Computational Approaches Molecular Docking and MD Simulation Establishes the Potential COVID-19 Main Protease Inhibitors from Natural Products

Page: [114 - 134] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Aim: COVID-19 was classified as a pandemic by the World Health Organization (WHO) on March 11, 2020. No reliable cure, however, was found. To prevent viral replication, complementary therapy with antiviral and antimalarial medications were used. However, due to their synthetic origin, they have a lot of side effects. To overcome this bane natural origin drugs were repositioned.

Background: As repositioned drugs do not undergo a pro-long process of pre-clinical trial, hence, they play an excellent role in the spillover of pathogens. The main protease (6LU7) enzyme found in severe acute respiratory syndrome coronavirus-2 (SAR-CoV-2) is essential for viral replication. Thus, it acts as a hotspot in drug discovery.

Objective: A molecular docking computational approach was used to determine the ability of the binding contract between the selected 3D-models of COVID-19 protease target and proposed natural compounds pristimerin, amazoquinone, kendomycin, celastrol, 20-epi-isoguesterinol, phenanthrenequinone, taxodione, maytenoquinone, hippeastrine, ammothamnine, 28-hydroxy isoiguesterin, hemanthamine, alisol-B, stigmasterol, β-pinene,and β-sitosterol through Autodock v.1.5.6 software.

Methods: The present study is designed to perform in-silico studies using molecular docking (Autodock tool v.1.5.6), Discovery Studio 2017 R2 client, Patch dock, SWISS-ADME prediction, and molecular simulation (Desmond simulation package of Schrodinger) between 6LU7 and natural origin compounds.

Results: The results of docking study performed between 6LU7 and compounds pristimerin, amazoquinone, kendomycin, celastrol, 20-epi-isoguesterinol, phenanthrenequinone, taxodione, maytenoquinone, hippeastrine, ammothamnine, 28-hydroxy isoiguesterin, hemanthamine, alisol-B, stigmasterol, β-pinene, and β-sitosterol, showed binding energy as -9.68, -7.34, -5.34, -4.63, -4.24, -4.13, -4.08, -3.85, -3.83, -3.7, -3.6, -3.57, -3.54, -3.39, -3.18, and -3.03 Kcal/mol, respectively. It can be shown that the Pristimerin-6LU7 protein complex was maintained throughout the simulation since the ligand RMSDs varied with a maximum value of 4.2Å during the first 10 ns, followed by more stable interactions for the remaining time of the simulation.

Conclusion: The goal of the current work was to find inhibitors for both prophylactic and therapeutic usage in COVID-19 patients.

[1]
Tahir, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L-L. Structural basis of SARS-CoV-2 3CL pro and anti-COVID-19 drug discovery from medicinal plants. J. Pharma. Analy., 2020, 10(4), 313-319.
[http://dx.doi.org/10.20944/preprints202002.0193.v1]
[2]
Ibrahim, I.M.; Abdelmalek, D.H.; Elshahat, M.E.; Elfiky, A.A. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect., 2020, 80(5), 554-562.
[http://dx.doi.org/10.1016/j.jinf.2020.02.026] [PMID: 32169481]
[3]
Durdagi, S.; Aksoydan, B.; Dogan, B.; Sahin, K.; Shahraki, A. Screening of clinically approved and investigation drugs as potential inhibitors of COVID-19 main protease: A virtual drug repurposing study. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12032712.v1]
[4]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[5]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S. Potential inhibitor of COVID-19 main protease (M pro) from several medicinal plant compounds by molecular docking study. Preprints, 2020, 2020, 2020030226.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[6]
WHO Weekly epidemiological update on COVID-19 - 22 March 2022; , 2022. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-march-2022
[7]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[8]
Murayama, T.; Eizuru, Y.; Yamada, R.; Sadanari, H.; Matsubara, K.; Rukung, G.; Tolo, F.M.; Mungai, G.M.; Kofi-Tsekpo, M. Anticytomegalovirus activity of pristimerin, a triterpenoid quinone methide isolated from Maytenus heterophylla (Eckl. & Zeyh.). Antivir. Chem. Chemother., 2007, 18(3), 133-139.
[http://dx.doi.org/10.1177/095632020701800303] [PMID: 17626597]
[9]
Petrera, E.; Níttolo, A.G.; Alché, L.E. Antiviral action of synthetic stigmasterol derivatives on herpes simplex virus replication in nervous cells in vitro. BioMed Res. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/947560] [PMID: 25147828]
[10]
Jin, Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep., 2009, 26(3), 363-381.
[http://dx.doi.org/10.1039/b718044f] [PMID: 19240946]
[11]
Astani, A.; Schnitzler, P. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran. J. Microbiol., 2014, 6(3), 149-155.
[PMID: 25870747]
[12]
Jiang, Z.Y.; Zhang, X.M.; Zhang, F.X.; Liu, N.; Zhao, F.; Zhou, J.; Chen, J.J. A new triterpene and anti-hepatitis B virus active compounds from Alisma orientalis. Planta Med., 2006, 72(10), 951-954.
[http://dx.doi.org/10.1055/s-2006-947178] [PMID: 16858666]
[13]
Lee, H.Y.; Cho, D.Y.; Ahmad, I.; Patel, H.M.; Kim, M.J.; Jung, J.G.; Jeong, E.H.; Haque, M.A.; Cho, K.M. Mining of a novel esterase (est3S) gene from a cow rumen metagenomic library with organosphosphorus insecticides degrading capability: Catalytic insights by site directed mutations, docking, and molecular dynamic simulations. Int. J. Biol. Macromol., 2021, 190, 441-455.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.224] [PMID: 34506858]
[14]
Sánchez-Duffhues, G.; Calzado, M.A.; de Vinuesa, A.G.; Caballero, F.J.; Ech-Chahad, A.; Appendino, G.; Krohn, K.; Fiebich, B.L.; Muñoz, E. Denbinobin, a naturally occurring 1,4-phenanthre-nequinone, inhibits HIV-1 replication through an NF-κB-dependent pathway. Biochem. Pharmacol., 2008, 76(10), 1240-1250.
[http://dx.doi.org/10.1016/j.bcp.2008.09.006] [PMID: 18840408]
[15]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(6), 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[16]
Pandey, R.; Dubey, I.; Ahmad, I.; Mahapatra, D.K.; Patel, H.; Kumar, P. In silico Study of Some Dexamethasone Analogs and Derivatives against SARs-CoV-2 Target: A cost-effective alternative to remdesivir for various COVID phases. Curr. Chinese Sci., 2022, 2(4), 294-309.
[http://dx.doi.org/10.2174/2210298102666220404102217]
[17]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[18]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33(Web Server)(Suppl. 2), W363-W367.
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[19]
Duhovny, D.; Nussinov, R.; Wolfson, H.J. Efficient unbound docking of rigid molecules. In: Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science; Springer: Berlin, Heidelberg, 2002.
[http://dx.doi.org/10.1007/3-540-45784-4_14]
[20]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[21]
Reja, S.; Mukherjee, D.; Das, P.; Kumar, P.; Das, R.K. 3-(1,3-Dioxoisoindolin-2-yl)-N,N-dimethylpropan-1-ammonium perchlorate: Synthesis, crystal structure, docking study and in vitro anticancer activity against the human hepatomas cell line (Hep G2). J. Mol. Struct., 2021, 1245, 131006.
[http://dx.doi.org/10.1016/j.molstruc.2021.131006]
[22]
Mukherjee, D.; Reja, S.; Sarkar, K.; Fayaz, T.K.S.; Kumar, P.; Kejriwal, A.; Das, P.; Sanphui, P.; Kumar Das, R. In vitro cytotoxicity activity of copper complexes of imine and amine ligands: A combined experimental and computational study. Inorg. Chem. Commun., 2022, 146, 110190.
[http://dx.doi.org/10.1016/j.inoche.2022.110190]
[23]
Giménez, B.G.; Santos, M.S.; Ferrarini, M.; Fernandes, J.P. Evaluation of blockbuster drugs under the rule-of-five. Pharmazie, 2010, 65(2), 148-152.
[http://dx.doi.org/10.1691/ph.2010.9733] [PMID: 20225662]
[24]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64(Suppl.), 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019] [PMID: 11259830]
[25]
Kumar, P.; Rawat, A.; Keshari, A.K.; Singh, A.K.; Maity, S.; De, A.; Samanta, A.; Saha, S. Antiproliferative effect of isolated isoquinoline alkaloid from Mucuna pruriens seeds in hepatic carcinoma cells. Nat. Prod. Res., 2016, 30(4), 460-463.
[http://dx.doi.org/10.1080/14786419.2015.1020489] [PMID: 25774560]
[26]
Brooijmans, N.; Kuntz, I.D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., 2003, 32(1), 335-373.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142532] [PMID: 12574069]
[27]
Gautam, A.K.; Kumar, P.; Maity, B.; Routholla, G.; Ghosh, B.; Chidambaram, K.; Begum, M.Y.; Al Fatease, A.; Rajinikanth, P.S.; Singh, S.; Saha, S. M R, V. Synthesis and appraisal of dalbergin-loaded PLGA nanoparticles modified with galactose against hepatocellular carcinoma: In-vitro, pharmacokinetic, and in-silico studies. Front. Pharmacol., 2022, 13, 1021867.
[http://dx.doi.org/10.3389/fphar.2022.1021867] [PMID: 36386226]
[28]
Keshari, A.K.; Kumar, G.; Kushwaha, P.S.; Bhardwaj, M.; Kumar, P.; Rawat, A.; Kumar, D.; Prakash, A.; Ghosh, B.; Saha, S. Isolated flavonoids from Ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats. J. Ethnopharmacol., 2016, 181, 252-262.
[http://dx.doi.org/10.1016/j.jep.2016.02.004] [PMID: 26869543]
[29]
Singh, A.K.; Raj, V.; Keshari, A.K.; Rai, A.; Kumar, P.; Rawat, A.; Maity, B.; Kumar, D.; Prakash, A.; De, A.; Samanta, A.; Bhattacharya, B.; Saha, S. Isolated mangiferin and naringenin exert antidiabetic effect via PPAR γ/GLUT4 dual agonistic action with strong metabolic regulation. Chem. Biol. Interact., 2018, 280, 33-44.
[http://dx.doi.org/10.1016/j.cbi.2017.12.007] [PMID: 29223569]
[30]
Reja, S.; Sarkar, K.; Mukherjee, D.; Fayaz, T.K.S.; Kumar, P.; Das, P.; Sanphui, P.; Das, R.K. 3, 3′-[succinylbis(diazaneyl)]bis(N,N,N-trimethylpropan-1-ammonium) perchlorate: Synthesis, characterization, computational studies and in vitro anticancer activity against the human colon carcinoma cell line (HT-29). J. Mol. Struct., 2023, 1273, 134377.
[http://dx.doi.org/10.1016/j.molstruc.2022.134377]
[31]
Pawara, R.; Ahmad, I.; Surana, S.; Patel, H. Computational identification of 2,4-disubstituted amino-pyrimidines as L858R/T790MEGFR double mutant inhibitors using pharmacophore mapping, molecular docking, binding free energy calculation, DFT study and molecular dynamic simulation. In Silico Pharmacol., 2021, 9(1), 54.
[http://dx.doi.org/10.1007/s40203-021-00113-x] [PMID: 34631361]
[32]
Desmond Molecular Dynamics System; Shaw Research: New York, NY, 2021.
[33]
Ahmad, I.; Kumar, D.; Patel, H. Computational investigation of phytochemicals from Withaniasomnifera (Indian ginseng/ashwagandha) as plausible inhibitors of GluN2B-containing NMDA receptors. J. Biomol. Struct. Dyn., 2021, 1(1), 1-13.
[http://dx.doi.org/10.1080/07391102.2021.1905553] [PMID: 33970806]
[34]
Pawara, R.; Ahmad, I.; Nayak, D.; Wagh, S.; Wadkar, A.; Ansari, A.; Belamkar, S.; Surana, S.; Nath Kundu, C.; Patil, C.; Patel, H. Novel, selective acrylamide linked quinazolines for the treatment of double mutant EGFR-L858R/T790M Non-Small-Cell lung cancer (NSCLC). Bioorg. Chem., 2021, 115, 105234.
[http://dx.doi.org/10.1016/j.bioorg.2021.105234] [PMID: 34399322]
[35]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236.
[http://dx.doi.org/10.1021/ja9621760]
[36]
Kalibaeva, G.; Ferrario, M.; Ciccotti, G. Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Mol. Phys., 2003, 101(6), 765-778.
[http://dx.doi.org/10.1080/0026897021000044025]
[37]
Martyna, G.J. Remarks on “Constant-temperature molecular dynamics with momentum conservation”. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 1994, 50(4), 3234-3236.
[http://dx.doi.org/10.1103/PhysRevE.50.3234] [PMID: 9962369]
[38]
Girase, R.; Ahmad, I.; Pawara, R.; Patel, H. Optimizing cardio, hepato and phospholipidosis toxicity of the Bedaquiline by chemoinformatics and molecular modelling approach. SAR QSAR Environ. Res., 2022, 33(3), 215-235.
[http://dx.doi.org/10.1080/1062936X.2022.2041724] [PMID: 35225110]
[39]
Zrieq, R.; Ahmad, I.; Snoussi, M.; Noumi, E.; Iriti, M.; Algahtani, F.D.; Patel, H.; Saeed, M.; Tasleem, M.; Sulaiman, S.; Aouadi, K.; Kadri, A. Tomatidine and Patchouli alcohol as inhibitors of SARS-CoV-2 enzymes (3CLpro, PLpro and NSP15) by molecular docking and molecular dynamics simulations. Int. J. Mol. Sci., 2021, 22(19), 10693.
[http://dx.doi.org/10.3390/ijms221910693] [PMID: 34639036]
[40]
Ayipo, Y.O.; Ahmad, I.; Najib, Y.S.; Sheu, S.K.; Patel, H.; Mordi, M.N. Molecular modelling and structure-activity relationship of a natural derivative of o-hydroxybenzoate as a potent inhibitor of dual NSP3 and NSP12 of SARS-CoV-2: In silico study. J. Biomol. Struct. Dyn., 2022, 1(1), 1-19.
[http://dx.doi.org/10.1080/07391102.2022.2153168] [PMID: 35037841]
[41]
Boulaamane, Y.; Ahmad, I.; Patel, H.; Das, N.; Britel, M.R.; Maurady, A. Structural exploration of selected C6 and C7-substituted coumarin isomers as selective MAO-B inhibitors. J. Biomol. Struct. Dyn., 2022, 1(1), 1-15.
[http://dx.doi.org/10.1080/07391102.2022.2033643] [PMID: 35168478]
[42]
Ahmad, I.; Akand, S.R.; Shaikh, M.; Pawara, R.; Manjula, S.N.; Patel, H. Synthesis, molecular modelling study of the methaqualone analogues as anti-convulsant agent with improved cognition activity and minimized neurotoxicity. J. Mol. Struct., 2022, 1251, 131972.
[http://dx.doi.org/10.1016/j.molstruc.2021.131972]
[43]
Ghosh, S.; Das, S.; Ahmad, I.; Patel, H. In silico validation of anti-viral drugs obtained from marine sources as a potential target against SARS-CoV-2 Mpro. J. Indian Chem. Soc., 2021, 98(12), 100272.
[http://dx.doi.org/10.1016/j.jics.2021.100272]
[44]
Acar Çevik, U.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Kaya Çavuşoğlu, B.; Karaduman, A.B.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and docking study of benzimidazole–triazolothiadiazine hybrids as aromatase inhibitors. Arch. Pharm. (Weinheim), 2020, 353(5), e2000008.
[http://dx.doi.org/10.1002/ardp.202000008] [PMID: 32159244]
[45]
Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1, 3, 4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. J. Biomol. Struct. Dyn., 2022, 1(1), 1-15.
[http://dx.doi.org/10.1080/07391102.2022.2025906] [PMID: 32469279]
[46]
Chen, L.; Gui, C.; Luo, X.; Yang, Q.; Günther, S.; Scandella, E.; Drosten, C.; Bai, D.; He, X.; Ludewig, B.; Chen, J.; Luo, H.; Yang, Y.; Yang, Y.; Zou, J.; Thiel, V.; Chen, K.; Shen, J.; Shen, X.; Jiang, H. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J. Virol., 2005, 79(11), 7095-7103.
[http://dx.doi.org/10.1128/JVI.79.11.7095-7103.2005] [PMID: 15890949]
[47]
Liu, Z.; Huang, C.; Fan, K.; Wei, P.; Chen, H.; Liu, S.; Pei, J.; Shi, L.; Li, B.; Yang, K.; Liu, Y.; Lai, L. Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. J. Chem. Inf. Model., 2005, 45(1), 10-17.
[http://dx.doi.org/10.1021/ci049809b] [PMID: 15667124]
[48]
Maurizio, G. A.V. Could chloroquine/hydroxych-loroquine be harmful in Coronavirus Disease 2019 (COVID-19) treatment? Statistical Field Theor, 2019, 53(9), 1689-1699.
[http://dx.doi.org/10.1017/CBO9781107415324.004]
[49]
Amoa Onguéné, P.; Ntie-Kang, F.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M. The potential of anti-malarial compounds derived from African medicinal plants. Part I: A pharmacological evaluation of alkaloids and terpenoids. Malar. J., 2013, 12(1), 449.
[http://dx.doi.org/10.1186/1475-2875-12-449] [PMID: 24330395]
[50]
Figueiredo, J.N.; Räz, B.; Séquin, U. Novel quinone methides from Salacia kraussii with in vitro antimalarial activity. J. Nat. Prod., 1998, 61(6), 718-723.
[http://dx.doi.org/10.1021/np9704157] [PMID: 9644053]
[51]
Setzer, W.; Setzer, M. Plant-derived triterpenoids as potential antineoplastic agents. Mini Rev. Med. Chem., 2003, 3(6), 540-556.
[http://dx.doi.org/10.2174/1389557033487854] [PMID: 12871157]
[52]
Bode, H.B.; Zeeck, A. Structure and biosynthesis of kendomycin, a carbocyclic ansa-compound from Streptomyces. J. Chem. Soc., Perkin Trans. 1, 2000, 3(3), 323-328.
[http://dx.doi.org/10.1039/a908387a]
[53]
Copp, B.R.; Pearce, A.N. Natural product growth inhibitors of Mycobacterium tuberculosis. Nat. Prod. Rep., 2007, 24(2), 278-297.
[http://dx.doi.org/10.1039/B513520F] [PMID: 17389998]
[54]
Kupchan, S.M.; Karim, A.; Marcks, C. Tumor inhibitors. XXXIV. Taxodione and taxodone, two novel diterpenoid quinone methide tumor inhibitors from Taxodium distichum. J. Am. Chem. Soc., 1968, 90(21), 5923-5924.
[http://dx.doi.org/10.1021/ja01023a061] [PMID: 5679178]
[55]
Mathes, E.; O’Dea, E.L.; Hoffmann, A.; Ghosh, G. NF-κB dictates the degradation pathway of IκBα. EMBO J., 2008, 27(9), 1357-1367.
[http://dx.doi.org/10.1038/emboj.2008.73] [PMID: 18401342]
[56]
Yang, M.; Ahmed, H.; Wu, W.; Jiang, B.; Jia, Z. Cytotoxicity of air pollutant 9, 10-phenanthrenequinone: Role of reactive oxygen species and redox signaling. BioMed Res. Int., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/9523968] [PMID: 29984252]
[57]
Snchez-Duffhues, G.; Calzado, M.A.; de Vinuesa, A.G.A.; Appendino, G.; Fiebich, B.L.; Loock, U.; Krohn, K. Denbinobin inhibits nuclear factor-? B and induces apoptosis via reactive oxygen species generation in human leukemic cells. Biochem. Pharmacol., 2009, 77(8), 1401-1409.
[http://dx.doi.org/10.1016/j.bcp.2009.01.004]
[58]
Zimta, A.A.; Cenariu, D.; Irimie, A.; Magdo, L.; Nabavi, S.M.; Atanasov, A.G.; Berindan-Neagoe, I. The role of Nrf2 activity in cancer development and progression. Cancers (Basel), 2019, 11(11), 1755.
[http://dx.doi.org/10.3390/cancers11111755] [PMID: 31717324]
[59]
He, J.; Qi, W.B.; Wang, L.; Tian, J.; Jiao, P.R.; Liu, G.Q.; Ye, W.C.; Liao, M. Amaryllidaceae alkaloids inhibit nuclear‐tocytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respir. Viruses, 2013, 7(6), 922-931.
[http://dx.doi.org/10.1111/irv.12035] [PMID: 23136954]
[60]
Brown, C.E.; Kong, T.; Britten, J.F.; Werstiuk, N.H.; McNulty, J.; D’Aiuto, L.; Demers, M.; Nimgaonkar, V.L. Asymmetric Entry into 10 b -aza-Analogues of Amaryllidaceae alkaloids reveals a pronounced electronic effect on antiviral activity. ACS Omega, 2018, 3(9), 11469-11476.
[http://dx.doi.org/10.1021/acsomega.8b01987] [PMID: 30320263]
[61]
Devi, A.B.; Sarala, R. Substantial effect of phytochemical constituents against the pandemic disease influenza-a review. Future J. Pharma. Sci., 2021, 7(1), 120.
[http://dx.doi.org/10.1186/s43094-021-00269-5] [PMID: 34150912]
[62]
Fielding, B.C.; da Silva Maia, B.F. C.; Ismail, N.S.M.; Sousa, D.P. Alkaloids: Therapeutic potential against human coronaviruses. Molecules, 2020, 25(23), 5496.
[http://dx.doi.org/10.3390/molecules25235496] [PMID: 33255253]
[63]
Martín, J.D. New diterpenoids extractives of Maytenus dispermus. Tetrahedron, 1973, 29(17), 2553-2559.
[http://dx.doi.org/10.1016/0040-4020(73)80172-3]
[64]
Tada, M.; Kurabe, J.; Yasue, H.; Ikuta, T. Synthesis of totarane diterpenes: totarol, maytenoquinone, 6-deoxymaytenoquinone and 8,11,13-totaratriene-12,13-diol. Chem. Pharm. Bull. (Tokyo), 2008, 56(3), 287-291.
[http://dx.doi.org/10.1248/cpb.56.287] [PMID: 18310937]
[65]
Song, G.; Luo, Q.; Qin, J.; Wang, L.; Shi, Y.; Sun, C. Effects of oxymatrine on proliferation and apoptosis in human hepatoma cells. Colloids Surf. B Biointerfaces, 2006, 48(1), 1-5.
[http://dx.doi.org/10.1016/j.colsurfb.2005.12.012] [PMID: 16458489]
[66]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[67]
Pierre, L.L.; Moses, M.N. Isolation and Characterisation of Stigmasterol and B-Sitosterol from Odontonema Strictum (Acanthaceae). J. Innov. Pharm. Biol. Sci., 2015, 2(1), 88-96.
[68]
Shokry, S.; Hegazy, A.; Abbas, A.M.; Mostafa, I.; Eissa, I.H.; Metwaly, A.M.; Yahya, G.; El-Shazly, A.M.; Aboshanab, K.M.; Mostafa, A. Phytoestrogen β-sitosterol exhibits potent in vitro antiviral activity against Influenza A viruses. Vaccines (Basel), 2023, 11(2), 228.
[http://dx.doi.org/10.3390/vaccines11020228] [PMID: 36851106]
[69]
Sankar, M.; Ramachandran, B.; Pandi, B.; Mutharasappan, N.; Ramasamy, V.; Prabu, P.G.; Shanmugaraj, G.; Wang, Y.; Muniyandai, B.; Rathinasamy, S.; Chandrasekaran, B.; Bayan, M.F.; Jeyaraman, J.; Halliah, G.P.; Ebenezer, S.K. In silico screening of natural phytocompounds towards identification of potential lead compounds to treat COVID-19. Front. Mol. Biosci., 2021, 8, 637122.
[http://dx.doi.org/10.3389/fmolb.2021.637122] [PMID: 34291081]
[70]
Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In-silico evidences. Nat. Prod. Bioprospect., 2020, 10(5), 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[71]
Antonopoulou, I.; Sapountzaki, E.; Rova, U.; Christakopoulos, P. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds. Comput. Struct. Biotechnol. J., 2022, 20, 1306-1344.
[http://dx.doi.org/10.1016/j.csbj.2022.03.009] [PMID: 35308802]
[72]
Astani, A.; Reichling, J.; Schnitzler, P. Screening for antiviral activities of isolated compounds from essential oils. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8.
[http://dx.doi.org/10.1093/ecam/nep187] [PMID: 20008902]
[73]
Elias, T.; Lee, L.H.; Rossi, M.; Caruso, F.; Adams, S.D. In vitro analysis of the antioxidant and antiviral activity of embelin against herpes simplex virus-1. Microorganisms, 2021, 9(2), 434.
[http://dx.doi.org/10.3390/microorganisms9020434] [PMID: 33669814]
[74]
Wu, Y.H. Naturally derived anti-hepatitis B virus agents and their mechanism of action. World J. Gastroenterol., 2016, 22(1), 188-204.
[http://dx.doi.org/10.3748/wjg.v22.i1.188] [PMID: 26755870]
[75]
Shehzad, A.; Hussain, A.; Iman, S.; Ahmed, S.; Naseer, F. Hepatitis B treatment in Light of Natural sources. Arch Hepat Res, 2019, 5(1), 001-008.
[http://dx.doi.org/10.19080/ARGH.2019.13.555852]