Mini-Reviews in Organic Chemistry

Author(s): Bing Liu, Yuxin Wang, Ning Chen*, Chenxue Li, Jintong Zhao and Ting Li

DOI: 10.2174/0118756298278037231122041718

DownloadDownload PDF Flyer Cite As
Advances in Chemical Epigenetic Modification Methods in the Study of Fungal Secondary Metabolites

Page: [189 - 198] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

The secondary metabolites produced by fungi are an important resource for new drug development, and the biosynthesis of fungal secondary metabolites is closely related to the epigenetic status of the chromosomes in which their gene clusters are located. However, the induction of fungal silencing of gene expression is one of the challenges faced at this stage. Chemical epigenetic modification is a simple and effective method to regulate fungal metabolism by adding chemical epigenetic modifiers to the culture medium to activate silent metabolic pathways in the fungus, resulting in the production of cryptic natural products. This paper reviews the progress of research on increasing the chemical diversity of fungal secondary metabolites using chemical epigenetic modifications, with the aim of providing a reference for the in-depth study of fungal natural products.

Keywords: Chemical epigenetic modification, DNA methylation, histone acetylation, secondary metabolites, fungi, gene expression.

Graphical Abstract

[1]
Sanchez, J.F.; Somoza, A.D.; Keller, N.P.; Wang, C.C.C. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat. Prod. Rep., 2012, 29(3), 351-371.
[http://dx.doi.org/10.1039/c2np00084a] [PMID: 22228366]
[2]
Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes - secret producers of bioactive plant metabolites. Pharmazie, 2013, 68(7), 499-505.
[PMID: 23923629]
[3]
Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol., 2012, 19(7), 792-798.
[http://dx.doi.org/10.1016/j.chembiol.2012.06.004] [PMID: 22840767]
[4]
Phukan, H.; Mitra, P.K.; Saikia, M. Comparative study of Endophytic fungal metabolite isolated from black turmeric (Curcuma caesia roxb) in ROS associated Caenorhabditis elegans model system. World J. Pharm. Res., 2018, 4, 79-82.
[5]
Gross, H. Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl. Microbiol. Biotechnol., 2007, 75(2), 267-277.
[http://dx.doi.org/10.1007/s00253-007-0900-5] [PMID: 17340107]
[6]
Chiang, Y.M.; Chang, S.L.; Oakley, B.R.; Wang, C.C.C. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr. Opin. Chem. Biol., 2011, 15(1), 137-143.
[http://dx.doi.org/10.1016/j.cbpa.2010.10.011] [PMID: 21111669]
[7]
Scherlach, K.; Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem., 2009, 7(9), 1753-1760.
[http://dx.doi.org/10.1039/b821578b] [PMID: 19590766]
[8]
Cichewicz, R.H. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat. Prod. Rep., 2010, 27(1), 11-22.
[http://dx.doi.org/10.1039/B920860G] [PMID: 20024091]
[9]
Williams, R.B.; Henrikson, J.C.; Hoover, A.R.; Lee, A.E.; Cichewicz, R.H. Epigenetic remodeling of the fungal secondary metabolome. Org. Biomol. Chem., 2008, 6(11), 1895-1897.
[http://dx.doi.org/10.1039/b804701d] [PMID: 18480899]
[10]
Sun, K.; Zhu, G.; Hao, J.; Wang, Y.; Zhu, W. Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillus terreus OUCMDZ-2739. Tetrahedron, 2018, 74(1), 83-87.
[http://dx.doi.org/10.1016/j.tet.2017.11.039]
[11]
Sun, K.; Zhu, G.; Hao, J.; Wang, Y.; Zhu, W. Corrigendum to “Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillus terreus OUCMDZ-2739” [Tetrahedron 74 (2018) 83–87]. Tetrahedron, 2018, 74(44), 6465-6466.
[http://dx.doi.org/10.1016/j.tet.2018.09.018]
[12]
Li, C.Y.; Chung, Y.M.; Wu, Y.C.; Hunyadi, A.; Wang, C.C.C.; Chang, F.R. Natural products development under epigenetic modulation in fungi. Phytochem. Rev., 2020, 19(6), 1323-1340.
[http://dx.doi.org/10.1007/s11101-020-09684-7]
[13]
Poças-Fonseca, M.J.; Cabral, C.G.; Manfrão-Netto, J.H.C. Epigenetic manipulation of filamentous fungi for biotechnological applications: A systematic review. Biotechnol. Lett., 2020, 42(6), 885-904.
[http://dx.doi.org/10.1007/s10529-020-02871-8] [PMID: 32246346]
[14]
Toghueo, R.M.K.; Sahal, D.; Boyom, F.F. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. Phytochemistry, 2020, 174, 112338.
[http://dx.doi.org/10.1016/j.phytochem.2020.112338] [PMID: 32179305]
[15]
Pillay, L.C.; Nekati, L.; Makhwitine, P.J.; Ndlovu, S.I. Epigenetic activation of silent biosynthetic gene clusters in endophytic fungi using small molecular modifiers. Front. Microbiol., 2022, 13, 815008.
[http://dx.doi.org/10.3389/fmicb.2022.815008] [PMID: 35237247]
[16]
Cole, P.A. Chemical probes for histone-modifying enzymes. Nat. Chem. Biol., 2008, 4(10), 590-597.
[http://dx.doi.org/10.1038/nchembio.111] [PMID: 18800048]
[17]
Asai, T.; Yamamoto, T.; Oshima, Y. Histone deacetylase inhibitor induced the production of three novel prenylated tryptophan analogs in the entomopathogenic fungus, Torrubiella luteorostrata. Tetrahedron Lett., 2011, 52(52), 7042-7045.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.020]
[18]
Adpressa, D.A.; Stalheim, K.J.; Proteau, P.J.; Loesgen, S. Unexpected biotransformation of the HDAC inhibitor vorinostat yields aniline-containing fungal metabolites. ACS Chem. Biol., 2017, 12(7), 1842-1847.
[http://dx.doi.org/10.1021/acschembio.7b00268] [PMID: 28530797]
[19]
Takahashi, J.A.; Teles, A.P.C.; de Almeida Pinto Bracarense, A.; Gomes, D.C. Classical and epigenetic approaches to metabolite diversification in Filamentous fungi. Phytochem. Rev., 2013, 12(4), 773-789.
[http://dx.doi.org/10.1007/s11101-013-9305-5]
[20]
Chen, M.; Zhang, W.; Shao, C.L.; Chi, Z.M.; Wang, C.Y. DNA methyltransferase inhibitor induced fungal biosynthetic products: diethylene glycol phthalate ester oligomers from the marine-derived fungus Cochliobolus lunatus. Mar. Biotechnol. (NY), 2016, 18(3), 409-417.
[http://dx.doi.org/10.1007/s10126-016-9703-y] [PMID: 27245469]
[21]
Trojer, P.; Brandtner, E.M.; Brosch, G.; Loidl, P.; Galehr, J.; Linzmaier, R.; Haas, H.; Mair, K.; Tribus, M.; Graessle, S. Histone deacetylases in fungi: Novel members, new facts. Nucleic Acids Res., 2003, 31(14), 3971-3981.
[http://dx.doi.org/10.1093/nar/gkg473] [PMID: 12853613]
[22]
Brosch, G.; Loidl, P.; Graessle, S. Histone modifications and chromatin dynamics: A focus on Filamentous fungi. FEMS Microbiol. Rev., 2008, 32(3), 409-439.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00100.x] [PMID: 18221488]
[23]
Grewal, S.I.S.; Bonaduce, M.J.; Klar, A.J.S. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics, 1998, 150(2), 563-576.
[http://dx.doi.org/10.1093/genetics/150.2.563] [PMID: 9755190]
[24]
Xue, M.; Hou, X.; Fu, J.; Zhang, J.; Wang, J.; Zhao, Z.; Xu, D.; Lai, D.; Zhou, L. Recent advances in search of bioactive secondary metabolites from fungi triggered by chemical epigenetic modifiers. J. Fungi, 2023, 9(2), 172.
[http://dx.doi.org/10.3390/jof9020172] [PMID: 36836287]
[25]
Biel, M.; Wascholowski, V.; Giannis, A. Epigenetics--an epicenter of gene regulation: Histones and histone-modifying enzymes. Angew. Chem. Int. Ed., 2005, 44(21), 3186-3216.
[http://dx.doi.org/10.1002/anie.200461346] [PMID: 15898057]
[26]
Henrikson, J.C.; Hoover, A.R.; Joyner, P.M.; Cichewicz, R.H. A chemical epigenetics approach for engineering the in situbiosynthesis of a cryptic natural product from Aspergillus niger. Org. Biomol. Chem., 2009, 7(3), 435-438.
[http://dx.doi.org/10.1039/B819208A] [PMID: 19156306]
[27]
Vervoort, H.C.; Drašković, M.; Crews, P. Histone deacetylase inhibitors as a tool to up-regulate new fungal biosynthetic products: isolation of EGM-556, a cyclodepsipeptide, from Microascus sp. Org. Lett., 2011, 13(3), 410-413.
[http://dx.doi.org/10.1021/ol1027199] [PMID: 21174394]
[28]
Moore, J.M.; Bradshaw, E.; Seipke, R.F.; Hutchings, M.I.; McArthur, M. Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol., 2012, 517, 367-385.
[http://dx.doi.org/10.1016/B978-0-12-404634-4.00018-8] [PMID: 23084948]
[29]
Triastuti, A.; Vansteelandt, M.; Barakat, F.; Trinel, M.; Jargeat, P.; Fabre, N.; Amasifuen Guerra, C.A.; Mejia, K.; Valentin, A.; Haddad, M. How histone deacetylase inhibitors alter the secondary metabolites of Botryosphaeria mamane, an endophytic fungus isolated from Bixa orellana. Chem. Biodivers., 2019, 16(4), e1800485.
[http://dx.doi.org/10.1002/cbdv.201800485] [PMID: 30636097]
[30]
Zutz, C.; Gacek, A.; Sulyok, M.; Wagner, M.; Strauss, J.; Rychli, K. Small chemical chromatin effectors alter secondary metabolite production in Aspergillus clavatus. Toxins, 2013, 5(10), 1723-1741.
[http://dx.doi.org/10.3390/toxins5101723] [PMID: 24105402]
[31]
He, X.; Zhang, Z.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Varilactones and wortmannilactones produced by Penicillium variabile cultured with histone deacetylase inhibitor. Arch. Pharm. Res., 2018, 41(1), 57-63.
[http://dx.doi.org/10.1007/s12272-017-0982-2] [PMID: 29124659]
[32]
Zhao, M.; Yuan, L.Y.; Guo, D.L.; Ye, Y.; Da-Wa, Z.M.; Wang, X.L.; Ma, F.W.; Chen, L.; Gu, Y.C.; Ding, L.S.; Zhou, Y. Bioactive halogenated dihydroisocoumarins produced by the endophytic fungus Lachnum palmae isolated from Przewalskia tangutica. Phytochemistry, 2018, 148, 97-103.
[http://dx.doi.org/10.1016/j.phytochem.2018.01.018] [PMID: 29421516]
[33]
Zhang, Z.; He, X.; Wu, G.; Liu, C.; Lu, C.; Gu, Q.; Che, Q.; Zhu, T.; Zhang, G.; Li, D. Aniline-tetramic acids from the deep-sea-derived fungus cladosporium sphaerospermum L3P3 cultured with the HDAC inhibitor SAHA. J. Nat. Prod., 2018, 81(7), 1651-1657.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00289] [PMID: 29985604]
[34]
Wu, G.; Sun, X.; Yu, G.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J. Nat. Prod., 2014, 77(2), 270-275.
[http://dx.doi.org/10.1021/np400833x] [PMID: 24499327]
[35]
Liu, W.; Wang, L.; Wang, B.; Xu, Y.; Zhu, G.; Lan, M.; Zhu, W.; Sun, K. Diketopiperazine and diphenylether derivatives from marine algae-derived aspergillus versicolor OUCMDZ-2738 by epigenetic activation. Mar. Drugs, 2018, 17(1), 6.
[http://dx.doi.org/10.3390/md17010006] [PMID: 30583513]
[36]
Zhang, S.; Fang, H.; Yin, C.; Wei, C.; Hu, J.; Zhang, Y. Antimicrobial metabolites produced by penicillium mallochii CCH01 isolated from the gut of Ectropis oblique, cultivated in the presence of a histone deacetylase inhibitor. Front. Microbiol., 2019, 10, 2186.
[http://dx.doi.org/10.3389/fmicb.2019.02186] [PMID: 31632360]
[37]
Asai, T.; Morita, S.; Taniguchi, T.; Monde, K.; Oshima, Y. Epigenetic stimulation of polyketide production in Chaetomium cancroideum by an NAD + -dependent HDAC inhibitor. Org. Biomol. Chem., 2016, 14(2), 646-651.
[http://dx.doi.org/10.1039/C5OB01595B] [PMID: 26549741]
[38]
Asai, T.; Taniguchi, T.; Yamamoto, T.; Monde, K.; Oshima, Y. Structures of spiroindicumides A and B, unprecedented carbon skeletal spirolactones, and determination of the absolute configuration by vibrational circular dichroism exciton approach. Org. Lett., 2013, 15(17), 4320-4323.
[http://dx.doi.org/10.1021/ol401741z] [PMID: 23972233]
[39]
Li, J.; Li, L.; Si, Y.; Jiang, X.; Guo, L.; Che, Y. Virgatolides A-C, benzannulated spiroketals from the plant endophytic fungus Pestalotiopsis virgatula. Org. Lett., 2011, 13(10), 2670-2673.
[http://dx.doi.org/10.1021/ol200770k] [PMID: 21495643]
[40]
Feng, Y.; Wang, L.; Niu, S.; Li, L.; Si, Y.; Liu, X.; Che, Y. Naphthalenones from a Perenniporia sp. inhabiting the larva of a phytophagous weevil, Euops chinesis. J. Nat. Prod., 2012, 75(7), 1339-1345.
[http://dx.doi.org/10.1021/np300263u] [PMID: 22731892]
[41]
Li, G.; Kusari, S.; Golz, C.; Laatsch, H.; Strohmann, C.; Spiteller, M. Epigenetic modulation of endophytic Eupenicillium sp. LG41 by a histone deacetylase inhibitor for production of decalin-containing compounds. J. Nat. Prod., 2017, 80(4), 983-988.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00997] [PMID: 28333449]
[42]
El-Hawary, S.; Sayed, A.; Mohammed, R.; Hassan, H.; Zaki, M.; Rateb, M.; Mohammed, T.; Amin, E.; Abdelmohsen, U. Epigenetic modifiers induce bioactive phenolic metabolites in the marine-derived fungus Penicillium brevicompactum. Mar. Drugs, 2018, 16(8), 253.
[http://dx.doi.org/10.3390/md16080253] [PMID: 30061488]
[43]
Inoue, M.; Suzuki, R.; Sakaguchi, N.; Li, Z.; Takeda, T.; Ogihara, Y.; Jiang, B.Y.; Chen, Y. Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull., 1995, 18(11), 1526-1530.
[http://dx.doi.org/10.1248/bpb.18.1526] [PMID: 8593472]
[44]
Zhen, X.; Gong, T.; Wen, Y.H.; Yan, D.J.; Chen, J.J.; Zhu, P. Chrysoxanthones A–C, three new xanthone–chromanone heterdimers from sponge-associated Penicillium chrysogenum HLS111 treated with histone deacetylase inhibitor. Mar. Drugs, 2018, 16(10), 357.
[http://dx.doi.org/10.3390/md16100357] [PMID: 30275353]
[45]
El-Elimat, T.; Figueroa, M.; Raja, H.A.; Graf, T.N.; Swanson, S.M.; Falkinham, J.O., III; Wani, M.C.; Pearce, C.J.; Oberlies, N.H. Biosynthetically distinct cytotoxic polyketides from Setophoma terrestris. Eur. J. Org. Chem., 2015, 2015(1), 109-121.
[http://dx.doi.org/10.1002/ejoc.201402984] [PMID: 25574154]
[46]
Sheng, S.; Li, Y.; Xiang, H.Y.; Liu, Y.; Wang, Y.D.; Kong, L-P.; Du, G.; Hu, Q-F.; Chen, Y-J.; Wang, W-G. Histone deacetylase inhibitor induced lipase inhibitors from endophytic Phomopsis sp. 0391. Rec. Nat. Prod., 2019, 14(1), 42-47.
[http://dx.doi.org/10.25135/rnp.134.19.01.1243]
[47]
Singal, R.; Ginder, G.D. DNA Methylation. Blood, 1999, 93(12), 4059-4070.
[http://dx.doi.org/10.1182/blood.V93.12.4059] [PMID: 10361102]
[48]
Zhou, Y.; Cambareri, E.; Kinsey, J. DNA methylation inhibits expression and transposition of the Neurospora Tad retrotransposon. Mol. Genet. Genom., 2001, 265(4), 748-754.
[http://dx.doi.org/10.1007/s004380100472] [PMID: 11459196]
[49]
Wang, X.; Sena Filho, J.G.; Hoover, A.R.; King, J.B.; Ellis, T.K.; Powell, D.R.; Cichewicz, R.H. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J. Nat. Prod., 2010, 73(5), 942-948.
[http://dx.doi.org/10.1021/np100142h] [PMID: 20450206]
[50]
Liu, D.Z.; Liang, B.W.; Li, X.F.; Liu, Q. Induced production of new diterpenoids in the fungus Penicillium funiculosum. Nat. Prod. Commun., 2014, 9(5), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900502] [PMID: 25026698]
[51]
Fisch, K.M.; Gillaspy, A.F.; Gipson, M.; Henrikson, J.C.; Hoover, A.R.; Jackson, L.; Najar, F.Z.; Wägele, H.; Cichewicz, R.H. Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J. Ind. Microbiol. Biotechnol., 2009, 36(9), 1199-1213.
[http://dx.doi.org/10.1007/s10295-009-0601-4] [PMID: 19521728]
[52]
He, X.; Zhang, Z.; Chen, Y.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Varitatin A, a highly modified fatty acid amide from Penicillium variabile cultured with a DNA methyltransferase inhibitor. J. Nat. Prod., 2015, 78(11), 2841-2845.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00742] [PMID: 26561719]
[53]
Qadri, M.; Nalli, Y.; Jain, S.K.; Chaubey, A.; Ali, A.; Strobel, G.A.; Vishwakarma, R.A.; Riyaz-Ul-Hassan, S. An insight into the secondary metabolism of Muscodor yucatanensis: Small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte. Microb. Ecol., 2017, 73(4), 954-965.
[http://dx.doi.org/10.1007/s00248-016-0901-y] [PMID: 27924400]
[54]
Yu, G.; Wang, Q.; Liu, S.; Zhang, X.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Methylsulfonylated polyketides produced by Neosartorya udagawae HDN13-313 via exogenous addition of small molecules. J. Nat. Prod., 2019, 82(4), 998-1001.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00035] [PMID: 30785753]
[55]
Guo, D.L.; Qiu, L.; Feng, D.; He, X.; Li, X.H.; Cao, Z.X.; Gu, Y.C.; Mei, L.; Deng, F.; Deng, Y. Three new ɑ-pyrone derivatives induced by chemical epigenetic manipulation of Penicillium herquei, an endophytic fungus isolated from Cordyceps sinensis. Nat. Prod. Res., 2020, 34(7), 958-964.
[http://dx.doi.org/10.1080/14786419.2018.1544974] [PMID: 30600715]
[56]
Xiong, Z.Q.; Yang, Y.Y.; Zhao, N.; Wang, Y. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol., 2013, 13(1), 71.
[http://dx.doi.org/10.1186/1471-2180-13-71] [PMID: 23537181]
[57]
Inglis, D.O.; Binkley, J.; Skrzypek, M.S.; Arnaud, M.B.; Cerqueira, G.C.; Shah, P.; Wymore, F.; Wortman, J.R.; Sherlock, G. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol., 2013, 13(1), 91.
[http://dx.doi.org/10.1186/1471-2180-13-91] [PMID: 23617571]
[58]
Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol., 2013, 11(1), 21-32.
[http://dx.doi.org/10.1038/nrmicro2916] [PMID: 23178386]
[59]
Lim, F.Y.; Sanchez, J.F.; Wang, C.C.C.; Keller, N.P. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol., 2012, 517, 303-324.
[http://dx.doi.org/10.1016/B978-0-12-404634-4.00015-2] [PMID: 23084945]
[60]
Shwab, E.K.; Bok, J.W.; Tribus, M.; Galehr, J.; Graessle, S.; Keller, N.P. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell, 2007, 6(9), 1656-1664.
[http://dx.doi.org/10.1128/EC.00186-07] [PMID: 17616629]
[61]
Bok, J.W.; Chiang, Y.M.; Szewczyk, E.; Reyes-Dominguez, Y.; Davidson, A.D.; Sanchez, J.F.; Lo, H.C.; Watanabe, K.; Strauss, J.; Oakley, B.R.; Wang, C.C.C.; Keller, N.P. Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol., 2009, 5(7), 462-464.
[http://dx.doi.org/10.1038/nchembio.177] [PMID: 19448638]
[62]
Birch, P.R.J.; Sims, P.F.G.; Broda, P. A reporter system for analysis of regulatable promoter functions in the basidiomycete fungus Phanerochaete chrysosporium. J. Appl. Microbiol., 1998, 85(3), 417-424.
[http://dx.doi.org/10.1046/j.1365-2672.1998.853468.x] [PMID: 9750271]
[63]
Ul-Hassan, S.R.; Strobel, G.A.; Booth, E.; Knighton, B.; Floerchinger, C.; Sears, J. Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology, 2012, 158(2), 465-473.
[http://dx.doi.org/10.1099/mic.0.054643-0] [PMID: 22096148]
[64]
Asai, T.; Chung, Y.M.; Sakurai, H.; Ozeki, T.; Chang, F.R.; Yamashita, K.; Oshima, Y. Tenuipyrone, a novel skeletal polyketide from the Entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifiers. Org. Lett., 2012, 14(2), 513-515.
[http://dx.doi.org/10.1021/ol203097b] [PMID: 22201477]
[65]
Wang, Q.; Yuan, F.; Pan, Q.; Li, M.; Wang, G.; Zhao, J.; Tang, K. Isolation and functional analysis of the Catharanthus roseus deacetylvindoline-4-O-acetyltransferase gene promoter. Plant Cell Rep., 2010, 29(2), 185-192.
[http://dx.doi.org/10.1007/s00299-009-0811-2] [PMID: 20035334]
[66]
Wu, J.S.; Yao, G.S.; Shi, X.H.; Rehman, S.U.; Xu, Y.; Fu, X.M.; Zhang, X.L.; Liu, Y.; Wang, C.Y. Epigenetic agents trigger the production of bioactive nucleoside derivatives and bisabolane sesquiterpenes from the marine-derived fungus Aspergillus versicolor. Front. Microbiol., 2020, 11, 85.
[http://dx.doi.org/10.3389/fmicb.2020.00085] [PMID: 32082294]
[67]
Igboeli, H.A.; Marchbank, D.H.; Correa, H.; Overy, D.; Kerr, R.G. Discovery of primarolides A and B from marine fungus Asteromyces cruciatus using osmotic stress and treatment with suberoylanilide hydroxamic acid. Mar. Drugs, 2019, 17(8), 435.
[http://dx.doi.org/10.3390/md17080435] [PMID: 31344982]
[68]
González-Menéndez, V.; Pérez-Bonilla, M.; Pérez-Victoria, I.; Martín, J.; Muñoz, F.; Reyes, F.; Tormo, J.; Genilloud, O. Multicomponent analysis of the differential induction of secondary metabolite profiles in fungal endophytes. Molecules, 2016, 21(2), 234.
[http://dx.doi.org/10.3390/molecules21020234] [PMID: 26901184]
[69]
Pfannenstiel, B.T.; Keller, N.P. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol. Adv., 2019, 37(6), 107345.
[http://dx.doi.org/10.1016/j.biotechadv.2019.02.001] [PMID: 30738111]
[70]
Bind, S.; Bind, S.; Sharma, A.K.; Chaturvedi, P. Epigenetic modification: A key tool for secondary metabolite production in microorganisms. Front. Microbiol., 2022, 13, 784109.
[http://dx.doi.org/10.3389/fmicb.2022.784109] [PMID: 35495688]
[71]
Pinedo-Rivilla, C.; Aleu, J.; Durán-Patrón, R. Cryptic metabolites from marine-derived microorganisms using OSMAC and epigenetic approaches. Mar. Drugs, 2022, 20(2), 84.
[http://dx.doi.org/10.3390/md20020084] [PMID: 35200614]