JHD205, A Novel Abemaciclib Derivative, Exerts Antitumor Effects on Breast Cancer by CDK4/6

Page: [400 - 411] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Efficient targeted molecular therapeutics are needed for the treatment of triple-negative breast cancer (TNBC), a highly invasive and difficult-to-treat form of breast cancer associated with a poor prognosis.

Objectives: This study aims to evaluate the potential of selective CDK4/6 inhibitors as a therapeutic option for TNBC by impairing the cell cycle G1 phase through the inhibition of retinoblastoma protein (Rb) phosphorylation.

Methods: In this study, we synthesized a compound called JHD205, derived from the chemical structure of Abemaciclib, and examined its inhibitory effects on the malignant characteristics of TNBC cells.

Results: Our results demonstrated that JHD205 exhibited superior tumor growth inhibition compared to Abemaciclib in breast cancer xenograft chicken embryo models. Western blot analysis revealed that JHD205 could dosedependently degrade CDK4 and CDK6 while also causing abnormal changes in other proteins associated with CDK4/6, such as p-Rb, Rb, and E2F1. Moreover, JHD205 induced apoptosis and DNA damage and inhibited DNA repair by upregulating Caspase3 and p-H2AX protein levels.

Conclusion: Collectively, our findings suggest that JHD205 holds promise as a potential treatment for breast carcinoma.

Graphical Abstract

[1]
Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2020, 70(4), 313.
[http://dx.doi.org/10.3322/caac.21609] [PMID: 32767693]
[2]
Ryu, D.W.; Jung, M.J.; Choi, W.S.; Lee, C.H. Clinical significance of morphologic characteristics in triple negative breast cancer. J. Korean Surg. Soc., 2011, 80(5), 301-306.
[http://dx.doi.org/10.4174/jkss.2011.80.5.301] [PMID: 22066052]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[4]
Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in TNBC. Cancers, 2020, 12(4), 916.
[http://dx.doi.org/10.3390/cancers12040916] [PMID: 32276534]
[5]
Ji, J.; Liu, W.; Xu, Y.; Xu, Z.; Lv, M.; Feng, J.; Lv, J.; He, X.; Zhang, Z.; Xie, M.; Jing, A.; Wang, X.; Ma, J.; Liu, B. WXJ-202, a novel Ribociclib derivative, exerts antitumor effects against breast cancer through CDK4/6. Front. Pharmacol., 2023, 13, 1072194.
[http://dx.doi.org/10.3389/fphar.2022.1072194] [PMID: 36744210]
[6]
Dickson, M.A. Molecular pathways: CDK4 inhibitors for cancer therapy. Clin. Cancer Res., 2014, 20(13), 3379-3383.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1551] [PMID: 24795392]
[7]
Spring, L.M.; Wander, S.A.; Zangardi, M.; Bardia, A. CDK 4/6 inhibitors in breast cancer: Current controversies and future directions. Curr. Oncol. Rep., 2019, 21(3), 25.
[http://dx.doi.org/10.1007/s11912-019-0769-3] [PMID: 30806829]
[8]
Burkhart, D.L.; Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer, 2008, 8(9), 671-682.
[http://dx.doi.org/10.1038/nrc2399] [PMID: 18650841]
[9]
Witkiewicz, A.K.; Ertel, A.; McFalls, J.; Valsecchi, M.E.; Schwartz, G.; Knudsen, E.S. RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer. Clin. Cancer Res., 2012, 18(18), 5110-5122.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0903] [PMID: 22811582]
[10]
Witkiewicz, A.K.; Balaji, U.; Eslinger, C.; McMillan, E.; Conway, W.; Posner, B.; Mills, G.B.; O’Reilly, E.M.; Knudsen, E.S. Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer. Cell Rep., 2016, 16(7), 2017-2031.
[http://dx.doi.org/10.1016/j.celrep.2016.07.023] [PMID: 27498862]
[11]
Nebenfuehr, S.; Kollmann, K.; Sexl, V. The role of CDK6 in cancer. Int. J. Cancer, 2020, 147(11), 2988-2995.
[http://dx.doi.org/10.1002/ijc.33054] [PMID: 32406095]
[12]
Goel, S.; Bergholz, J.S.; Zhao, J.J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer, 2022, 22(6), 356-372.
[http://dx.doi.org/10.1038/s41568-022-00456-3] [PMID: 35304604]
[13]
Khleif, S.N.; DeGregori, J.; Yee, C.L.; Otterson, G.A.; Kaye, F.J.; Nevins, J.R.; Howley, P.M. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc. Natl. Acad. Sci. USA, 1996, 93(9), 4350-4354.
[http://dx.doi.org/10.1073/pnas.93.9.4350] [PMID: 8633069]
[14]
Slamon, D.J.; Neven, P.; Chia, S.; Jerusalem, G.; De Laurentiis, M. Im, S.; Petrakova, K.; Valeria Bianchi, G.; Martín, M.; Nusch, A.; Sonke, G.S.; De la Cruz-Merino, L.; Beck, J.T.; Ji, Y.; Wang, C.; Deore, U.; Chakravartty, A.; Zarate, J.P.; Taran, T.; Fasching, P.A. Ribociclib plus fulvestrant for postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in the phase III randomized MONALEESA-3 trial: updated overall survival. Ann. Oncol., 2021, 32(8), 1015-1024.
[http://dx.doi.org/10.1016/j.annonc.2021.05.353] [PMID: 34102253]
[15]
Slamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M. Im, S.A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; Nusch, A.; Sonke, G.S.; De la Cruz-Merino, L.; Beck, J.T.; Pivot, X.; Vidam, G.; Wang, Y.; Rodriguez Lorenc, K.; Miller, M.; Taran, T.; Jerusalem, G. Phase III randomized study of Ribociclib and Fulvestrant in hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: MONALEESA-3. J. Clin. Oncol., 2018, 36(24), 2465-2472.
[http://dx.doi.org/10.1200/JCO.2018.78.9909] [PMID: 29860922]
[16]
Sledge, G.W., Jr; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; Koh, H.; Grischke, E.M.; Frenzel, M.; Lin, Y.; Barriga, S.; Smith, I.C.; Bourayou, N.; Llombart-Cussac, A. MONARCH 2: Abemaciclib in combination with fulvestrant in women With HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol., 2017, 35(25), 2875-2884.
[http://dx.doi.org/10.1200/JCO.2017.73.7585] [PMID: 28580882]
[17]
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[18]
Asghar, U.S.; Barr, A.R.; Cutts, R.; Beaney, M.; Babina, I.; Sampath, D.; Giltnane, J.; Lacap, J.A.; Crocker, L.; Young, A.; Pearson, A.; Herrera-Abreu, M.T.; Bakal, C.; Turner, N.C. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin. Cancer Res., 2017, 23(18), 5561-5572.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0369] [PMID: 28606920]
[19]
Bosco, E.E.; Knudsen, E.S. RB in breast cancer: At the crossroads of tumorigenesis and treatment. Cell Cycle, 2007, 6(6), 667-671.
[http://dx.doi.org/10.4161/cc.6.6.3988] [PMID: 17361100]
[20]
Weintraub, S.J.; Prater, C.A.; Dean, D.C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature, 1992, 358(6383), 259-261.
[http://dx.doi.org/10.1038/358259a0] [PMID: 1321348]
[21]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[22]
Gao, X.; Leone, G.W.; Wang, H. Cyclin D-CDK4/6 functions in cancer. Adv. Cancer Res., 2020, 148, 147-169.
[http://dx.doi.org/10.1016/bs.acr.2020.02.002] [PMID: 32723562]
[23]
Nebenfuehr, S.; Bellutti, F.; Sexl, V. Cdk6: At the interface of Rb and p53. Mol. Cell. Oncol., 2018, 5(5), e1511206.
[http://dx.doi.org/10.1080/23723556.2018.1511206] [PMID: 30263948]
[24]
Liao, C.C.; Tsai, C.Y.; Chang, W.C.; Lee, W.H.; Wang, J.M. RBE2F1 complex mediates DNA damage responses through transcriptional regulation of ZBRK1. J. Biol. Chem., 2010, 285(43), 33134-33143.
[http://dx.doi.org/10.1074/jbc.M110.143461] [PMID: 20713352]
[25]
Cretella, D.; Fumarola, C.; Bonelli, M.; Alfieri, R.; La Monica, S.; Digiacomo, G.; Cavazzoni, A.; Galetti, M.; Generali, D.; Petronini, P.G. Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells. Sci. Rep., 2019, 9(1), 13014.
[http://dx.doi.org/10.1038/s41598-019-49484-4] [PMID: 31506466]
[26]
Roos, W.P.; Thomas, A.D.; Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer, 2016, 16(1), 20-33.
[http://dx.doi.org/10.1038/nrc.2015.2] [PMID: 26678314]
[27]
Wang, Y.; Luo, W.; Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair, 2019, 81, 102651.
[http://dx.doi.org/10.1016/j.dnarep.2019.102651] [PMID: 31302005]
[28]
Vaitsiankova, A.; Burdova, K.; Sobol, M.; Gautam, A.; Benada, O.; Hanzlikova, H.; Caldecott, K.W. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol., 2022, 29(4), 329-338.
[http://dx.doi.org/10.1038/s41594-022-00747-1] [PMID: 35332322]
[29]
Lei, S.; Ge, F.; Lin, M.; Wang, X.; Shen, J.; Yang, Y.; Deng, J.; Wang, Z.; Wang, J.; Li, K. PARP inhibitors diminish DNA damage repair for the enhancement of tumor photodynamic therapy. Photodiagn. Photodyn. Ther., 2022, 40, 103058.
[http://dx.doi.org/10.1016/j.pdpdt.2022.103058] [PMID: 35944846]
[30]
Huang, P.; Chen, G.; Jin, W.; Mao, K.; Wan, H.; He, Y. Molecular mechanisms of parthanatos and its role in diverse diseases. Int. J. Mol. Sci., 2022, 23(13), 7292.
[http://dx.doi.org/10.3390/ijms23137292] [PMID: 35806303]
[31]
Burma, S.; Chen, B.P.; Murphy, M.; Kurimasa, A.; Chen, D.J. ATM phosphorylates histone H2AX in response to DNA doublestrand breaks. J. Biol. Chem., 2001, 276(45), 42462-42467.
[http://dx.doi.org/10.1074/jbc.C100466200] [PMID: 11571274]
[32]
Dean, J.L.; McClendon, A.K.; Knudsen, E.S. Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J. Biol. Chem., 2012, 287(34), 29075-29087.
[http://dx.doi.org/10.1074/jbc.M112.365494] [PMID: 22733811]
[33]
Salvador-Barbero, B.; Alvarez-Fernández, M.; Zapatero-Solana, E.; El Bakkali, A.; Menéndez, M.C.; López-Casas, P.P.; Di Domenico, T.; Xie, T.; VanArsdale, T.; Shields, D.J.; Hidalgo, M.; Malumbres, M. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. Cancer Cell, 2020, 38(4), 584.
[http://dx.doi.org/10.1016/j.ccell.2020.09.012] [PMID: 33049208]
[34]
Crozier, L.; Foy, R.; Mouery, B.L.; Whitaker, R.H.; Corno, A.; Spanos, C.; Ly, T.; Gowen Cook, J.; Saurin, A.T. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J., 2022, 41(6), e108599.
[http://dx.doi.org/10.15252/embj.2021108599] [PMID: 35037284]
[35]
Zhu, X.; Chen, L.; Huang, B.; Li, X.; Yang, L.; Hu, X.; Jiang, Y.; Shao, Z.; Wang, Z. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 122.
[http://dx.doi.org/10.1186/s13046-021-01930-w] [PMID: 33832512]