Preparation, Swelling, and Drug Release Studies of Chitosan-based Hydrogels for Controlled Delivery of Buspirone Hydrochloride

Page: [1867 - 1874] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Buspirone is used for the management of depression and anxiety disorders. Due to its short half-life and low bioavailability, it requires multiple daily doses and is associated with some side effects.

Aim: This study aimed to develop chitosan-based hydrogels as drug-controlled release carriers.

Objective: The objective of this study is to prepare chitosan-based hydrogels as controlled release carriers in order to overcome the side effects of buspirone HCl and improve patients' compliance and their life quality.

Methods: Polymer chitosan was polymerized with two monomers, acrylic acid and itaconic acid, to synthesize pH-sensitive hydrogel. The Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis were performed to confirm the structure formation and thermal stability. Water penetration capability and loading of the drug were performed by porosity and drug loading studies. The swelling and dissolution tests were performed to analyze the pH-sensitive nature of the developed hydrogels.

Results: FTIR, TGA, and DSC demonstrated that the chitosan-based hydrogels were successfully prepared. An increase in water penetration and drug loading into the hydrogel network was seen with the high incorporation of chitosan, acrylic acid, and itaconic acid. The swelling and dissolution studies revealed that prepared hydrogel offered the greatest swelling and drug release at a high pH of 7.4. The swelling and drug release from the hydrogel were affected by the concentrations of the incorporated contents. A controlled release of the drug was achieved by using chitosan-based hydrogel as a delivery carrier compared to commercial tablets of buspirone.

Conclusion: The results showed that the developed chitosan-based hydrogel can be considered one of the most suitable drug carrier systems for the controlled delivery of buspirone.

Graphical Abstract

[1]
Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev., 2001, 101(7), 1869-1880.
[http://dx.doi.org/10.1021/cr000108x] [PMID: 11710233]
[2]
Guo, Y.; Bae, J.; Zhao, F.; Yu, G. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem., 2019, 1(3), 335-348.
[http://dx.doi.org/10.1016/j.trechm.2019.03.005]
[3]
Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev., 2020, 120(15), 7642-7707.
[http://dx.doi.org/10.1021/acs.chemrev.0c00345] [PMID: 32639747]
[4]
Jajoo, H.K.; Mayol, R.F.; LaBudde, J.A.; Blair, I.A. Metabolism of the antianxiety drug buspirone in human subjects. Drug Metab. Dispos., 1989, 17(6), 634-640.
[PMID: 2575499]
[5]
Mayol, R.; Adamson, D.; Gammans, R.; LaBudde, J. Pharmacokinetics and disposition of C-14 buspirone HCl after intravenous and oral dosing in man. In: Clinical Pharmacology & Therapeutics; MOSBY-YEAR BOOK INC, 1985.
[6]
Caccia, S.; Vigano, G.L.; Mingardi, G.; Garattini, S.; Gammans, R.E.; Placchi, M.; Mayol, R.F.; Pfeffer, M. Clinical pharmacokinetics of oral buspirone in patients with impaired renal function. Clin. Pharmacokinet., 1988, 14(3), 171-177.
[http://dx.doi.org/10.2165/00003088-198814030-00005] [PMID: 3370902]
[7]
Gammans, R.E.; Mayol, R.F.; Labudde, J.A. Metabolism and disposition of buspirone. Am. J. Med., 1986, 80(3), 41-51.
[http://dx.doi.org/10.1016/0002-9343(86)90331-1] [PMID: 3515929]
[8]
Caccia, S.; Conti, I.; Viganò, G.; Garattini, S. 1-(2-Pyrimidinyl)-piperazine as active metabolite of buspirone in man and rat. Pharmacology, 1986, 33(1), 46-51.
[http://dx.doi.org/10.1159/000138199] [PMID: 2874572]
[9]
Sakr, A.; Andheria, M. Pharmacokinetics of buspirone extended-release tablets: A single-dose study. J. Clin. Pharmacol., 2001, 41(7), 783-789.
[http://dx.doi.org/10.1177/00912700122010582] [PMID: 11452712]
[10]
Suhail, M.; Liu, J.Y.; Hung, M.C.; Chiu, I.H.; Minhas, M.U.; Wu, P.C. Preparation, in vitrocharacterization, and cytotoxicity evaluation of polymeric ph-responsive hydrogels for controlled drug release. Pharmaceutics, 2022, 14(9), 1864.
[http://dx.doi.org/10.3390/pharmaceutics14091864] [PMID: 36145612]
[11]
Ullah, K.; Ali Khan, S.; Murtaza, G.; Sohail, M. Azizullah; Manan, A.; Afzal, A. Gelatin-based hydrogels as potential biomaterials for colonic delivery of oxaliplatin. Int. J. Pharm., 2019, 556, 236-245.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.020] [PMID: 30553956]
[12]
Zia, M.A.; Sohail, M.; Minhas, M.U.; Sarfraz, R.M.; Khan, S.; de Matas, M.; Hussain, Z.; Abbasi, M.; Shah, S.A.; Kousar, M.; Ahmad, N. HEMA based pH-sensitive semi IPN microgels for oral delivery; a rationale approach for ketoprofen. Drug Dev. Ind. Pharm., 2020, 46(2), 272-282.
[http://dx.doi.org/10.1080/03639045.2020.1716378] [PMID: 31928342]
[13]
Ijaz, H.; Tulain, U.R.; Azam, F.; Qureshi, J. Thiolation of arabinoxylan and its application in the fabrication of pH-sensitive thiolated arabinoxylan grafted acrylic acid copolymer. Drug Dev. Ind. Pharm., 2019, 45(5), 754-766.
[http://dx.doi.org/10.1080/03639045.2019.1569041] [PMID: 30640559]
[14]
Khan, S.; Ranjha, N.M. Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels. Polym. Bull., 2014, 71(8), 2133-2158.
[http://dx.doi.org/10.1007/s00289-014-1178-2]
[15]
Tsai, Y.H.; Chang, J.T.; Chang, J.S.; Huang, C.T.; Huang, Y.B.; Wu, P.C. The effect of component of microemulsions on transdermal delivery of buspirone hydrochloride. J. Pharm. Sci-Us, 2011, 100(6), 2358-2365.
[http://dx.doi.org/10.1002/jps.22474]
[16]
Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm., 1989, 57(2), 169-172.
[http://dx.doi.org/10.1016/0378-5173(89)90306-2]
[17]
Guinesi, L.S.; E.T.G., Cavalheiro 2006 The use of dsc curves to determine the acetylation degree of chitin/chitosan samples. Thermochim. Acta, 2006, 444(2), 128-133.
[http://dx.doi.org/10.1016/j.tca.2006.03.003]
[18]
Khan, M.Z.U.; Makreski, P.; Murtaza, G. Preparation, optimization, in vitroevaluation and ex vivo permeation studies of finasteride loaded gel formulations prepared by using response surface methodology. Curr. Drug Deliv., 2018, 15(9), 1312-1322.
[http://dx.doi.org/10.2174/1567201815666180502165436] [PMID: 29732987]
[19]
Gatiganti, D.L.; Srimathkandala, M.H.; Ananthula, M.B.; Bakshi, V. Formulation and evaluation of oral natural polysaccharide hydrogel microbeads of Irbesartan. Anal. Chem. Lett., 2016, 6(4), 334-344.
[http://dx.doi.org/10.1080/22297928.2016.1209427]
[20]
Ge, H.; Hua, T.; Wang, J. Preparation and characterization of poly (itaconic acid)-grafted crosslinked chitosan nanoadsorbent for high uptake of Hg2+ and Pb2+. Int. J. Biol. Macromol., 2017, 95, 954-961.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.084] [PMID: 27793682]
[21]
Betancourt, T.; Pardo, J.; Soo, K.; Peppas, N.A. Characterization of pH‐responsive hydrogels of poly(itaconic acid‐ g ‐ethylene glycol) prepared by UV‐initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J. Biomed. Mater. Res. A, 2010, 93A(1), 175-188.
[http://dx.doi.org/10.1002/jbm.a.32510] [PMID: 19536838]
[22]
Azmi, S.; Al-Ghafri, L.T.; Al-Ghafri, S.S.; Al-Haribi, M.M. Determination of buspirone HCL in commercial dosage forms by extractive spectrophotometric method and comparison by HPLC method. Sci. J. Analyt. Chem., 2015, 3(6), 91.
[http://dx.doi.org/10.11648/j.sjac.20150306.13]
[23]
Ahmad, S.; Minhas, M.U.; Ahmad, M.; Sohail, M.; Abdullah, O.; Badshah, S.F. Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes. AAPS PharmSciTech, 2018, 19(7), 3199-3209.
[http://dx.doi.org/10.1208/s12249-018-1131-z] [PMID: 30171450]
[24]
Briehl, H.; Butenuth, J. Application of DTA/DSC and TG for studying chemical reactions of monomeric organic compounds. Thermochim. Acta, 1990, 167(2), 249-292.
[http://dx.doi.org/10.1016/0040-6031(90)80482-E]
[25]
Kalagasidis Krušić, M.; Džunuzović, E.; Trifunović, S.; Filipović, J. Polyacrylamide and poly(itaconic acid) complexes. Eur. Polym. J., 2004, 40(4), 793-798.
[http://dx.doi.org/10.1016/j.eurpolymj.2003.11.016]
[26]
Singh, B.; Dhiman, A. Functionalization of carbopol with NVP for designing antibiotic drug loaded hydrogel dressings for better wound management. J. Pharmaceut. Biopharmaceut. Res., 2019, 1(1), 1-14.
[http://dx.doi.org/10.25082/JPBR.2019.01.001]
[27]
Coşkun, R.; Soykan, C.; Delibaş, A. Study of free-radical copolymerization of itaconic acid/2-acrylamido-2-methyl-1-propanesulfonic acid and their metal chelates. Eur. Polym. J., 2006, 42(3), 625-637.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.08.018]
[28]
Wei, W.; Hu, X.; Qi, X.; Yu, H.; Liu, Y.; Li, J.; Zhang, J.; Dong, W. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization. Colloids Surf. B Biointerfaces, 2015, 125, 1-11.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.057] [PMID: 25460596]
[29]
Hu, X.; Feng, L.; Wei, W.; Xie, A.; Wang, S.; Zhang, J.; Dong, W. Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate). Carbohydr. Polym., 2014, 105, 135-144.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.051] [PMID: 24708962]
[30]
Ray, M.; Pal, K.; Anis, A.; Banthia, A.K. Development and characterization of chitosan-based polymeric hydrogel membranes. Des. Monomers Polym., 2010, 13(3), 193-206.
[http://dx.doi.org/10.1163/138577210X12634696333479]
[31]
Jo, S.; Kim, S.; Noh, I. Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol. Res., 2012, 20(9), 968-976.
[http://dx.doi.org/10.1007/s13233-012-0138-7]
[32]
Hu, X.; Wang, Y.; Zhang, L.; Xu, M.; Dong, W.; Zhang, J. Redox/pH dual stimuli-responsive degradable Salecan-g-SS-poly(IAco-HEMA) hydrogel for release of doxorubicin. Carbohydr. Polym., 2017, 155, 242-251.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.077] [PMID: 27702509]
[33]
Lee, C.T.; Huang, C.P.; Lee, Y.D. Synthesis and characterizations of amphiphilic poly(l-lactide)-grafted chondroitin sulfate copolymer and its application as drug carrier. Biomol. Eng., 2007, 24(1), 131-139.
[http://dx.doi.org/10.1016/j.bioeng.2006.05.010] [PMID: 16835016]
[34]
Khalid, I.; Ahmad, M.; Minhas, M.; Barkat, K. Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers. Carbohydr. Polym., 2018, 181, 1169-1179.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.092] [PMID: 29253946]
[35]
Sarika, P.R.; James, N.R.; Raj, D.K. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehydegelatin nanogels. Mater. Sci. Eng. C, 2016, 68, 251-257.
[http://dx.doi.org/10.1016/j.msec.2016.05.046] [PMID: 27524019]
[36]
Murthy, P.S.K.; Mohan, Y.M.; Sreeramulu, J.; Raju, K.M. Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation. React. Funct. Polym., 2006, 66(12), 1482-1493.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2006.04.010]
[37]
Malik, N.S.; Ahmad, M.; Minhas, M.U.; Tulain, R.; Barkat, K.; Khalid, I.; Khalid, Q. Chitosan/xanthan gum based hydrogels as potential carrier for an antiviral drug: Fabrication, characterization, and safety evaluation. Front Chem., 2020, 8, 50.
[http://dx.doi.org/10.3389/fchem.2020.00050] [PMID: 32117876]
[38]
Hussain, A.; Khalid, S.H.; Qadir, M.I.; Massud, A.; Ali, M.; Khan, I.U.; Saleem, M.; Iqbal, M.S.; Asghar, S.; Gul, H. Water uptake and drug release behaviour of methyl methacrylateco-itaconic acid [P(MMA/IA)] hydrogels cross-linked with methylene bisacrylamide. J. Drug Deliv. Sci. Technol., 2011, 21(3), 249-255.
[http://dx.doi.org/10.1016/S1773-2247(11)50034-6]
[39]
Bukhari, S.M.H.; Khan, S.; Rehanullah, M.; Ranjha, N.M. Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: Effect of pH and composition on swelling and drug release. Int. J. Polym. Sci., 2015, 2015, 1-15.
[http://dx.doi.org/10.1155/2015/187961]
[40]
Lim, S.L.; Tang, W.N.H.; Ooi, C.W.; Chan, E.S.; Tey, B.T. Rapid swelling and deswelling of semi‐interpenetrating network poly (acrylic acid)/poly(aspartic acid) hydrogels prepared by freezing polymerization. J. Appl. Polym. Sci., 2016, 133(24), 43515.
[http://dx.doi.org/10.1002/app.43515]
[41]
Shoaib, M.H.; Tazeen, J.; Merchant, H.A.; Yousuf, R.I. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak. J. Pharm. Sci., 2006, 19(2), 119-124.
[PMID: 16751122]
[42]
Maziad, N.A. Radiation preparation of smart hydrogel has antimicrobial properties for controlled release of ciprofloxacin in drug delivery systems. Drug Deliv., 2015, 14, 15.