Performance of Iron Phosphate Glass Containing Various Heavy Metal Oxides for Particulate Nuclear Radiation Shielding

Page: [247 - 256] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Employees may be exposed to different kinds of ionizing radiation at work. When ionizing radiation interacts with human cells, it can cause damage to the cells and genetic material. Therefore, one of the scientists' primary objectives has always been to create the best radiation-shielding materials. Glass could offer promising shielding material resulting from the high flexibility of composition, simplicity of production, and good thermal stability.

Materials and Methods: The melt-quenching technique was used to create a glass having the following formula: 50% P2O5+20% Na2O+20% Fe2O3+10% X, where X = As2O3, SrO, BaO, CdO, and Sb2O3 mol %. The impact of the different heavy metal additions on the structure of the glass networks was studied using FTIR spectroscopy. Glass's ability to attenuate neutrons and/or charged particles has been theoretically investigated. The performance of the developed glass as a shield was examined by a comparison against commercial glass (RS 253 G18), ordinary concrete (OC), and water (H2O).

Results: For charged particle radiations (Electrons, Protons, and Alpha), the shielding parameters like the mass stopping power, the projected range, and the effective atomic number were evaluated, where S5/Sb glass achieves the best performance. In the case of Neutrons, the results values reveal that S3/Ba glass ( ΣR = 0.105) is the best-modified glass for neutron shielding.

Conclusion: Among all the investigated glasses, S5/Sb glass composition has a smaller range and provides superior protection against charged particles. In contrast, the S3/Ba glass composition is a superior choice for shielding against neutron radiation.

Graphical Abstract

[1]
Obaid, S.S.; Gaikwad, D.K.; Pawar, P.P. Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem., 2018, 144, 356-360.
[http://dx.doi.org/10.1016/j.radphyschem.2017.09.022]
[2]
Abdelgawad, K.R.M.; Ahmed, G.S.M.; Farag, A.T.M.; Bendary, A.A.; Salem, S.M.; Tartor, B.A.; Bashter, I.I. Structure and gamma-ray attenuation capabilities for eco-friendly transparent glass system prepared from rice straw ash. Prog. Nucl. Energy, 2023, 158, 104586.
[http://dx.doi.org/10.1016/j.pnucene.2023.104586]
[3]
Blachowicz, T.; Ehrmann, A. Shielding of cosmic radiation by fibrous materials. Fibers, 2021, 9(10), 60.
[http://dx.doi.org/10.3390/fib9100060]
[4]
Zakaly, H.M.H.; Tekin, H.O.; Issa, S.A.M.; Henaish, A.M.A.; Ahmed, E.M.; Rammah, Y.S. Fabrication, physical, structure characteristics, neutron and radiation shielding capacity of high-density neodymio-cadmium lead-borate glasses: Nd2O3/CdO/PbO/B2O3/ Na2O. Appl. Phys., A Mater. Sci. Process., 2022, 128(7), 551.
[http://dx.doi.org/10.1007/s00339-022-05689-5]
[5]
Singh, H.; Singh, K.; Gerward, L.; Singh, K.; Sahota, H.S.; Nathuram, R. ZnO–PbO–B2O3 glasses as gamma-ray shielding materials. Nucl. Instrum. Methods Phys. Res. B, 2003, 207(3), 257-262.
[http://dx.doi.org/10.1016/S0168-583X(03)00462-2]
[6]
Sayyed, M.I. Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd., 2016, 688, 111-117.
[http://dx.doi.org/10.1016/j.jallcom.2016.07.153]
[7]
Sayyed, M. I. Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions Can. J. Phys., 2016, 94(11), 1133.
[http://dx.doi.org/10.1139/cjp-2016-0330]
[8]
Greaves, G.N.; Gurman, S.J.; Gladden, L.F.; Spence, C.A.; Cox, P.; Sales, B.C.; Boatner, L.A.; Jenkins, R.N. A structural basis for the corrosion resistance of lead-iron-phosphate glasses: An X-ray absorption spectroscopy study. Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 1988, 58(3), 271-283.
[http://dx.doi.org/10.1080/13642818808208469]
[9]
Yonphan, S.; Chaiphaksa, W.; Kalkornsurapranee, E.; Tuljittraporn, A.; Kothan, S.; Kaewjaeng, S.; Intachai, N.; Wongdamnern, N.; Kedkaew, C.; Kim, H.J.; Kaewkhao, J. Development of flexible radiation shielding materials from natural Rubber/Sb2O3 composites. Radiat. Phys. Chem., 2022, 200(June), 110379.
[http://dx.doi.org/10.1016/j.radphyschem.2022.110379]
[10]
Kharita, M.H.; Yousef, S.; AlNassar, M. Review on the addition of boron compounds to radiation shielding concrete. Prog. Nucl. Energy, 2011, 53(2), 207-211.
[http://dx.doi.org/10.1016/j.pnucene.2010.09.012]
[11]
Minamf, T.; MacKenzie, J.D. Thermal expansion and chemical durability of phosphate glasses. J. Am. Ceram. Soc., 1977, 60(5-6), 232-235.
[http://dx.doi.org/10.1111/j.1151-2916.1977.tb14113.x]
[12]
Khurshid, Z.; Husain, S.; Alotaibi, H.; Rehman, R.; Zafar, M.S.; Farooq, I.; Khan, A. S. Novel techniques of scaffold fabrication for bioactive glasses; Biomed, Therap Clin Appli Bioactive Glasses, 2018, pp. 497-519.
[http://dx.doi.org/10.1016/B978-0-08-102196-5.00018-5]
[13]
Özpolat, Ö.F.; Alım, B.; Şakar, E.; Büyükyıldız, M.; Kurudirek, M. Phy-X/ZeXTRa: A software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiat. Environ. Biophys., 2020, 59(2), 321-329.
[http://dx.doi.org/10.1007/s00411-019-00829-7] [PMID: 31960126]
[14]
Saito, M.; Sagara, S. A simple formulation for deriving effective atomic numbers via electron density calibration from dual-energy CT data in the human body. Med. Phys., 2017, 44(6), 2293-2303.
[http://dx.doi.org/10.1002/mp.12176] [PMID: 28236659]
[15]
Yang, M.; Virshup, G.; Clayton, J.; Zhu, X.R.; Mohan, R.; Dong, L. Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues. Phys. Med. Biol., 2010, 55(5), 1343-1362.
[http://dx.doi.org/10.1088/0031-9155/55/5/006] [PMID: 20145291]
[16]
Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B, 2010, 268(11-12), 1818-1823.
[http://dx.doi.org/10.1016/j.nimb.2010.02.091]
[17]
Berger, M.J.; Coursey, J.S.; Zucker, M.A.; Chang, J. ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and heliumions (version 1.2.3) 2005. Available from: cs.nist.gov/Star
[18]
Kaur, P.; Singh, K.J.; Thakur, S.; Kurudirek, M.; Rafiei, M.M. Structural investigations and nuclear radiation shielding ability of bismuth lithium antimony borate glasses. J. Phys. Chem. Solids, 2021, 150(October), 109812.
[http://dx.doi.org/10.1016/j.jpcs.2020.109812]
[19]
El Abd, A.; Mesbah, G.; Mohammed, N.M.A.; Ellithi, A. A simple method for determining the effective removal cross section for fast neutrons. J. Radia Nuclear Appli., 2017, 2(2), 53-58.
[http://dx.doi.org/10.18576/jrna/020203]
[20]
Sabry, N. Gamma-ray attenuation, fast neutron removal cross-section and build up factor of Cu2MnGe [S, Se, Te]4 semiconductor compounds: Novel approach In. Radiat. Phys. Chem., 2021, 179, 109248.
[http://dx.doi.org/10.1016/j.radphyschem.2020.109248]
[21]
Tsoulfanidis, N.; Landsberger, S. Measurement & detection of radiation; (CRC Press), 2021.
[22]
Al-Buriahi, M.S.; Alrowaili, Z.A.; Alsufyani, S.J.; Olarinoye, I.O.; Alharbi, A.N.; Sriwunkum, C.; Kebaili, I. The role of PbF2 on the gamma-ray photon, charged particles, and neutron shielding prowess of novel lead fluoro bismuth borate glasses. J. Mater. Sci. Mater. Electron., 2022, 33(3), 1123-1139.
[http://dx.doi.org/10.1007/s10854-021-07382-4]
[23]
Abdelgawad, K.R.M.; Ahmed, G.S.M.; Farag, A.T.M.; Bendary, A.A.; Tartor, B.A.; Bashter, I.I.; Salem, S.M. Eco-friendly transparent glass prepared from rice straw ash for neutron and charged particle radiation shielding. Ann. Nucl. Energy, 2023, 191, 109939.
[http://dx.doi.org/10.1016/j.anucene.2023.109939]
[24]
Tsoulfanidis, N. Computational methods in reactor shielding. Nucl. Technol., 1984, 64(1), 102-102.
[http://dx.doi.org/10.13182/NT84-A33331]
[25]
El-Sayed Abdo, A. Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. Ann. Nucl. Energy, 2002, 29(16), 1977-1988.
[http://dx.doi.org/10.1016/S0306-4549(02)00019-1]
[26]
Bhattacharya, S. Electrical transport properties of ion-conducting glass nanocomposites; Glass Nanocomposites, 2015, pp. 181-214.
[http://dx.doi.org/10.1016/B978-0-323-39309-6.00008-0]
[27]
Al-Hasni, B.M.; Mountjoy, G.; Barney, E. Atomic structure of sodium iron phosphate glasses. Int. J. Appl. Glass Sci., 2021, 12(2), 245-258.
[http://dx.doi.org/10.1111/ijag.15865]
[28]
Bajaj, A.; Khanna, A.; Chen, B.; Longstaffe, J.G.; Zwanziger, U-W.; Zwanziger, J.W.; Gómez, Y.; González, F. Structural investigation of bismuth borate glasses and crystalline phases. J. Non-Cryst. Solids, 2009, 355(1), 45-53.
[http://dx.doi.org/10.1016/j.jnoncrysol.2008.09.033]
[29]
Zhang, Y.; Yang, Y.; Ou, Y.; Hua, W.; Zheng, J.; Chen, G. Effect of Sb2O3 on thermal properties of glasses in Bi2O3-B2O3-SiO2 system. J. Am. Ceram. Soc., 2009, 92(8), 1881-1883.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03127.x]
[30]
Kaur, R.; Singh, S.; Pandey, O.P. Influence of CdO and gamma irradiation on the infrared absorption spectra of borosilicate glass. J. Mol. Struct., 2013, 1049, 409-413.
[http://dx.doi.org/10.1016/j.molstruc.2013.06.072]
[31]
Ardelean, I.; Lupsor, S.; Rusu, D. Structural investigation of xMnO·(100-x)[As2O3·PbO] glass system by FT-IR and Raman spectroscopies. Solid State Sci., 2008, 10(10), 1384-1386.
[http://dx.doi.org/10.1016/j.solidstatesciences.2007.12.015]
[32]
Thipperrudra, A. DSC and FTIR studies in potassium, strontium doped boro-phosphate glasses. Chem. Mater. Res., 2020, 12(2), 1-8.
[http://dx.doi.org/10.7176/CMR/12-2-01]
[33]
S. M. S. and A. G. M. A.M. Abdel-Ghany; Saad, M.S.S.; Bashter, I.I.; Amer, T.Z. Studies on some inorganic oxide glasses used as gamma-ray shields and for radio-active waste encapsulationtle. Nat. Sci., 2014, 12(12), 162-170.
[34]
Cheewasukhanont, W.; Siengsanoh, K.; Limkitjaroenporn, P.; Chaiphaksa, W.; Kothan, S.; Intachai, N.; Kim, H.J.; Kaewkhao, J. The properties of silicate glass specimens for photon, neutron, and charged particles shielding: The roles of Bi2O3. Radiat. Phys. Chem., 2022, 201, 110385.
[http://dx.doi.org/10.1016/j.radphyschem.2022.110385]
[35]
Piotrowski, T. Neutron shielding evaluation of concretes and mortars: A review Constr. Build. Mater., 2021, 277, 122238.
[http://dx.doi.org/10.1016/j.conbuildmat.2020.122238]
[36]
Tellili, B.; Elmahroug, Y.; Souga, C. Calculation of fast neutron removal cross sections for different lunar soils. Adv. Space Res., 2014, 53(2), 348-352.
[http://dx.doi.org/10.1016/j.asr.2013.10.023]
[37]
Tekin, H.O.; Kavaz, E.; Papachristodoulou, A.; Kamislioglu, M.; Agar, O.; Altunsoy Guclu, E.E.; Kilicoglu, O.; Sayyed, M.I. Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: Alpha, proton, gamma, neutron radiation. Ceram. Int., 2019, 45(15), 19206-19222.
[http://dx.doi.org/10.1016/j.ceramint.2019.06.168]