Mini-Reviews in Organic Chemistry

Author(s): Andisiwe Ngwekazi, Christopher Arendse and Priscilla Baker*

DOI: 10.2174/0118756298232086231203163938

DownloadDownload PDF Flyer Cite As
Functionalization of Semi-conductive Interfaces with Cucurbit[n]urils

Page: [54 - 64] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Cucurbiturils are a class of macrocyclic compounds with highly polar carbonyl portals and a hydrophobic cavity. They are usually utilized as efficient host molecules in supramolecular chemistry applications due to their high binding affinity for positively charged or cationic compounds. This review investigates the application of CB[n] immobilization at semi-conductive interfaces to produce electrochemical sensors. Critical to the production of thin film electrode preparations is the solubility of the CB[n] to produce homogeneous thin films when deposited. The solubility of CB[n] molecules in organic and inorganic solvents is limited; however, CB[7] has been applied successfully in the production of a wide range of electrochemical sensors. Furthermore, we introduce simple drop-casting of efficiently solubilized CB[7] as a simple yet effective method for producing CB[7] modified electrochemical sensors for the sensitive reporting of dopamine in aqueous solutions in the concentration range of 3.33×10-9 to 1.16×10-8 M with a sensitivity of 0.315 μA/M, (n=3).

Keywords: Macrocycle, cucurbituril, electrochemical sensor, screen print carbon electrode, drop coating, homogeneous thin films.

Graphical Abstract

[1]
Lehn, J.M. Supramolecular chemistry: Where from? Where to? Chem. Soc. Rev., 2017, 46(9), 2378-2379.
[http://dx.doi.org/10.1039/C7CS00115K]
[2]
Savyasachi, A.J.; Kotova, O.; Shanmugaraju, S.; Bradberry, S.J.; Maille, G.M.; Gunnlaugsson, T. Supramolecular chemistry: A toolkit for soft functional materials and organic particles. Chem, 2017, 3(5), 764-811.
[http://dx.doi.org/10.1016/j.chempr.2017.10.006]
[3]
Menger, F.M. Supramolecular chemistry and self-assembly. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 4818-4822.
[http://dx.doi.org/10.1073/pnas.062524299] [PMID: 11959932]
[4]
Hur, M.Y.; Hwang, I.; Kim, K. Chapter 1: Introduction: History and develoρment. Monogr. Supramol. Chem., 2020, 2020(28), 1-14.
[http://dx.doi.org/10.1039/9781788015967-00001]
[5]
Lou, X.Y.; Song, N.; Yang, Y.W. Fluorescence resonance energy transfer systems in supramolecular macrocyclic chemistry. Molecules, 2017, 22(10), 1640.
[http://dx.doi.org/10.3390/molecules22101640]
[6]
Chen, Y. Handbook of Macrocyclic Supramolecular Assembly, 2020.
[http://dx.doi.org/10.1007/978-981-15-2686-2]
[7]
Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev., 2015, 115(15), 7794-7839.
[http://dx.doi.org/10.1021/cr500392w] [PMID: 25415447]
[8]
Yudin, A.K. Macrocycles: Lessons from the distant past, recent developments, and future directions. Chem. Sci., 2015, 6(1), 30-49.
[http://dx.doi.org/10.1039/C4SC03089C] [PMID: 28553456]
[9]
Braegelman, A.S.; Webber, M.J. Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems. Theranostics, 2019, 9(11), 3017-3040.
[http://dx.doi.org/10.7150/thno.31913] [PMID: 31244940]
[10]
Wang, B.; Chen, H.; Liu, T.; Shi, S.; Russell, T.P. Host–guest molecular recognition at liquid–liquid interfaces. Engineering, 2021, 7(5), 603-614.
[http://dx.doi.org/10.1016/j.eng.2021.02.004]
[11]
Das, D.; Assaf, K.I.; Nau, W.M. Applications of Cucurbiturils in medicinal chemistry and chemical biology. Front. Chem., 2019, 7, 619.
[http://dx.doi.org/10.3389/fchem.2019.00619] [PMID: 31572710]
[12]
Crumling, M.A.; King, K.A.; Duncan, R.K. Cyclodextrins and iatrogenic hearing loss: new drugs with significant risk. Front. Cell. Neurosci., 2017, 11, 355.
[http://dx.doi.org/10.3389/fncel.2017.00355] [PMID: 29163061]
[13]
Barrow, S.J.; Kasera, S.; Rowland, M.J.; del Barrio, J.; Scherman, O.A. Cucurbituril-based molecular recognition. Chem. Rev., 2015, 115(22), 12320-12406.
[http://dx.doi.org/10.1021/acs.chemrev.5b00341] [PMID: 26566008]
[14]
Blanco, E.; Quintana, C.; Hernández, L.; Hernández, P. Atomic force microscopy study of new sensing platforms: Cucurbit[ n]uril (n =6, 7) on gold. Electroanalysis, 2013, 25(1), 263-268.
[http://dx.doi.org/10.1002/elan.201200379]
[15]
Yan, S.; Wu, Z.; Yu, H.; Gong, Y.; Tan, Y.; Du, R.; Chen, W.; Xing, X.; Mo, G.; Chen, Z.; Cai, Q.; Sun, D. Time-resolved small-angle X-ray scattering study on the growth behavior of silver nanoparticles. J. Phys. Chem. C., 2014, 11821, 11454-11463.
[http://dx.doi.org/10.1021/jp502482c]
[16]
Kim, J.; Jung, I.; Kim, S.; Lee, E.; Kang, J.; Sakamoto, S.; Yamaguchi, K.; Kim, K.; Hyojadong, S.; Korea, R.; September, R.V. New Cucurbituril Homologues: Syntheses, isolation, characterization, and X-ray crystal structures of Cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc., 2000, 1223, 540-541.
[17]
Lee, J.W.; Heo, S.W.; Lee, S.J.C.; Ko, J.Y.; Kim, H.; Kim, H.I. Probing conformational changes of ubiquitin by host-guest chemistry using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2013, 24(1), 21-29.
[http://dx.doi.org/10.1007/s13361-012-0496-6] [PMID: 23247966]
[18]
Funk, S.; Schatz, J. Cucurbiturils in supramolecular catalysis. J. Incl. Phenom. Macrocycl. Chem., 2020, 96(1-2), 1-27.
[http://dx.doi.org/10.1007/s10847-019-00956-0]
[19]
Aktanova, A.; Abramova, T.; Pashkina, E.; Boeva, O.; Grishina, L.; Kovalenko, E.; Kozlov, V. Assessment of the biocompatibility of cucurbiturils in blood cells. Nanomaterials, 2021, 11(6), 1356.
[http://dx.doi.org/10.3390/nano11061356] [PMID: 34063763]
[20]
Bai, H.; Wang, J.; Li, Z.; Tang, G. Macrocyclic compounds for drug and gene delivery in immune-modulating therapy. Int. J. Mol. Sci., 2019, 20(9), 2097.
[http://dx.doi.org/10.3390/ijms20092097] [PMID: 31035393]
[21]
Zheng, N.; Shabek, N. Ubiquitin ligases: Structure, function, and regulation. Annu. Rev. Biochem., 2017, 86(1), 129-157.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014922] [PMID: 28375744]
[22]
Kircheva, N.; Dobrev, S.; Dasheva, L.; Koleva, I.; Nikolova, V.; Angelova, S.; Dudev, T. Complexation of biologically essential (mono- and divalent) metal cations to cucurbiturils: A DFT/SMD evaluation of the key factors governing the host–guest recognition. RSC Advances, 2020, 10(47), 28139-28147.
[http://dx.doi.org/10.1039/D0RA04387G] [PMID: 35519129]
[23]
Yahiaoui, K.; Seridi, L.; Mansouri, K. Temozolomide binding to Cucurbit[7]uril: QTAIM, NCI-RDG and NBO analyses. J. Incl. Phenom. Macrocycl. Chem., 2021, 99(1-2), 61-77.
[http://dx.doi.org/10.1007/s10847-020-01027-5]
[24]
Kaabel, S.; Adamson, J.; Topić, F.; Kiesilä, A.; Kalenius, E.; Öeren, M.; Reimund, M.; Prigorchenko, E.; Lõokene, A.; Reich, H.J.; Rissanen, K.; Aav, R. Chiral hemicucurbit[8]uril as an anion receptor: Selectivity to size, shape and charge distribution. Chem. Sci., 2017, 8(3), 2184-2190.
[http://dx.doi.org/10.1039/C6SC05058A] [PMID: 28694954]
[25]
Cicolani, R.S.; Souza, L.R.R.; de Santana Dias, G.B.; Gonçalves, J.M.R.; Abrahão, I.S.; Silva, V.M.; Demets, G.J-F. Cucurbiturils for environmental and analytical chemistry. J. Incl. Phenom. Macrocycl. Chem., 2021, 99(1-2), 1-12.
[http://dx.doi.org/10.1007/s10847-020-00999-8] [PMID: 34785985]
[26]
Guchhait, T.; Roy, S.; Das, M.; Jena, S.P. Diversity in synthetic perchlorate anion receptors: Challenges and opportunities. J. Mol. Struct., 2023, 1292, 136195.
[http://dx.doi.org/10.1016/j.molstruc.2023.136195]
[27]
Assaf, K.I.; Nau, W.M. Large anion binding in water. Org. Biomol. Chem., 2023, 21(33), 6636-6651.
[http://dx.doi.org/10.1039/D3OB00975K] [PMID: 37548417]
[28]
Sanku, R.K.K.; Karakus, O.O.; Ilies, M.; Ilies, M.A. Inclusion complexes in drug delivery and drug targeting: Formation, characterization, and biological applications. ACS Symp. Ser., 2019, 1309, 187-221.
[http://dx.doi.org/10.1021/bk-2019-1309.ch009]
[29]
Sigwalt, D.; Šekutor, M.; Cao, L.; Zavalij, P.Y.; Hostaš, J.; Ajani, H.; Hobza, P.; Mlinarić-Majerski, K.; Glaser, R.; Isaacs, L. Unraveling the structure–affinity relationship between Cucurbit[ n]urils (n = 7, 8) and cationic diamondoids. J. Am. Chem. Soc., 2017, 139(8), 3249-3258.
[http://dx.doi.org/10.1021/jacs.7b00056] [PMID: 28182422]
[30]
Blanco, E.; Quintana, C.; Hernández, P. An electrochemical study of Cucurbit[6]uril–Cadmium(II) interactions and the effect of electrolyte cations and guest molecules. Anal. Lett., 2015, 48(5), 783-795.
[http://dx.doi.org/10.1080/00032719.2014.961604]
[31]
Mitkina, T.V.; Zakharchuk, N.F.; Naumov, D.Y.; Gerasko, O.A.; Fenske, D.; Fedin, V.P. Syntheses, structures, and electrochemical properties of inclusion compounds of cucurbit[8]uril with cobalt(III) and nickel(II) complexes. Inorg. Chem., 2008, 47(15), 6748-6755.
[http://dx.doi.org/10.1021/ic8003036] [PMID: 18588285]
[32]
Shi, X.; Gu, W.; Zhang, C.; Zhao, L.; Li, L.; Peng, W.; Xian, Y. Construction of a Graphene/Au‐Nanoparticles/Cucurbit[7]uril‐based sensor for Pb 2+ sensing. Chemistry, 2016, 22(16), 5643-5648.
[http://dx.doi.org/10.1002/chem.201505034] [PMID: 26948157]
[33]
Murkli, S.; Klemm, J.; Brockett, A.T.; Shuster, M.; Briken, V.; Roesch, M.R.; Isaacs, L. In vitro and in vivo sequestration of phencyclidine by Me4Cucurbit[8]uril. Chemistry - A Eur. J., 2021, 27(9), 3098-3105.
[http://dx.doi.org/10.1002/chem.202004380]
[34]
Park, K.M.; Kim, J.; Ko, Y.H.; Ahn, Y.; Murray, J.; Li, M.; Shrinidhi, A.; Kim, K. Dye-Cucurbit[ n]uril Complexes as sensor elements for reliable pattern recognition of biogenic polyamines. Bull. Chem. Soc. Jpn., 2018, 91(1), 95-99.
[http://dx.doi.org/10.1246/bcsj.20170302]
[35]
Blanco, E.; Rocha, L.; Pozo, M.; Vázquez, L.; Petit-Domínguez, M.D.; Casero, E.; Quintana, C. A supramolecular hybrid sensor based on cucurbit[8]uril, 2D-molibdenum disulphide and diamond nanoparticles towards methyl viologen analysis. Anal. Chim. Acta, 2021, 1182, 338940.
[http://dx.doi.org/10.1016/j.aca.2021.338940] [PMID: 34602204]
[36]
Ko, Y.H.; Kim, E.; Hwang, I.; Kim, K. Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chem. Commun., 2007, (13), 1305-1315.
[http://dx.doi.org/10.1039/B615103E] [PMID: 17377666]
[37]
Ogoshi, T.; Yamagishi, T. Historical background of macrocyclic compounds. In: The Royal Society of Chemistry; Ogoshi, T., Ed.; , 2015.
[http://dx.doi.org/10.1039/9781782622321-00001]
[38]
Vinciguerra, B.; Cao, L.; Cannon, J.R.; Zavalij, P.Y.; Fenselau, C.; Isaacs, L. Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril. J. Am. Chem. Soc., 2012, 134(31), 13133-13140.
[http://dx.doi.org/10.1021/ja3058502] [PMID: 22799491]
[39]
Sarraute, S.; Biesse-Martin, A.S.; Devemy, J.; Dequidt, A.; Bonal, C.; Malfreyt, P. Investigation of the complexation between 4-Aminoazobenzene and Cucurbit[7]uril through a combined spectroscopic, nuclear magnetic resonance, and molecular simulation studies. ACS Omega, 2022, 7(29), 25013-25021.
[http://dx.doi.org/10.1021/acsomega.2c00499] [PMID: 35910107]
[40]
Chen, M.C.; Anderson, J.R.; Sohn, M.H. What can a mouse cursor tell us more?: correlation of eye/mouse movements on web browsing. CHI EA '01: CHI '01 Extended Abstracts on Human Factors in Computing Systems, 2001, pp. 281-282.
[http://dx.doi.org/10.1145/634067.634234]
[41]
Jansen, K.; Buschmann, H.J.; Wego, A.; Döpp, D.; Mayer, C.; Drexler, H.J.; Holdt, H.J.; Schollmeyer, E. Cucurbit[5]Uril, Decamethylcucurbit[5]Uril and Cucurbit[6]Uril. Synthesis, solubility, and amine complex formation. J. Incl. Phenom. Macrocycl. Chem., 2001, 39(3/4), 357-363.
[http://dx.doi.org/10.1023/A:1011184725796]
[42]
Lucas, D.; Minami, T.; Iannuzzi, G.; Cao, L.; Wittenberg, J.B.; Anzenbacher, P., Jr; Isaacs, L. Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives. J. Am. Chem. Soc., 2011, 133(44), 17966-17976.
[http://dx.doi.org/10.1021/ja208229d] [PMID: 21970313]
[43]
Flinn, A.; Hough, G.C.; Stoddart, J.F.; Williams, D.J. Decamethylcucurbit[5]uril. Angew. Chem. Int. Ed. Engl., 1992, 31(11), 1475-1477.
[http://dx.doi.org/10.1002/anie.199214751]
[44]
Sinn, S.; Biedermann, F. Chemical sensors based on Cucurbit[n]uril macrocycles. Isr. J. Chem., 2018, 58(3-4), 357-412. [n].
[http://dx.doi.org/10.1002/ijch.201700118]
[45]
Lazar, A.I.; Biedermann, F.; Mustafina, K.R.; Assaf, K.I.; Hennig, A.; Nau, W.M. Nanomolar binding of steroids to Cucurbit[ n]urils: Selectivity and applications. J. Am. Chem. Soc., 2016, 138(39), 13022-13029.
[http://dx.doi.org/10.1021/jacs.6b07655] [PMID: 27673427]
[46]
Cao, L.; Šekutor, M.; Zavalij, P.Y.; Mlinarić-Majerski, K.; Glaser, R.; Isaacs, L. Cucurbit[7]uril⋅guest pair with an attomolar dissociation constant. Angew. Chem. Int. Ed., 2014, 53(4), 988-993.
[http://dx.doi.org/10.1002/anie.201309635] [PMID: 24382654]
[47]
Uzunova, V.D.; Cullinane, C.; Brix, K.; Nau, W.M.; Day, A.I. Toxicity of cucurbit[7]uril and cucurbit[8]uril: An exploratory in vitro and in vivo study. Org. Biomol. Chem., 2010, 8(9), 2037-2042.
[http://dx.doi.org/10.1039/b925555a] [PMID: 20401379]
[48]
Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors, 2022, 10(9), 363.
[http://dx.doi.org/10.3390/chemosensors10090363]
[49]
Faridbod, F.; Gupta, V.K.; Zamani, H.A. Electrochemical sensors and biosensors. Int. J. Electrochem., 2011, 2011, 1-2.
[http://dx.doi.org/10.4061/2011/352546] [PMID: 21963095]
[50]
Liu, L.; Liu, F.; Jiang, D.; Xiang, G.; Liu, C.; Yang, J.; Pu, X. Hybridization chain reaction and target recycling enhanced tumor necrosis factor alpha aptasensor with host-guest interaction for signal probe collection. Sens. Actuators B Chem., 2016, 231, 680-687.
[http://dx.doi.org/10.1016/j.snb.2016.03.098]
[51]
Wasserberg, D.; Jonkheijm, P. Supramolecular wearable sensors. Chem, 2017, 3(4), 531-533.
[http://dx.doi.org/10.1016/j.chempr.2017.09.019]
[52]
Jang, Y.; Jang, M.; Kim, H.; Lee, S.J.; Jin, E.; Koo, J.Y.; Hwang, I.C.; Kim, Y.; Ko, Y.H.; Hwang, I.; Oh, J.H.; Kim, K. Point-of-use detection of amphetamine-type stimulants with host-molecule-functionalized organic transistors. Chem, 2017, 3(4), 641-651.
[http://dx.doi.org/10.1016/j.chempr.2017.08.015]
[53]
Lv, Y.; Tao, C.A.; Huang, J.; Li, Y.; Wang, F.; Cai, F.; Wang, J. Self-assembly of cucurbit[7]uril on the surface of graphene/gold modified electrode. Nanomat. Nanotech., 2016, 6
[http://dx.doi.org/10.1177/1847980416682443]
[54]
Zhang, J.; Li, B.; Wang, Q.; Wei, X.; Feng, W.; Chen, Y.; Huang, P.; Wang, Z. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids. Sci. Rep., 2017, 7(1), 18013.
[http://dx.doi.org/10.1038/s41598-017-18228-7] [PMID: 29269843]
[55]
Li, H.; Hu, X.; Zhao, J.; Koh, K.; Chen, H. A label-free impedimetric sensor for the detection of an amphetamine-type derivative based on cucurbit[7]uril-mediated three-dimensional AuNPs. Electrochem. Commun., 2019, 100, 126-133.
[http://dx.doi.org/10.1016/j.elecom.2019.02.002]
[56]
Herráez-Hernández, R.; Campíns-Falcó, P. Automated trace enrichment for screening and/or determination of primary, secondary and tertiary amphetamines in biological samples by liquid chromatography. Analyst, 1999, 124(3), 239-244.
[http://dx.doi.org/10.1039/a809825e] [PMID: 10605885]
[57]
Gallardo-González, J.; Baraket, A.; Bonhomme, A.; Zine, N.; Sigaud, M.; Bausells, J.; Errachid, A. Sensitive potentiometric determination of amphetamine with an all-solid-state micro ion-selective electrode. Anal. Lett., 2018, 51(3), 348-358.
[http://dx.doi.org/10.1080/00032719.2017.1326053]
[58]
Cheng, G.; Luo, J.; Liu, Y.; Chen, X.; Wu, Z.; Chen, T. Cucurbituril-oriented nanoplatforms in biomedical applications. ACS Appl. Bio Mater., 2020, 3(12), 8211-8240.
[http://dx.doi.org/10.1021/acsabm.0c01061] [PMID: 35019600]
[59]
Yang, M.X.; Tang, Q.; Yang, M.; Wang, Q.; Tao, Z.; Xiao, X.; Huang, Y. pH-stimulus response dye-cucurbituril sensor for amino acids in aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 230, 118076.
[http://dx.doi.org/10.1016/j.saa.2020.118076] [PMID: 31982654]
[60]
Committee, A.D. Cucurbituril Complexes and Their Spectral Characterization by Mohammad A; Alnajjar Doctor of Philosophy in Chemistry, 2021.
[61]
Chio, W.I.K.; Xie, H.; Zhang, Y.; Lan, Y.; Lee, T.C. SERS biosensors based on cucurbituril-mediated nanoaggregates for wastewater-based epidemiology. Trends Analyt. Chem., 2022, 146, 116485.
[http://dx.doi.org/10.1016/j.trac.2021.116485]
[62]
Ahmed Elbashir, A.; Moutasim Merghani, S. Development of chemically modified electrode using cucurbit(6)uril to detect ranitidine hydrochloride in pharmaceutical formulation by voltammetry. J. Anal. Pharm. Res., 2018, 7(6), 634-639.
[http://dx.doi.org/10.15406/japlr.2018.07.00294]
[63]
del Pozo, M.; Mejías, J.; Hernández, P.; Quintana, C. Cucurbit[8]uril-based electrochemical sensors as detectors in flow injection analysis. Application to dopamine determination in serum samples. Sens. Actuators B Chem., 2014, 193, 62-69.
[http://dx.doi.org/10.1016/j.snb.2013.11.074]
[64]
Chandra, F.; Dutta, T.; Koner, A.L. Supramolecular encapsulation of a neurotransmitter serotonin by cucurbit[7]uril’. Front. Chem., 2020, 8, 1-11.
[http://dx.doi.org/10.3389/fchem.2020.582757]
[65]
Trivedi, M.U.; Greczynski, G.; Kanth, P. Study of Cucurbit[7]Uril nanocoating on epitaxial graphene to design a versatile sensing platform. Appl. Surf. Sci., 2021, 563, 150096.
[http://dx.doi.org/10.1016/j.apsusc.2021.150096]
[66]
Kaliyaraj Selva Kumar, A.; Zhang, Y.; Li, D.; Compton, R.G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun., 2020, 121, 106867.
[http://dx.doi.org/10.1016/j.elecom.2020.106867]
[67]
de Azevedo, L.A.; da Luz, L.L.; de Ferro, J.N.S.; Barreto, E.; Silva, R.O.; Junior, S.A.; Alves, I.B.V. The new supra molecular nano-aggregate curcumin-cucurbit[7]uril: Synthesis, photophysical properties and biocompatibility evaluation. Photochem. Photobiol. Sci., 2017, 16(5), 663-671.
[http://dx.doi.org/10.1039/c6pp00408c] [PMID: 28225114]
[68]
Saleh, N.; Bufaroosha, M. S.; Moussa, Z.; Bojesomo, R.; Al-amodi, H.; Al-ahdal, A. For Enhancing Photoisomerization., 2020, 1-11.
[69]
Kim, K.O.; Kim, G.J.; Kim, J.H. A cellulose/β-cyclodextrin nanofiber patch as a wearable epidermal glucose sensor. RSC Advances, 2019, 9(40), 22790-22794.
[http://dx.doi.org/10.1039/C9RA03887F] [PMID: 35514507]
[70]
Pandey, S.; Mewada, A.; Thakur, M.; Tank, A.; Sharon, M. Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol. RSC Advances, 2013, 3(48), 26290-26296.
[http://dx.doi.org/10.1039/c3ra42139b]
[71]
Priya, T.J.; Rebecca, J.; Sugumar, R.W. Study on the complexation of macromolecule cucurbituril with metals and acetamide. Int. J. Chem. Appl., 2012, 4(3), 219-226.
[72]
Xu, H.; Wang, L.; Luo, J.; Song, Y.; Liu, J.; Zhang, S.; Cai, X. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array. Sensors, 2015, 15(1), 1008-1021.
[http://dx.doi.org/10.3390/s150101008] [PMID: 25580900]
[73]
Buaki-Sogo, M.; del Pozo, M.; Hernández, P.; García, H.; Quintana, C. Graphene in combination with cucurbit[n]urils as electrode modifiers for electroanalytical biomolecules sensing. Talanta, 2012, 101, 135-140.
[http://dx.doi.org/10.1016/j.talanta.2012.09.016] [PMID: 23158302]
[74]
Martínez-Moro, R.; del Pozo, M.; Vázquez, L.; Martín-Gago, J.A.; Petit-Domínguez, M.D.; Casero, E.; Quintana, C. Electrochemical sensor based on the synergy between Cucurbit[8]uril and 2D-MoS2 for enhanced melatonin quantification. Sci. Rep., 2023, 13(1), 10378.
[http://dx.doi.org/10.1038/s41598-023-37401-9] [PMID: 36593249]
[75]
Zhang, S.; Zhou, C.; Gao, C.; Yang, J.; Liao, X.; Yang, B. Fluorescent probe based on acyclic cucurbituril to detect Fe3+ ions in living cells. J. Mol. Liq., 2023, 390, 122942.
[http://dx.doi.org/10.1016/j.molliq.2023.122942]
[76]
Zhang, X.; Jia, Y.; Feng, R.; Wu, T.; Zhang, N.; Du, Y.; Ju, H. Cucurbituril enhanced electrochemiluminescence of gold nanoclusters via host–guest recognition for sensitive D-Dimer sensing. Anal. Chem., 2022, 95(2)
[http://dx.doi.org/10.1021/acs.analchem.2c04463] [PMID: 36575586]
[77]
Geng, Q.X.; Cong, H.; Tao, Z.; Lindoy, L.F.; Wei, G. Cucurbit[7]uril-improved recognition by a fluorescent sensor for cadmium and zinc cations. Supramol. Chem., 2016, 28(9-10), 784-791.
[http://dx.doi.org/10.1080/10610278.2015.1117614]
[78]
Wang, Y.; Ding, L.; Yu, H.; Liang, F. Cucurbit[6]uril functionalized gold nanoparticles and electrode for the detection of metformin drug. Chin. Chem. Lett., 2022, 33(1), 283-287.
[http://dx.doi.org/10.1016/j.cclet.2021.06.044]