Label-free Electrochemical Nanobiosensors Using Au-SPE for COVID-19 Detection: A Comparative Review of Different Biomarkers and Recognition Elements

Page: [90 - 108] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

An immediate and precise diagnosis is required due to the COVID-19 outbreak. Labelfree electrochemical biosensors show promise as potentially valuable instruments for detecting COVID-19. These biosensors are distinguished by their lack of complexity, high speed, sensitivity, and relatively low cost. The precise COVID-19 biomarkers may be recognized without labeling or amplification by detecting the electrical signal created by direct contact between the target analyte and the identification element positioned on the electrode surface. This can be done by placing the electrode in contact with the target analyte, which will amplify the signal. It has been shown that using gold screen printed electrodes, also known as Au SPE, is beneficial when used as an electrode material in label-free electrochemical biosensors. This review study examines and contrasts the performance of several label-free electrochemical biosensors that use Au SPE to detect COVID-19. The merits and limitations of each biosensor will also be discussed. These biosensors use recognition components like DNA, RNA, antibody, aptamer, and MIP and depend on various indicators, such as viral RNA, viral protein, and host antibody. In addition, an analysis of the difficulties and possibilities that may present within this burgeoning subject is carried out. This includes the enhancement of sensor selectivity and stability, optimizing sensor manufacture and design, integrating the sensor with portable readout equipment, and validating the sensor's effectiveness via the use of genuine clinical samples. It can be reasoned out that label-free electrochemical biosensors that make use of gold screen-printed electrodes (Au SPE) have a significant amount of potential for the detection of COVID-19. However, further study is required to address various difficulties, improve their dependability, and broaden the range of applications for these technologies.

Graphical Abstract

[1]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[2]
Madan, A.; Garg, M.; Satija, G.; Sharma, B.; Shaquiquzzaman, M.; Akhter, M.; Iqubal, A.; Khan, M.A.; Parvez, S.; Das, A.; Sheikh, K.A.; Alam, M.M. SAR based review on diverse heterocyclic compounds with various potential molecular targets in the fight against COVID-19: A medicinal chemist perspective. Curr. Top. Med. Chem., 2023, 23(14), 1319-1339.
[http://dx.doi.org/10.2174/1568026623666230126104156] [PMID: 36703601]
[3]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alexiou, A.; Batiha, G.E.S. Cannabinoids receptors in COVID-19: Perpetrators and victims. Curr. Med. Chem., 2023, 30(34), 3832-3845.
[http://dx.doi.org/10.2174/0929867329666220829145029] [PMID: 36043749]
[4]
Mundula, T.; Russo, E.; Curini, L.; Giudici, F.; Piccioni, A.; Franceschi, F.; Amedei, A. Chronic systemic low-grade inflammation and modern lifestyle: The dark role of gut microbiota on related diseases with a focus on COVID-19 pandemic. Curr. Med. Chem., 2022, 29(33), 5370-5396.
[http://dx.doi.org/10.2174/0929867329666220430131018] [PMID: 35524667]
[5]
Araújo, S.T.; Araújo, C.T.; Silva e Castro, R.; de Oliveira, B.L.M.; Souza e Silva, N.G.; de Miranda, D.M.; Simões e Silva, A.C. Imaging markers of neurologic damage in COVID-19: A systematic review. Curr. Med. Chem., 2023, 30(9), 1086-1106.
[http://dx.doi.org/10.2174/0929867329666220701124945] [PMID: 35786328]
[6]
Abdel-Gawad, M.; Zaghloul, M.S.; Abd-elsalam, S.; Hashem, M.; Lashen, S.A.; Mahros, A.M.; Mohammed, A.Q.; Hassan, A.M.; Bekhit, A.N.; Mohammed, W.; Alboraie, M. Post-COVID-19 syndrome clinical manifestations: A systematic review. Antiinflamm. Antiallergy Agents Med Chem, 2022, 21(2), 115-120.
[7]
Yu, L.; Abd Ghani, M.K.; Aghemo, A.; Barh, D.; Bassetti, M.; Catena, F.; Gallo, G.; Gholamrezanezhad, A.; Kamal, M.A.; Lal, A.; Sahu, K.K.; Saxena, S.K.; Elmore, U.; Rahimi, F.; Robba, C.; Song, Y.; Xia, Z.; Yu, B. SARS-CoV-2 infection, inflammation, immunonutrition, and pathogenesis of COVID-19. Curr. Med. Chem., 2023, 30(39), 4390-4408.
[http://dx.doi.org/10.2174/0929867330666230330092725] [PMID: 36998130]
[8]
Pomilio, A.B.; Vitale, A.A.; Lazarowski, A.J. COVID-19 and Alzheimer’s Disease: Neuroinflammation, oxidative stress, ferroptosis, and mechanisms involved. Curr. Med. Chem., 2023, 30(35), 3993-4031.
[http://dx.doi.org/10.2174/0929867329666221003101548] [PMID: 36200215]
[9]
Lampsas, S.; Tsaplaris, P.; Pantelidis, P.; Oikonomou, E.; Marinos, G.; Charalambous, G.; Souvaliotis, N.; Mystakidi, V-C.; Goliopoulou, A.; Katsianos, E.; Siasos, G.; Vavuranakis, M-A.; Tsioufis, C.; Vavuranakis, M.; Tousoulis, D. The role of endothelial related circulating biomarkers in COVID-19. A systematic review and meta-analysis. Curr. Med. Chem., 2022, 29(21), 3790-3805.
[http://dx.doi.org/10.2174/1875533XMTE44NTYf0] [PMID: 34702152]
[10]
Candelli, M.; Pignataro, G.; Saviano, A.; Ojetti, V.; Gabrielli, M.; Piccioni, A.; Gullì, A.; Antonelli, M.; Gasbarrini, A.; Franceschi, F. Is BMI associated with COVID-19 severity? a retrospective observational study. Curr. Med. Chem., 2023, 30(39), 4466-4478.
[http://dx.doi.org/10.2174/0929867330666230206095923] [PMID: 36744689]
[11]
Beeraka, N.M.; Tulimilli, S.V.; Greeshma, M.V.; Dallavalasa, S.; Zhang, Y.; Xiao, W.; Fan, R.; Zhao, D.; Bettadapura, A.D.S.; Nataraj, S.M.; Madhunapantula, S.V.; Liu, J. COVID-19 effects on geriatric population and failures of aminoquinoline therapy: compilation of studies from EU, USA, and China; Safety and efficacy of vaccines in the prevention and treatment of COVID-19. Curr. Med. Chem., 2022, 29(20), 3601-3621.
[http://dx.doi.org/10.2174/0929867329666220301113146] [PMID: 35232337]
[12]
Cetin, Y.; Aydinlik, S.; Gungor, A.; Kan, T.; Avsar, T.; Durdagi, S. Review on in silico methods, high-throughput screening techniques, and cell culture based in vitro assays for SARS-CoV-2. Curr. Med. Chem., 2022, 29(38), 5925-5948.
[http://dx.doi.org/10.2174/0929867329666220627121416] [PMID: 35761502]
[13]
Sikiric, P.; Gojkovic, S.; Knezevic, M.; Tepes, M.; Strbe, S.; Vukojevic, J.; Duzel, A.; Kralj, T.; Krezic, I.; Zizek, H.; Oroz, K.; Vranes, H.; Smoday, I.M.; Kalogjera, L.; Vlainic, J.; Kokot, A.; Jurjevic, I.; Blagaic, A.B.; Skrtic, A.; Seiwerth, S. Stable gastric pentadecapeptide BPC 157: Prompt particular activation of collateral pathways. Curr. Med. Chem., 2023, 30(13), 1568-1573.
[http://dx.doi.org/10.2174/0929867329666221005111553] [PMID: 36200148]
[14]
De, S.K. Novel proline derivatives for treating COVID-19. Curr. Med. Chem., 2023, 30(12), 1458-1461.
[http://dx.doi.org/10.2174/0929867329666220922095343] [PMID: 36154584]
[15]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Anti-coronavirus vaccines: past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from BioNTech/Pfizer, moderna, oxford/astrazeneca and others under development against SARSCoV- 2 infection. Curr. Med. Chem., 2022, 29(1), 4-18.
[http://dx.doi.org/10.2174/1875533XMTE1eNzEw5] [PMID: 34355678]
[16]
Pecoraro, C.; Carbone, D.; Deng, D.; Cascioferro, S.M.; Diana, P.; Giovannetti, E. Biofilm formation as valuable target to fight against severe chronic infections. Curr. Med. Chem., 2022, 29(25), 4307-4310.
[http://dx.doi.org/10.2174/0929867329666220103095551] [PMID: 34979887]
[17]
Murali, M.; Gowtham, H.G.; Ansari, M.A.; Alomary, M.N.; Alghamdi, S.; Almehmadi, M.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Kalegowda, N.; Ledesma, A.E.; Amruthesh, K.N. Repositioning therapeutics for SARS-CoV-2: Virtual screening of plant-based anti-HIV compounds as possible inhibitors against COVID-19 viral RdRp. Curr. Pharm. Des., 2022, 28(12), 969-980.
[http://dx.doi.org/10.2174/1381612828666220428120939] [PMID: 35796443]
[18]
Srivastava, M.; Srivastava, N.; Mishra, P.K.; Malhotra, B.D. Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Sci. Total Environ., 2021, 754, 142363.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142363] [PMID: 33254928]
[19]
Zhou, C.; Guan, W.; Zhu, Y. Perspective on aggregation-induced emission (AIE) materials for pathogen detection. Curr. Anal. Chem., 2023, 19(2), 111-118.
[http://dx.doi.org/10.2174/1573411019666221114105211]
[20]
Li, J. Bioanalysis. Curr. Anal. Chem., 2022, 18(6), 599-600.
[http://dx.doi.org/10.2174/157341101806220422140028]
[21]
Frias, I.A.M.; da Silva, Junior A.G.; Oliveira, M.D.L.; Andrade, C.A.S. Oligonucleotide-conjugated nanomaterials as biosensing platforms to potential bioterrorism tools. Curr. Anal. Chem., 2023, 19(1), 18-26.
[http://dx.doi.org/10.2174/1573411018666220601100003]
[22]
Xu, W.; Wu, Y.; Jiao, L.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Engineering metal-organic framework-based nanozymes for enhanced biosensing. Curr. Anal. Chem., 2022, 18(6), 739-752.
[http://dx.doi.org/10.2174/1573411017666210824115722]
[23]
Lyu, Q.; Gong, S.; Dyson, J.M.; Cheng, W. Soft, disruptive and wearable electrochemical biosensors. Curr. Anal. Chem., 2022, 18(6), 689-704.
[http://dx.doi.org/10.2174/1573411017666210706154521]
[24]
Zhang, X.; Wang, J.; Yang, H.; Zhou, Y. A novel biosensor for detecting vitamin C in milk powder based on Hg 2+ - mediated DNA structural changes. Curr. Anal. Chem., 2022, 18(7), 845-851.
[http://dx.doi.org/10.2174/1573411018666220426121800]
[25]
Ge, X.; Liu, Z.; Zhang, W.; Guo, S. Single-atom nanocatalysts for biosensing application. Curr. Anal. Chem., 2022, 18(6), 753-763.
[http://dx.doi.org/10.2174/1573411018666220112111502]
[26]
Yan, L.; Shi, F.; Zhang, J.; Niu, Y.; Huang, L.; Huang, Y.; Sun, W. Electrochemical DNA biosensor based on platinum-gold bimetal decorated graphene modified electrode for the detection of vibrio parahaemolyticus specific tlh gene sequence. Curr. Anal. Chem., 2022, 18(7), 781-789.
[http://dx.doi.org/10.2174/1573411017666211217164846]
[27]
Majola, S.; Sabela, M.; Gengan, R.M.; Makhanya, T.R. Enzyme-indole Pyrazole-capped SeNPs based electrochemical biosensor for sensitive detection of adenosine triphosphate. Curr. Anal. Chem., 2023, 19(4), 298-308.
[http://dx.doi.org/10.2174/1573411019666221227090358]
[28]
Zhang, S.; Li, S.; Yan, R.; Zhou, Z.; Wu, Y.; Lu, Y. Recent advances of using personal glucose meter as a biosensor readout for non-glucose targets. Curr. Anal. Chem., 2022, 18(6), 705-722.
[http://dx.doi.org/10.2174/1573411017666210804105750] [PMID: 37811138]
[29]
Liu, N.; Liu, R.; Zhang, J. CRISPR-Cas12a-mediated label-free electrochemical aptamer-based sensor for SARS-CoV-2 antigen detection. Bioelectrochemistry, 2022, 146, 108105.
[http://dx.doi.org/10.1016/j.bioelechem.2022.108105] [PMID: 35367933]
[30]
Zambry, N.S.; Awang, M.S.; Beh, K.K.; Hamzah, H.H.; Bustami, Y.; Obande, G.A.; Khalid, M.F.; Ozsoz, M.; Manaf, A.A.; Aziah, I. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. Lab Chip, 2023, 23(6), 1622-1636.
[http://dx.doi.org/10.1039/D2LC01159J] [PMID: 36786757]
[31]
Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors, 2021, 21(19), 6578.
[http://dx.doi.org/10.3390/s21196578] [PMID: 34640898]
[32]
Bhakta, S.; Mishra, P. Molecularly imprinted polymer-based sensors for cancer biomarker detection. Sens. Actuators Rep., 2021, 3, 100061.
[http://dx.doi.org/10.1016/j.snr.2021.100061]
[33]
Sher, M.; Faheem, A.; Asghar, W.; Cinti, S. Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. Trends Analyt. Chem., 2021, 143, 116374.
[http://dx.doi.org/10.1016/j.trac.2021.116374] [PMID: 34177011]
[34]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[35]
Xiao, H.; Wei, S.; Gu, M.; Chen, Z.; Cao, L. A sandwich-type electrochemical immunosensor using rGO-TEPA-Thi-Au as sensitive platform and CMK-3@AuPtNPs as signal probe for AFP detection. Microchem. J., 2021, 170, 106641.
[http://dx.doi.org/10.1016/j.microc.2021.106641]
[36]
Umapathi, R.; Venkateswara Raju, C.; Majid Ghoreishian, S.; Mohana Rani, G.; Kumar, K.; Oh, M.H.; Pil Park, J.; Suk Huh, Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[37]
Mostafa, M.; Barhoum, A.; Sehit, E.; Gewaid, H.; Mostafa, E.; Omran, M.M.; Abdalla, M.S.; Abdel-Haleem, F.M.; Altintas, Z.; Forster, R.J. Current trends in COVID-19 diagnosis and its new variants in physiological fluids: Surface antigens, antibodies, nucleic acids, and RNA sequencing. Trends Analyt. Chem., 2022, 157, 116750.
[http://dx.doi.org/10.1016/j.trac.2022.116750] [PMID: 36060607]
[38]
Herrera, L.A.; Hidalgo-Miranda, A.; Reynoso-Noverón, N.; Meneses-García, A.A.; Mendoza-Vargas, A.; Reyes-Grajeda, J.P.; Vadillo-Ortega, F.; Cedro-Tanda, A.; Peñaloza, F.; Frías-Jimenez, E.; Arriaga-Canon, C.; Ruiz, R.; Angulo, O.; López-Villaseñor, I.; Amador-Bedolla, C.; Vilar-Compte, D.; Cornejo, P.; Cisneros-Villanueva, M.; Hurtado-Cordova, E.; Cendejas-Orozco, M.; Hernández-Morales, J.S.; Moreno, B.; Hernández-Cruz, I.A.; Herrera, C.A.; García, F.; González-Woge, M.A.; Munguía-Garza, P.; Luna-Maldonado, F.; Sánchez-Vizcarra, A.; Osnaya, V.G.; Medina-Molotla, N.; Alfaro-Mora, Y.; Cáceres-Gutiérrez, R.E.; Tolentino-García, L.; Rosas-Escobar, P.; Román-González, S.A.; Escobar-Arrazola, M.A.; Canseco-Méndez, J.C.; Ortiz-Soriano, D.R.; Domínguez-Ortiz, J.; González-Barrera, A.D.; Aparicio-Bautista, D.I.; Cruz-Rangel, A.; Alarcón-Zendejas, A.P.; Contreras-Espinosa, L.; González, R.; Guerra-Calderas, L.; Meraz-Rodríguez, M.A.; Montalvo-Casimiro, M.; Montiel-Manríquez, R.; Torres-Arciga, K.; Venegas, D.; Juárez-González, V.; Guajardo-Barreto, X.; Monroy-Martínez, V.; Guillén, D.; Fernández, J.; Herrera, J.; León-Rodriguez, R.; Canela-Pérez, I.; Ruíz-Ordaz, B.H.; Valdez-Vazquez, R.; Bertin-Montoya, J.; Niembro-Ortega, M.; Villegas-Acosta, L.; López-Castillo, D.; Soriano-Ríos, A.; Gastelum-Ramos, M.; Zamora-Barandas, T.; Morales-Baez, J.; García-Rodríguez, M.; García-Martínez, M.; Nieto-Patlán, E.; Quirasco-Baruch, M.; López-Martínez, I.; Ramírez-Gonzalez, E.; Olivera-Díaz, H.; Escobar-Escamilla, N. Saliva is a reliable and accessible source for the detection of SARS-CoV-2. Int. J. Infect. Dis., 2021, 105, 83-90.
[http://dx.doi.org/10.1016/j.ijid.2021.02.009] [PMID: 33581365]
[39]
Buzhdygan, T.P.; DeOre, B.J.; Baldwin-Leclair, A.; Bullock, T.A.; McGary, H.M.; Khan, J.A.; Razmpour, R.; Hale, J.F.; Galie, P.A.; Potula, R.; Andrews, A.M.; Ramirez, S.H. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol. Dis., 2020, 146, 105131.
[http://dx.doi.org/10.1016/j.nbd.2020.105131] [PMID: 33053430]
[40]
Ramlall, V.; Thangaraj, P.M.; Meydan, C.; Foox, J.; Butler, D.; Kim, J.; May, B.; De Freitas, J.K.; Glicksberg, B.S.; Mason, C.E.; Tatonetti, N.P.; Shapira, S.D. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat. Med., 2020, 26(10), 1609-1615.
[http://dx.doi.org/10.1038/s41591-020-1021-2] [PMID: 32747830]
[41]
Pan, Y.; Jiang, X.; Yang, L.; Chen, L.; Zeng, X.; Liu, G.; Tang, Y.; Qian, C.; Wang, X.; Cheng, F.; Lin, J.; Wang, X.; Li, Y. SARS-CoV-2-specific immune response in COVID-19 convalescent individuals. Signal Transduct. Target. Ther., 2021, 6(1), 256.
[http://dx.doi.org/10.1038/s41392-021-00686-1] [PMID: 34234102]
[42]
Pradhan, A.; Lahare, P.; Sinha, P.; Singh, N.; Gupta, B.; Kuca, K.; Ghosh, K.K.; Krejcar, O. Biosensors as nano-analytical tools for COVID-19 detection. Sensors, 2021, 21(23), 7823.
[http://dx.doi.org/10.3390/s21237823] [PMID: 34883826]
[43]
Hai, X.; Li, Y.; Zhu, C.; Song, W.; Cao, J.; Bi, S. DNA-based label-free electrochemical biosensors: From principles to applications. Trends Analyt. Chem., 2020, 133, 116098.
[http://dx.doi.org/10.1016/j.trac.2020.116098]
[44]
Umapathi, R.; Ghoreishian, S.M.; Rani, G.M.; Cho, Y.; Huh, Y.S. Emerging trends in the development of electrochemical devices for the on-site detection of food contaminants. ECS Sensors Plus, 2022, 1(4), 044601.
[http://dx.doi.org/10.1149/2754-2726/ac9d4a]
[45]
O’Connell, M.R.; Oakes, B.L.; Sternberg, S.H.; East-Seletsky, A.; Kaplan, M.; Doudna, J.A. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 2014, 516(7530), 263-266.
[http://dx.doi.org/10.1038/nature13769] [PMID: 25274302]
[46]
Hasanzadeh, M.; Rahimi, S.; Solhi, E.; Mokhtarzadeh, A.; Shadjou, N.; Soleymani, J.; Mahboob, S. Probing the antigen-antibody interaction towards ultrasensitive recognition of cancer biomarker in adenocarcinoma cell lysates using layer-by-layer assembled silver nano-cubics with porous structure on cysteamine caped GQDs. Microchem. J., 2018, 143, 379-392.
[http://dx.doi.org/10.1016/j.microc.2018.08.028]
[47]
Byun, J. Recent progress and opportunities for nucleic acid aptamers. Life, 2021, 11(3), 193.
[http://dx.doi.org/10.3390/life11030193] [PMID: 33671039]
[48]
Morsi, S.M.M.; Abd El-Aziz, M.E.; Mohamed, H.A. Smart polymers as molecular imprinted polymers for recognition of target molecules. Int. J. Polym. Mater., 2023, 72(8), 612-635.
[http://dx.doi.org/10.1080/00914037.2022.2042287]
[49]
Borghei, Y.S.; Samadikhah, H.R.; Hosseinkhani, S. Exploitation of N-gene of SARS-CoV-2 to develop a new rapid assay by ASOs@ AuNPs. Anal. Chem., 2022, 94(39), 13616-13622.
[http://dx.doi.org/10.1021/acs.analchem.2c03544] [PMID: 36130119]
[50]
Ma, C.; Lu, D.; Gan, H.; Yao, Z.; Zhu, D.Z.; Luo, J.; Fu, Q.; Kurup, P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta, 2022, 253, 124009.
[51]
Cordeiro, T.A.R.; de Resende, M.A.C.; Moraes, S.C.S.; Franco, D.L.; Pereira, A.C.; Ferreira, L.F. Electrochemical biosensors for neglected tropical diseases: A review. Talanta, 2021, 234, 122617.
[http://dx.doi.org/10.1016/j.talanta.2021.122617] [PMID: 34364426]
[52]
Silva, R.M.; da Silva, A.D.; Camargo, J.R.; de Castro, B.S.; Meireles, L.M.; Silva, P.S.; Janegitz, B.C.; Silva, T.A. Carbon nanomaterials-based screen-printed electrodes for sensing applications. Biosensors, 2023, 13(4), 453.
[http://dx.doi.org/10.3390/bios13040453] [PMID: 37185528]
[53]
Liu, J.; Ma, P.; Yu, H.; Wang, M.; Yin, P.; Pang, S.; Jiao, Y.; Dong, T.; Liu, A. Discovery of a phage peptide specifically binding to the SARS-CoV-2 spike S1 protein for the sensitive phage-based enzyme-linked chemiluminescence immunoassay of the SARS-CoV-2 antigen. Anal. Chem., 2022, 94(33), 11591-11599.
[http://dx.doi.org/10.1021/acs.analchem.2c01988] [PMID: 35948070]
[54]
Liv, L.; Kayabay, H. An electrochemical biosensing platform for the SARS-CoV-2 spike antibody detection based on the functionalised sars-cov-2 spike antigen modified electrode. ChemistrySelect, 2022, 7(10), e202200256.
[http://dx.doi.org/10.1002/slct.202200256] [PMID: 35601978]
[55]
Amini, R.; Zhang, Z.; Li, J.; Gu, J.; Brennan, J.D.; Li, Y. Aptamers for SARS-CoV-2: Isolation, characterization, and diagnostic and therapeutic developments. Anal. Sens., 2022, 2(5), e202200012.
[http://dx.doi.org/10.1002/anse.202200012] [PMID: 35574520]
[56]
Shen, Q.; Hossain, F.; Fang, C.; Shu, T.; Zhang, X.; Law, J.L.M.; Logan, M.; Houghton, M.; Tyrrell, D.L.; Joyce, M.A.; Serpe, M.J. Bovine serum albumin-protected gold nanoclusters for sensing of SARS-CoV-2 antibodies and virus. ACS Appl. Mater. Interfaces, 2023, 15(25), 29914-29926.
[http://dx.doi.org/10.1021/acsami.3c03705] [PMID: 37314985]
[57]
Alhalaili, B.; Popescu, I.N.; Kamoun, O.; Alzubi, F.; Alawadhia, S.; Vidu, R. Nanobiosensors for the detection of novel coronavirus 2019-nCoV and other pandemic/epidemic respiratory viruses: A review. Sensors, 2020, 20(22), 6591.
[http://dx.doi.org/10.3390/s20226591] [PMID: 33218097]
[58]
Gao, L.; Teng, Y. Label-free electrochemical biosensors to evaluate the antioxidant effect of tocopherol in ultraviolet radiation. Methods Mol. Biol., 2022, 2343, 241-246.
[59]
Ebrahimi, G.; Samadi Pakchin, P.; Shamloo, A.; Mota, A.; de la Guardia, M.; Omidian, H.; Omidi, Y. Label-free electrochemical microfluidic biosensors: Futuristic point-of-care analytical devices for monitoring diseases. Mikrochim. Acta, 2022, 189(7), 252.
[http://dx.doi.org/10.1007/s00604-022-05316-3] [PMID: 35687204]
[60]
Khristunova, E.; Dorozhko, E.; Korotkova, E.; Kratochvil, B.; Vyskocil, V.; Barek, J. Label-free electrochemical biosensors for the determination of flaviviruses: Dengue, zika, and Japanese encephalitis. Sensors, 2020, 20(16), 4600.
[http://dx.doi.org/10.3390/s20164600] [PMID: 32824351]
[61]
Antiochia, R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Mikrochim. Acta, 2020, 187(12), 639.
[http://dx.doi.org/10.1007/s00604-020-04615-x] [PMID: 33151419]
[62]
Kim, J.G.; Zhang, A.; Rauseo, A.M.; Goss, C.W.; Mudd, P.A.; O’Halloran, J.A.; Wang, L. The salivary and nasopharyngeal microbiomes are associated with SARS-CoV-2 infection and disease severity. J. Med. Virol., 2023, 95(2), e28445.
[http://dx.doi.org/10.1002/jmv.28445] [PMID: 36583481]
[63]
Fajnzylber, J.; Regan, J.; Coxen, K.; Corry, H.; Wong, C.; Rosenthal, A.; Worrall, D.; Giguel, F.; Piechocka-Trocha, A.; Atyeo, C.; Fischinger, S.; Chan, A.; Flaherty, K.T.; Hall, K.; Dougan, M.; Ryan, E.T.; Gillespie, E.; Chishti, R.; Li, Y.; Jilg, N.; Hanidziar, D.; Baron, R.M.; Baden, L.; Tsibris, A.M.; Armstrong, K.A.; Kuritzkes, D.R.; Alter, G.; Walker, B.D.; Yu, X.; Li, J.Z.; Abayneh, B.A.; Allen, P.; Antille, D.; Balazs, A.; Bals, J.; Barbash, M.; Bartsch, Y.; Boucau, J.; Boyce, S.; Braley, J.; Branch, K.; Broderick, K.; Carney, J.; Chevalier, J.; Choudhary, M.C.; Chowdhury, N.; Cordwell, T.; Daley, G.; Davidson, S.; Desjardins, M.; Donahue, L.; Drew, D.; Einkauf, K.; Elizabeth, S.; Elliman, A.; Etemad, B.; Fallon, J.; Fedirko, L.; Finn, K.; Flannery, J.; Forde, P.; Garcia-Broncano, P.; Gettings, E.; Golan, D.; Goodman, K.; Griffin, A.; Grimmel, S.; Grinke, K.; Hartana, C.A.; Healy, M.; Heller, H.; Henault, D.; Holland, G.; Jiang, C.; Jordan, H.; Kaplonek, P.; Karlson, E.W.; Karpell, M.; Kayitesi, C.; Lam, E.C.; LaValle, V.; Lefteri, K.; Lian, X.; Lichterfeld, M.; Lingwood, D.; Liu, H.; Liu, J.; Lopez, K.; Lu, Y.; Luthern, S.; Ly, N.L.; MacGowan, M.; Magispoc, K.; Marchewka, J.; Martino, B.; McNamara, R.; Michell, A.; Millstrom, I.; Miranda, N.; Nambu, C.; Nelson, S.; Noone, M.; Novack, L.; O’Callaghan, C.; Ommerborn, C.; Osborn, M.; Pacheco, L.C.; Phan, N.; Pillai, S.; Porto, F.A.; Rassadkina, Y.; Reissis, A.; Ruzicka, F.; Seiger, K.; Selleck, K.; Sessa, L.; Sharpe, A.; Sharr, C.; Shin, S.; Singh, N.; Slaughenhaupt, S.; Sheppard, K.S.; Sun, W.; Sun, X.; Suschana, E.; Talabi, O.; Ticheli, H.; Weiss, S.T.; Wilson, V.; Zhu, A. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun., 2020, 11(1), 5493.
[http://dx.doi.org/10.1038/s41467-020-19057-5] [PMID: 33127906]
[64]
Han, C.; Duan, C.; Zhang, S.; Spiegel, B.; Shi, H.; Wang, W.; Zhang, L.; Lin, R.; Liu, J.; Ding, Z.; Hou, X. Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am. J. Gastroenterol., 2020, 115(6), 916-923.
[http://dx.doi.org/10.14309/ajg.0000000000000664] [PMID: 32301761]
[65]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[66]
Hashem, A.; Hossain, M.A.M.; Marlinda, A.R.; Mamun, M.A.; Simarani, K.; Johan, M.R. Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: A review. Appl. Surf. Sci. Adv., 2021, 4, 100064.
[http://dx.doi.org/10.1016/j.apsadv.2021.100064]
[67]
Yildiz, G.; Bolton-Warberg, M.; Awaja, F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater., 2021, 131, 62-79.
[http://dx.doi.org/10.1016/j.actbio.2021.06.047] [PMID: 34237423]
[68]
Nano, A.; Furst, A.L.; Hill, M.G.; Barton, J.K. DNA electrochemistry: Charge-transport pathways through DNA films on gold. J. Am. Chem. Soc., 2021, 143(30), 11631-11640.
[http://dx.doi.org/10.1021/jacs.1c04713] [PMID: 34309382]
[69]
Fortunati, S.; Rozzi, A.; Curti, F.; Giannetto, M.; Corradini, R.; Careri, M. Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosens. Bioelectron., 2019, 129, 7-14.
[http://dx.doi.org/10.1016/j.bios.2019.01.020] [PMID: 30682690]
[70]
Shaver, A.; Curtis, S.D.; Arroyo-Currás, N. Alkanethiol monolayer end groups affect the long-term operational stability and signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl. Mater. Interfaces, 2020, 12(9), 11214-11223.
[http://dx.doi.org/10.1021/acsami.9b22385] [PMID: 32040915]
[71]
Ibau, C.; Arshad, M.K.M.; Gopinath, S.C.B.; Nuzaihan, M N, M.; Fathil, M.F.M.; Shamsuddin, S.A. Immunosensing prostate-specific antigen: Faradaic vs. non-Faradaic electrochemical impedance spectroscopy analysis on interdigitated microelectrode device. Int. J. Biol. Macromol., 2020, 162, 1924-1936.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.125] [PMID: 32822729]
[72]
Hatamluyi, B.; Rezayi, M.; Amel Jamehdar, S.; Rizi, K.S.; Mojarrad, M.; Meshkat, Z.; Choobin, H.; Soleimanpour, S.; Boroushaki, M.T. Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens. Bioelectron., 2022, 207, 114209.
[http://dx.doi.org/10.1016/j.bios.2022.114209] [PMID: 35339072]
[73]
Gu, C.; Kong, X.; Liu, X.; Gai, P.; Li, F. Enzymatic biofuel-cell-based self-powered biosensor integrated with DNA amplification strategy for ultrasensitive detection of single-nucleotide polymorphism. Anal. Chem., 2019, 91(13), 8697-8704.
[http://dx.doi.org/10.1021/acs.analchem.9b02510] [PMID: 31247724]
[74]
Chen, J.S.; Chen, P.F.; Lin, H.T.H.; Huang, N.T. A Localized surface plasmon resonance (LSPR) sensor integrated automated microfluidic system for multiplex inflammatory biomarker detection. Analyst, 2020, 145(23), 7654-7661.
[http://dx.doi.org/10.1039/D0AN01201G] [PMID: 32966364]
[75]
Shahvar, A.; Shamsaei, D.; Saraji, M. A portable smartphone-based colorimetric sensor for rapid determination of water content in ethanol. Measurement, 2020, 150, 107068.
[http://dx.doi.org/10.1016/j.measurement.2019.107068]
[76]
D’Cruz, R.J.; Currier, A.W.; Sampson, V.B. Laboratory testing methods for novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Front. Cell Dev. Biol., 2020, 8, 468.
[http://dx.doi.org/10.3389/fcell.2020.00468] [PMID: 32582718]
[77]
Białobrzeska, W.; Ficek, M.; Dec, B.; Osella, S.; Trzaskowski, B.; Jaramillo-Botero, A.; Pierpaoli, M.; Rycewicz, M.; Dashkevich, Y.; Łęga, T.; Malinowska, N.; Cebula, Z.; Bigus, D.; Firganek, D.; Bięga, E.; Dziąbowska, K.; Brodowski, M.; Kowalski, M.; Panasiuk, M.; Gromadzka, B.; Żołędowska, S.; Nidzworski, D.; Pyrć, K.; Goddard, W.A., III; Bogdanowicz, R. Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosens. Bioelectron., 2022, 209, 114222.
[http://dx.doi.org/10.1016/j.bios.2022.114222] [PMID: 35430407]
[78]
Orooji, Y.; Sohrabi, H.; Hemmat, N.; Oroojalian, F.; Baradaran, B.; Mokhtarzadeh, A.; Mohaghegh, M.; Karimi-Maleh, H. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett., 2021, 13(1), 18.
[http://dx.doi.org/10.1007/s40820-020-00533-y] [PMID: 33163530]
[79]
Abdolmaleki, H.; Kidmose, P.; Agarwala, S. Droplet-based techniques for printing of functional inks for flexible physical sensors. Adv. Mater., 2021, 33(20), 2006792.
[http://dx.doi.org/10.1002/adma.202006792] [PMID: 33772919]
[80]
Kim, J.H.; Suh, Y.J.; Park, D.; Yim, H.; Kim, H.; Kim, H.J.; Yoon, D.S.; Hwang, K.S. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed. Eng. Lett., 2021, 11(4), 309-334.
[http://dx.doi.org/10.1007/s13534-021-00204-w] [PMID: 34466275]
[81]
Majdinasab, M.; Daneshi, M.; Louis Marty, J. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta, 2021, 232, 122397.
[http://dx.doi.org/10.1016/j.talanta.2021.122397] [PMID: 34074393]
[82]
Ong, V.; Soleimani, A.; Amirghasemi, F.; Khazaee, N.S.; Abdelmonem, M.; Razaviyayn, M.; Hosseinzadeh, P.; Comai, L.; Mousavi, M.P.S. Impedimetric sensing: An emerging tool for combating the COVID-19 pandemic. Biosensors, 2023, 13(2), 204.
[http://dx.doi.org/10.3390/bios13020204] [PMID: 36831970]
[83]
Crapnell, R.D.; Dempsey, N.C.; Sigley, E.; Tridente, A.; Banks, C.E. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim. Acta, 2022, 189(4), 142.
[http://dx.doi.org/10.1007/s00604-022-05186-9] [PMID: 35279780]
[84]
Rahman, M.M. Progress in electrochemical biosensing of SARS-CoV-2 virus for COVID-19 management. Chemosensors, 2022, 10(7), 287.
[http://dx.doi.org/10.3390/chemosensors10070287]
[85]
Mahshid, S.S.; Flynn, S.E.; Mahshid, S. The potential application of electrochemical biosensors in the COVID-19 pandemic: A perspective on the rapid diagnostics of SARS-CoV-2. Biosens. Bioelectron., 2021, 176, 112905.
[http://dx.doi.org/10.1016/j.bios.2020.112905] [PMID: 33358285]
[86]
Chelly, M.; Chelly, S.; Zribi, R.; Bouaziz-Ketata, H.; Gdoura, R.; Lavanya, N.; Veerapandi, G.; Sekar, C.; Neri, G. Synthesis of silver and gold nanoparticles from rumex roseus plant extract and their application in electrochemical sensors. Nanomaterials, 2021, 11(3), 739.
[http://dx.doi.org/10.3390/nano11030739] [PMID: 33804238]
[87]
Kashefi-Kheyrabadi, L.; Nguyen, H.V.; Go, A.; Baek, C.; Jang, N.; Lee, J.M.; Cho, N.H.; Min, J.; Lee, M.H. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens. Bioelectron., 2022, 195, 113649.
[http://dx.doi.org/10.1016/j.bios.2021.113649] [PMID: 34555637]
[88]
Panda, M.; Kalita, E.; Singh, S.; Kumar, K.; Rao, A.; Prajapati, V.K. MiRNA-SARS-CoV-2 dialogue and prospective anti-COVID-19 therapies. Life Sci., 2022, 305, 120761.
[http://dx.doi.org/10.1016/j.lfs.2022.120761] [PMID: 35787998]
[89]
Song, X.; Fredj, Z.; Zheng, Y.; Zhang, H.; Rong, G.; Bian, S.; Sawan, M. Biosensors for waterborne virus detection: Challenges and strategies. J. Pharm. Anal., 2023, 13(11), 1252-1268.
[http://dx.doi.org/10.1016/j.jpha.2023.08.020]
[90]
Ambaye, A.D.; Kefeni, K.K.; Mishra, S.B.; Nxumalo, E.N.; Ntsendwana, B. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta, 2021, 225, 121951.
[http://dx.doi.org/10.1016/j.talanta.2020.121951] [PMID: 33592706]
[91]
Upan, J.; Youngvises, N.; Tuantranont, A.; Karuwan, C.; Banet, P.; Aubert, P.H.; Jakmunee, J. A simple label-free electrochemical sensor for sensitive detection of alpha-fetoprotein based on specific aptamer immobilized platinum nanoparticles/carboxylated-graphene oxide. Sci. Rep., 2021, 11(1), 13969.
[http://dx.doi.org/10.1038/s41598-021-93399-y] [PMID: 34234187]
[92]
Štukovnik, Z.; Bren, U. Recent developments in electrochemical-impedimetric biosensors for virus detection. Int. J. Mol. Sci., 2022, 23(24), 15922.
[http://dx.doi.org/10.3390/ijms232415922] [PMID: 36555560]
[93]
Rahmati, Z.; Roushani, M.; Hosseini, H.; Choobin, H. Electrochemical immunosensor with Cu2O nanocube coating for detection of SARS-CoV-2 spike protein. Mikrochim. Acta, 2021, 188(3), 105.
[http://dx.doi.org/10.1007/s00604-021-04762-9] [PMID: 33651173]
[94]
Habibi, M.M.; Norouzi, P.; Hashemian, E.; Safarnejad, M.R.; Sajjadi, S.; Keihan, A.H. Development of a sensitive label-free electrochemical immunosensor for detection of chickpea chlorotic dwarf virus. Diamond Related Materials, 2022, 128, 109203.
[http://dx.doi.org/10.1016/j.diamond.2022.109203]
[95]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Label-free and reagent-less electrochemical detection of nucleocapsid protein of SARS-CoV-2: an ultrasensitive and disposable biosensor. New J. Chem., 2022, 46(19), 9172-9183.
[http://dx.doi.org/10.1039/D2NJ00046F]
[96]
Calvo-Lozano, O.; Sierra, M.; Soler, M.; Estévez, M.C.; Chiscano-Camón, L.; Ruiz-Sanmartin, A.; Ruiz-Rodriguez, J.C.; Ferrer, R.; González-López, J.J.; Esperalba, J.; Fernández-Naval, C.; Bueno, L.; López-Aladid, R.; Torres, A.; Fernández-Barat, L.; Attoumani, S.; Charrel, R.; Coutard, B.; Lechuga, L.M. Label-free plasmonic biosensor for rapid, quantitative, and highly sensitive COVID-19 serology: Implementation and clinical validation. Anal. Chem., 2022, 94(2), 975-984.
[http://dx.doi.org/10.1021/acs.analchem.1c03850] [PMID: 34971311]
[97]
Cho, H.; Shim, S.; Cho, W.W.; Cho, S.; Baek, H.; Lee, S.M.; Shin, D.S. Electrochemical impedance-based biosensors for the label-free detection of the nucleocapsid protein from SARS-CoV-2. ACS Sens., 2022, 7(6), 1676-1684.
[http://dx.doi.org/10.1021/acssensors.2c00317] [PMID: 35653260]
[98]
Lasserre, P.; Balansethupathy, B.; Vezza, V.J.; Butterworth, A.; Macdonald, A.; Blair, E.O.; McAteer, L.; Hannah, S.; Ward, A.C.; Hoskisson, P.A.; Longmuir, A.; Setford, S.; Farmer, E.C.W.; Murphy, M.E.; Flynn, H.; Corrigan, D.K. SARS-CoV-2 aptasensors based on electrochemical impedance spectroscopy and low-cost gold electrode substrates. Anal. Chem., 2022, 94(4), 2126-2133.
[http://dx.doi.org/10.1021/acs.analchem.1c04456] [PMID: 35043638]
[99]
Liu, B.M.; Martins, T.B.; Peterson, L.K.; Hill, H.R. Clinical significance of measuring serum cytokine levels as inflammatory biomarkers in adult and pediatric COVID-19 cases: A review. Cytokine, 2021, 142, 155478.
[http://dx.doi.org/10.1016/j.cyto.2021.155478] [PMID: 33667962]
[100]
Ong, D.S.Y.; Fragkou, P.C.; Schweitzer, V.A.; Chemaly, R.F.; Moschopoulos, C.D.; Skevaki, C. How to interpret and use COVID-19 serology and immunology tests. Clin. Microbiol. Infect., 2021, 27(7), 981-986.
[http://dx.doi.org/10.1016/j.cmi.2021.05.001] [PMID: 33975005]
[101]
Özçürümez, M.K.; Ambrosch, A.; Frey, O.; Haselmann, V.; Holdenrieder, S.; Kiehntopf, M.; Neumaier, M.; Walter, M.; Wenzel, F.; Wölfel, R.; Renz, H. SARS-CoV-2 antibody testing—questions to be asked. J. Allergy Clin. Immunol., 2020, 146(1), 35-43.
[http://dx.doi.org/10.1016/j.jaci.2020.05.020] [PMID: 32479758]
[102]
Crapnell, R.D.; Dempsey-Hibbert, N.C.; Peeters, M.; Tridente, A.; Banks, C.E. Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open, 2020, 2, 100018.
[http://dx.doi.org/10.1016/j.talo.2020.100018]
[103]
Luong, A.D.; Buzid, A.; Vashist, S.K.; Luong, J.H.T. Perspectives on electrochemical biosensing of COVID-19. Curr. Opin. Electrochem., 2021, 30, 100794.
[http://dx.doi.org/10.1016/j.coelec.2021.100794] [PMID: 34250313]
[104]
Mahmoudpour, M.; Nazhad Dolatabadi, J.E.; Hasanzadeh, M.; Rad, A.H.; Torbati, M.; Seidi, F. Aptasensing of ciprofloxacin residue using graphene oxide modified with gold nanoparticles and branched polyethyleneimine. RSC Advances, 2022, 12(46), 29602-29612.
[http://dx.doi.org/10.1039/D2RA02761E] [PMID: 36321082]
[105]
Liu, H.; Dai, E.; Xiao, R.; Zhou, Z.; Zhang, M.; Bai, Z.; Shao, Y.; Qi, K.; Tu, J.; Wang, C.; Wang, S. Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sens. Actuators B Chem., 2021, 329, 129196.
[http://dx.doi.org/10.1016/j.snb.2020.129196] [PMID: 33230369]
[106]
Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron., 2021, 176, 112912.
[http://dx.doi.org/10.1016/j.bios.2020.112912] [PMID: 33358057]
[107]
Wu, Z.; Wang, C.; Liu, B.; Liang, C.; Lu, J.; Li, J.; Tang, X.; Li, C.; Li, T. Smartphone-based high-throughput fiber-integrated immunosensing system for point-of-care testing of the SARS-CoV-2 nucleocapsid protein. ACS Sens., 2022, 7(7), 1985-1995.
[http://dx.doi.org/10.1021/acssensors.2c00754] [PMID: 35766020]
[108]
Menon, S.; Mathew, M.R.; Sam, S.; Keerthi, K.; Kumar, K.G. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J. Electroanal. Chem., 2020, 878, 114596.
[http://dx.doi.org/10.1016/j.jelechem.2020.114596] [PMID: 32863810]
[109]
Liu, M.; Yue, F.; Kong, Q.; Liu, Z.; Guo, Y.; Sun, X. Aptamers against pathogenic bacteria: Selection strategies and apta-assay/aptasensor application for food safety. J. Agric. Food Chem., 2022, 70(18), 5477-5498.
[http://dx.doi.org/10.1021/acs.jafc.2c01547] [PMID: 35471004]
[110]
Chakraborty, D.; Ghosh, D.; Kumar, S.; Jenkins, D.; Chandrasekaran, N.; Mukherjee, A. Nano-diagnostics as an emerging platform for oral cancer detection: Current and emerging trends. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(1), e1830.
[http://dx.doi.org/10.1002/wnan.1830] [PMID: 35811418]
[111]
Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev., 2022, 453, 214305.
[http://dx.doi.org/10.1016/j.ccr.2021.214305]
[112]
Choi, J.R. Development of point-of-care biosensors for COVID-19. Front Chem., 2020, 8, 517.
[http://dx.doi.org/10.3389/fchem.2020.00517] [PMID: 32574316]
[113]
Beck, F.; Loessl, M.; Baeumner, A.J. Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Mikrochim. Acta, 2023, 190(3), 91.
[http://dx.doi.org/10.1007/s00604-023-05666-6] [PMID: 36790481]
[114]
Benjamin, S.; de Lima, F.; Nascimento, V.; de Andrade, G.; Oriá, R. Advancement in paper-based electrochemical biosensing and emerging diagnostic methods. Biosensors, 2023, 13(7), 689.
[http://dx.doi.org/10.3390/bios13070689] [PMID: 37504088]
[115]
Roy, L.; Buragohain, P.; Borse, V. Strategies for sensitivity enhancement of point-of-care devices. Biosens. Bioelectron., 2022, 10, 100098.
[116]
Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater., 2019, 31(30), 1806739.
[http://dx.doi.org/10.1002/adma.201806739] [PMID: 31094032]
[117]
Futane, A.; Narayanamurthy, V.; Jadhav, P.; Srinivasan, A. Aptamer-based rapid diagnosis for point-of-care application. Microfluid. Nanofluidics, 2023, 27(2), 15.
[http://dx.doi.org/10.1007/s10404-022-02622-3] [PMID: 36688097]
[118]
Yan, T.; Zhang, G.; Chai, H.; Qu, L.; Zhang, X. Flexible biosensors based on colorimetry, fluorescence, and electrochemistry for point-of-care testing. Front. Bioeng. Biotechnol., 2021, 9, 753692.
[http://dx.doi.org/10.3389/fbioe.2021.753692] [PMID: 34650963]
[119]
Ali, M.A.; Hu, C.; Zhang, F.; Jahan, S.; Yuan, B.; Saleh, M.S.; Gao, S-J.; Panat, R. N protein-based ultrasensitive SARS-CoV-2 antibody detection in seconds via 3D nanoprinted, microarchitected array electrodes. J. Med. Virol., 2022, 94, 20672078.
[120]
Ali, M.A.; Hu, C.; Jahan, S.; Yuan, B.; Saleh, M.S.; Ju, E.; Gao, S-J.; Panat, R. Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Adv. Mater., 2021, 33, 2006647.
[121]
Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M.C. Optical biosensors for label-free detection of small molecules. Sensors, 2018, 18, 4126.