models of adult patients with type 2 diabetes mellitus from urban centers of central Ethiopia. BMC Res. Notes, 2016, 9(1), 441.
[http://dx.doi.org/10.1186/s13104-016-2248-3] [PMID: 27623807]
[24]
Longnecker, D.S. Anatomy and Histology of the Pancreas (version 1.0), Pancreapedia, 2014.
[25]
Pandol, S.J. The exocrine pancreas. Colloquium series on integrated systems physiology: From molecule to function., 2011, pp. 1-64.
[26]
Motta, P.M.; Macchiarelli, G.; Nottola, S.A.; Correr, S. Histology of the exocrine pancreas. Microsc. Res. Tech., 1997, 37(5-6), 384-398.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19970601)37:5/6<384:AID-JEMT3>3.0.CO;2-E] [PMID: 9220418]
[27]
Dane, S.; Hänninen, O. Enzymes of digestion, physiology and maintenance-volume II: Enzymes: The biological catalysts of life 2009, 45.
[28]
Taylor, J.; Knight, J. Endocrine system 6: Pancreas, stomach, small intestine and liver. Nurs. Times, 2021, 46-50.
[29]
Qaid, M.M.; Abdelrahman, M.M. Role of insulin and other related hormones in energy metabolism. A review. Cogent Food Agric., 2016, 2(1), 1267691.
[http://dx.doi.org/10.1080/23311932.2016.1267691]
[30]
Güemes, M.; Rahman, S.A.; Hussain, K. What is a normal blood glucose? Arch. Dis. Child., 2016, 101(6), 569-574.
[http://dx.doi.org/10.1136/archdischild-2015-308336] [PMID: 26369574]
[31]
Bonow, R.O.; Gheorghiade, M. The diabetes epidemic: A national and global crisis. Am. J. Med., 2004, 116(5)(Suppl. 5A), 2-10.
[http://dx.doi.org/10.1016/j.amjmed.2003.10.014] [PMID: 15019858]
[32]
Bauters, C.; Lamblin, N.; Mc Fadden, E.P.; Van Belle, E.; Millaire, A.; de Groote, P. Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc. Diabetol., 2003, 2(1), 1-16.
[http://dx.doi.org/10.1186/1475-2840-2-1] [PMID: 12556246]
[33]
Chan, J.C.N.; Scott, R.; Arjona Ferreira, J.C.; Sheng, D.; Gonzalez, E.; Davies, M.J.; Stein, P.P.; Kaufman, K.D.; Amatruda, J.M.; Williams-Herman, D. Safety and efficacy of sitagliptin in patients with type 2 diabetes and chronic renal insufficiency. Diabetes Obes. Metab., 2008, 10(7), 545-555.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00914.x] [PMID: 18518892]
[34]
Sakamoto, Y.; Oyama, J.; Ikeda, H.; Kuroki, S.; Gondo, S.; Iwamoto, T.; Uchida, Y.; Kodama, K.; Hiwatashi, A.; Shimomura, M.; Taguchi, I.; Inoue, T.; Node, K. Effects of sitagliptin beyond glycemic control: Focus on quality of life. Cardiovasc. Diabetol., 2013, 12(1), 35.
[http://dx.doi.org/10.1186/1475-2840-12-35] [PMID: 23432786]
[35]
Williams-Herman, D.; Engel, S.S.; Round, E.; Johnson, J.; Golm, G.T.; Guo, H.; Musser, B.J.; Davies, M.J.; Kaufman, K.D.; Goldstein, B.J. Safety and tolerability of sitagliptin in clinical studies: A pooled analysis of data from 10,246 patients with type 2 diabetes. BMC Endocr. Disord., 2010, 10(7)
[36]
Graefe-Mody, U.; Friedrich, C.; Port, A.; Ring, A.; Retlich, S.; Heise, T.; Halabi, A.; Woerle, H.J. Effect of renal impairment on the pharmacokinetics of the dipeptidyl peptidase-4 inhibitor linagliptin. Diabetes Obes. Metab., 2011, 13(10), 939-946.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01458.x] [PMID: 21672124]
[37]
Wilcox, T.; De Block, C.; Schwartzbard, A.Z.; Newman, J.D. Diabetic agents, from metformin to SGLT2 inhibitors and GLP1 receptor agonists: JACC focus seminar. J. Am. Coll. Cardiol., 2020, 75(16), 1956-1974.
[http://dx.doi.org/10.1016/j.jacc.2020.02.056] [PMID: 32327107]
[38]
Kern, M.; Klöting, N.; Niessen, H.G.; Thomas, L.; Stiller, D.; Mark, M.; Klein, T.; Blüher, M. Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PLoS One, 2012, 7(6), e38744.
[http://dx.doi.org/10.1371/journal.pone.0038744] [PMID: 22761701]
[39]
Helvaci, M.R.; Sevinc, A.; Camci, C.; Yalcin, A. Treatment of white coat hypertension with metformin. Int. Heart J., 2008, 49(6), 671-679.
[http://dx.doi.org/10.1536/ihj.49.671] [PMID: 19075483]
[40]
Helvaci, M.R.; Kaya, H.; Borazan, A.; Ozer, C.; Seyhanli, M.; Yalcin, A. Metformin and parameters of physical health. Intern. Med., 2008, 47(8), 697-703.
[http://dx.doi.org/10.2169/internalmedicine.47.0787] [PMID: 18421184]
[41]
Gowan, J.; Roller, L. Disease state management: Stopping medicines abruptly: Safe or not? AJP. Australas. J. Pharm., 2018, 99, 76-84.
[42]
Tablets, S.; Agent, O.A. PrAPO-SAXAGLIPTIN, 2020.
[43]
Schweizer, A.; Dejager, S.; Bosi, E. Comparison of vildagliptin and metformin monotherapy in elderly patients with type 2 diabetes: A 24‐week, double‐blind, randomized trial. Diabetes Obes. Metab., 2009, 11(8), 804-812.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01051.x] [PMID: 19476473]
[44]
Lauster, C.D.; McKaveney, T.P.; Muench, S.V. Vildagliptin: A novel oral therapy for type 2 diabetes mellitus. Am. J. Health Syst. Pharm., 2007, 64(12), 1265-1273.
[http://dx.doi.org/10.2146/ajhp060564] [PMID: 17563048]
[45]
Arya, G.C.; Jakhmola, V.; Mehla, S.; Bainsal, N. A mechanistic study of analgesic and anticancer activity of unexplored plant strobilanthes kunthiana phytocosntituents using molecular docking studies. Research Square, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-2272936/v1]
[46]
Cruz, J.V.; Neto, M.F.A.; Silva, L.B.; da S Ramos, R.; da S Costa, J.; Brasil, D.S.B.; Lobato, C.C.; da Costa, G.V.; Bittencourt, J.A.H.M.; da Silva, C.H.T.P. Identification of novel protein kinase receptor type 2 inhibitors using pharmacophore and structure-based virtual screening. Molecules, 2018, 23(2), 453.
[http://dx.doi.org/10.3390/molecules23020453] [PMID: 29463017]
[47]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[48]
Clark, D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J. Pharm. Sci., 1999, 88(8), 815-821.
[http://dx.doi.org/10.1021/js980402t] [PMID: 10430548]
[49]
Rasheed, U.; Ilyas, U.; Zaman, S.; Muhammad, S.; Afzaal, H. ADME/T prediction, molecular docking, and biological screening of 1, 2, 4-triazoles as potential antifungal agents. J. Appl. Bioinforma. Comput. Biol., 2018, 2.
[50]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2014, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[51]
Ammar, R.B.; Bhouri, W.; Sghaier, M.B.; Boubaker, J.; Skandrani, I.; Neffati, A.; Bouhlel, I.; Kilani, S.; Mariotte, A.M.; Chekir-Ghedira, L.; Dijoux-Franca, M-G.; Ghedira, K. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structure-activity relationship study. Food Chem., 2009, 116(1), 258-264.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.043]
[52]
Ancuceanu, R.; Dinu, M.; Dinu-Pirvu, C.; Anuţa, V.; Negulescu, V. Pharmacokinetics of B-ring unsubstituted flavones. Pharmaceutics, 2019, 11(8), 370.
[http://dx.doi.org/10.3390/pharmaceutics11080370] [PMID: 31374885]
[53]
Bose, S.; Sarkar, D.; Bose, A.; Mandal, S.C. Natural flavonoids and its pharmaceutical importance. Pharm. Rev., 2018, 94, 61-75.
[54]
Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf., 2018, 17(5), 1054-1112.
[http://dx.doi.org/10.1111/1541-4337.12351] [PMID: 33350159]