Recent Advances in Electrochemical Sulfonylation using Sodium Sulfinates as Sulfonyl Radical Precursors

Page: [105 - 116] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Sodium sulfinates have been widely utilized as sulfonyl radical precursors for preparing a diverse array of value-added sulfur-containing compounds (sulfones, sulfonamides, sulfonates, thiosulfonates, etc.) through S-C, S-N, S-O and S-S bonds formation reactions. Organic electrosynthesis has become an attractive alternative to conventional methods for redox reactions because it utilizes electric current instead of chemical redox agents. As such, the electrochemical generation of sulfonyl radicals from sodium sulfinates and their applications in organic electrosynthesis have attracted much attention. In this review, the recent advances in the electrochemical sulfonylation of organic compounds involving sodium sulfinates as sulfonyl radical precursors since 2015 were reviewed, along with related reaction mechanisms.

Graphical Abstract

[1]
Dong, D.Q.; Han, Q.Q.; Yang, S.H.; Song, J.C.; Li, N.; Wang, Z.L.; Xu, X.M. Recent progress in sulfonylation via radical reaction with sodium sulfinates, sulfinic acids, sulfonyl chlorides or sulfonyl hydrazides. ChemistrySelect, 2020, 5(42), 13103-13134.
[http://dx.doi.org/10.1002/slct.202003650]
[2]
Reddy, R.J.; Kumari, A.H. Synthesis and applications of sodium sulfinates (RSO2Na): A powerful building block for the synthesis of organosulfur compounds. RSC Advances, 2021, 11(16), 9130-9221.
[http://dx.doi.org/10.1039/D0RA09759D] [PMID: 35423435]
[3]
Ye, X.; Wu, X.; Guo, S.; Huang, D.; Sun, X. Recent advances of sodium sulfinates in radical reactions. Tetrahedron Lett., 2021, 81, 153368.
[http://dx.doi.org/10.1016/j.tetlet.2021.153368]
[4]
Li, Y.; Huang, D.; Deng, D.; Guo, S.R. The applications of sulfinic acids, sodium sulfinates, or sulfonyl hydrazides in the radical cyclization. Curr. Org. Chem., 2022, 26(4), 369-381.
[http://dx.doi.org/10.2174/1385272826666220222110614]
[5]
Pollok, D.; Waldvogel, S.R. Electro-organic synthesis – A 21st century technique. Chem. Sci., 2020, 11(46), 12386-12400.
[http://dx.doi.org/10.1039/D0SC01848A] [PMID: 34123227]
[6]
Meyer, T.H.; Choi, I.; Tian, C.; Ackermann, L. Powering the future: How can electrochemistry make a difference in organic synthesis? Chem, 2020, 6(10), 2484-2496.
[http://dx.doi.org/10.1016/j.chempr.2020.08.025]
[7]
Novaes, L.F.T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J.M.; Lin, S. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev., 2021, 50(14), 7941-8002.
[http://dx.doi.org/10.1039/D1CS00223F] [PMID: 34060564]
[8]
Park, D.I.; Jung, S.; Yoon, H.J.; Jin, K. Directing electrochemical asymmetric synthesis at heterogeneous interfaces: Past, present, and challenges. Electrochim. Acta, 2021, 397, 139271.
[http://dx.doi.org/10.1016/j.electacta.2021.139271]
[9]
Hardwick, T.; Ahmed, N. C-H functionalization via electrophotocatalysis and photoelectrochemistry: Complementary synthetic approach. ACS Sustain. Chem. Eng., 2021, 9(12), 4324-4340.
[http://dx.doi.org/10.1021/acssuschemeng.0c08434]
[10]
Murtaza, A.; Qamar, M.A.; Saleem, K.; Hardwick, T.; Shirinfar, B.; Ahmed, N. Renewable electricity enables green routes to fine chemicals and pharmaceuticals. Chem. Rec., 2022, 22(5), e202100296.
[http://dx.doi.org/10.1002/tcr.202100296] [PMID: 35103382]
[11]
Pokhrel, T. B K, B.; Giri, R.; Adhikari, A.; Ahmed, N. C-H bond functionalization under electrochemical flow conditions. Chem. Rec., 2022, 22(6), e202100338.
[http://dx.doi.org/10.1002/tcr.202100338] [PMID: 35315954]
[12]
Murtaza, A.; Ulhaq, Z.; Shirinfar, B.; Rani, S.; Aslam, S.; Martins, G.M.; Ahmed, N. Arenes and heteroarenes C-H functionalization under enabling conditions: Electro-chemistry, photoelectrochemistry & flow technology. Chem. Rec., 2023, 23(10), e202300119.
[http://dx.doi.org/10.1002/tcr.202300119] [PMID: 37255348]
[13]
Aslam, S.; Sbei, N.; Rani, S.; Saad, M.; Fatima, A.; Ahmed, N. Heterocyclic electrochemistry: Renewable electricity in the construction of heterocycles. ACS Omega, 2023, 8(7), 6175-6217.
[http://dx.doi.org/10.1021/acsomega.2c07378] [PMID: 36844606]
[14]
Mei, H.; Pajkert, R.; Wang, L.; Li, Z.; Röschenthaler, G.V.; Han, J. Chemistry of electrochemical oxidative reactions of sulfinate salts. Green Chem., 2020, 22(10), 3028-3059.
[http://dx.doi.org/10.1039/D0GC01025A]
[15]
Qian, B.C.; Zhu, C.Z.; Shen, G.B. The application of sulfonyl hydrazides in electrosynthesis: A review of recent studies. ACS Omega, 2022, 7(44), 39531-39561.
[http://dx.doi.org/10.1021/acsomega.2c04205] [PMID: 36385900]
[16]
Yamamoto, H.; Nakata, K. Diastereoconvergent synthesis of chiral diarylmethyl sulfones by direct sulfonylation of diarylmethanols diastereomixtures with sodium sulfinates catalyzed by SnBr2. Eur. J. Org. Chem., 2019, 2019(30), 4906-4910.
[http://dx.doi.org/10.1002/ejoc.201900830]
[17]
Kanyiva, K.S.; Uchida, K.; Shibata, T. Silver-catalyzed C(sp3)-H sulfonylation for the synthesis of benzyl sulfones using toluene derivatives and α-amino acid sulfona-mides. Bull. Chem. Soc. Jpn., 2021, 94(4), 1377-1384.
[http://dx.doi.org/10.1246/bcsj.20200393]
[18]
Wang, X.L.; Bai, X.; Wu, C.F.; Dong, Y.X.; Zhang, M.; Fan, L.L.; Tang, L.; Yang, Y.Y.; Zhang, J.Q. Direct C(sp3)-H sulfonylation and sulfuration reactions of isoquino-line-1,3(2h,4h)-diones under metal-free conditions. Asian J. Org. Chem., 2021, 10(2), 386-391.
[http://dx.doi.org/10.1002/ajoc.202000668]
[19]
Wei, W.J.; Zhong, Y.J.; Feng, Y.F.; Gao, L.; Tang, H.T.; Pan, Y.M.; Ma, X.L.; Mo, Z.Y. Electrochemically mediated direct C(sp3)-H sulfonylation of xanthene derivatives. Adv. Synth. Catal., 2022, 364(4), 726-731.
[http://dx.doi.org/10.1002/adsc.202101289]
[20]
Wei, B.; Zhou, Z.; Qin, J.; Yan, Z.; Guo, J.; Lei, S.; Xie, Y.; Ouyang, X.; Song, R. Electrochemical oxidative C(sp3)-H sulfonylation of xanthenes with sodium sulfonates. Youji Huaxue, 2023, 43(1), 186-194.
[http://dx.doi.org/10.6023/cjoc202207012]
[21]
Li, Y.; Fan, Y. Recent advances in C–S bond construction to synthesize sulfone. Synth. Commun., 2019, 49(23), 3227-3264.
[http://dx.doi.org/10.1080/00397911.2019.1656747]
[22]
Wu, Y.C.; Jiang, S.S.; Luo, S.Z.; Song, R.J.; Li, J.H. Transition-metal- and oxidant-free directed anodic C–H sulfonylation of N,N-disubstituted anilines with sulfinates. Chem. Commun. (Camb.), 2019, 55(61), 8995-8998.
[http://dx.doi.org/10.1039/C9CC03789F] [PMID: 31290859]
[23]
Lu, F.; Li, J.; Wang, T.; Li, Z.; Jiang, M.; Hu, X.; Pei, H.; Yuan, F.; Lu, L.; Lei, A. Electrochemical oxidative C-H sulfonylation of anilines. Asian J. Org. Chem., 2019, 8(10), 1838-1841.
[http://dx.doi.org/10.1002/ajoc.201900447]
[24]
Kim, W.; Kim, H.Y.; Oh, K. Electrochemical radical-radical cross-coupling approach between sodium sulfinates and 2H-indazoles to 3-sulfonylated 2H-indazoles. Org. Lett., 2020, 22(16), 6319-6323.
[http://dx.doi.org/10.1021/acs.orglett.0c02144] [PMID: 32806182]
[25]
Kim, W.; Kim, H.Y.; Oh, K. Oxidation potential-guided electrochemical radical-radical cross-coupling approaches to 3-sulfonylated imidazopyridines and indolizines. J. Org. Chem., 2021, 86(22), 15973-15991.
[http://dx.doi.org/10.1021/acs.joc.1c00873] [PMID: 34185997]
[26]
Yu, Y.; Fang, Y.; Tang, R.; Xu, D.; Dai, S.; Zhang, W. Electrochemical oxidative sulfonylation of N-arylamides/amine with sodium sulfinates. Asian J. Org. Chem., 2022, 11(2), e202100805.
[http://dx.doi.org/10.1002/ajoc.202100805]
[27]
Leclercq, E.; Boddaert, M.; Beaucamp, M.; Penhoat, M.; Chausset-Boissarie, L. Electrochemical sulfonylation of imidazoheterocycles under batch and continuous flow conditions. Org. Biomol. Chem., 2021, 19(43), 9379-9385.
[http://dx.doi.org/10.1039/D1OB01822A] [PMID: 34673877]
[28]
Zhu, J.; Chen, Z.; He, M.; Wang, D.; Li, L.; Qi, J.; Shi, R.; Lei, A. Metal-free electrochemical C3-sulfonylation of imidazo[1,2-a]pyridines. Org. Chem. Front., 2021, 8(14), 3815-3819.
[http://dx.doi.org/10.1039/D1QO00348H]
[29]
Han, L.; Huang, M.; Li, Y.; Zhang, J.; Zhu, Y.; Kim, J.K.; Wu, Y. An electrolyte- and catalyst-free electrooxidative sulfonylation of imidazo[1,2-a]pyridines. Org. Chem. Front., 2021, 8(12), 3110-3117.
[http://dx.doi.org/10.1039/D1QO00038A]
[30]
Yao, W.; Lv, K.; Xie, Z.; Qiu, H.; Ma, M. Catalyst-free electrochemical sulfonylation of organoboronic acids. J. Org. Chem., 2023, 88(4), 2296-2305.
[http://dx.doi.org/10.1021/acs.joc.2c02690] [PMID: 36727513]
[31]
Feng, M.L.; Xi, L.Y.; Chen, S.Y.; Yu, X.Q. Electrooxidative metal-free dehydrogenative alpha-sulfonylation of 1H-indole with sodium sulfinates. Eur. J. Org. Chem., 2017, 2017(19), 2746-2750.
[http://dx.doi.org/10.1002/ejoc.201700269]
[32]
Jiang, M.; Yuan, Y.; Wang, T.; Xiong, Y.; Li, J.; Guo, H.; Lei, A. Exogenous-oxidant- and catalyst-free electrochemical deoxygenative C2 sulfonylation of quinoline N-oxides. Chem. Commun., 2019, 55(92), 13852-13855.
[http://dx.doi.org/10.1039/C9CC07777D] [PMID: 31670346]
[33]
Meadows, D.C.; Gervay-Hague, J. Vinyl sulfones: Synthetic preparations and medicinal chemistry applications. Med. Res. Rev., 2006, 26(6), 793-814.
[http://dx.doi.org/10.1002/med.20074] [PMID: 16788979]
[34]
Ahmadi, R.; Emami, S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur. J. Med. Chem., 2022, 234, 114255.
[http://dx.doi.org/10.1016/j.ejmech.2022.114255] [PMID: 35305462]
[35]
Fang, Y.; Luo, Z.; Xu, X. Recent advances in the synthesis of vinyl sulfones. RSC Advances, 2016, 6(64), 59661-59676.
[http://dx.doi.org/10.1039/C6RA10731A]
[36]
Luo, Y.C.; Pan, X.J.; Yuan, G.Q. An efficient electrochemical synthesis of vinyl sulfones from sodium sulfinates and olefins. Tetrahedron, 2015, 71(14), 2119-2123.
[http://dx.doi.org/10.1016/j.tet.2015.02.048]
[37]
Gao, H.; Li, P-H.; Wang, P-L.; Jiang, Z-S.; Li, C.; Tian, Z-A. Electrochemical synthesis of vinyl sulfones by sulfonylation of styrenes with a catalytic amount of potassium iodide. Synlett, 2020, 31(17), 1720-1724.
[http://dx.doi.org/10.1055/s-0040-1707249]
[38]
Fang, Y.; Xu, D.; Yu, Y.; Tang, R.; Dai, S.; Wang, Z.; Zhang, W. Controlled synthesis of β-keto sulfones and vinyl sulfones under electrochemical oxidation. Eur. J. Org. Chem., 2022, 2022(13), e202200091.
[http://dx.doi.org/10.1002/ejoc.202200091]
[39]
Gu, Q.; Wang, X.; Liu, X.; Wu, G.; Xie, Y.; Shao, Y.; Zhao, Y.; Zeng, X. Electrochemical sulfonylation of enamides with sodium sulfinates to access β-amidovinyl sulfones. Org. Biomol. Chem., 2021, 19(38), 8295-8300.
[http://dx.doi.org/10.1039/D1OB01485D] [PMID: 34519742]
[40]
Dai, L.; Yu, Q.; Zhang, J.; Wu, F.; Wang, C.; Zhang, J.; Rong, L. Electrochemical radical δ-H sulfonylation reaction for the synthesis of 4-((aryl,arylsul fonyl)methylene)-2,5-cyclohexadiene derivatives. J. Org. Chem., 2021, 86(15), 10568-10579.
[http://dx.doi.org/10.1021/acs.joc.1c01213] [PMID: 34291953]
[41]
Meng, X.; Xu, H.; Cao, X.; Cai, X.M.; Luo, J.; Wang, F.; Huang, S. Electrochemically enabled sulfonylation of alkynes with sodium sulfinates. Org. Lett., 2020, 22(17), 6827-6831.
[http://dx.doi.org/10.1021/acs.orglett.0c02341] [PMID: 32814422]
[42]
Qian, P.; Bi, M.; Su, J.; Zha, Z.; Wang, Z. Electrosynthesis of (E)-vinyl sulfones directly from cinnamic acids and sodium sulfinates via decarboxylative sulfono functionalization. J. Org. Chem., 2016, 81(11), 4876-4882.
[http://dx.doi.org/10.1021/acs.joc.6b00661] [PMID: 27175916]
[43]
Zhong, Q.; Zhao, Y.; Sheng, S.; Chen, J. Electrochemical decarboxylative sulfonylation of arylacetylenic acids with sodium arylsulfinates: Access to arylacetylenic sulfones. Synth. Commun., 2020, 50(2), 161-167.
[http://dx.doi.org/10.1080/00397911.2019.1686527]
[44]
Sarkar, B.; Ghosh, P.; Hajra, A. Electrochemical C-H sulfonylation of hydrazones. Org. Lett., 2023, 25(19), 3440-3444.
[http://dx.doi.org/10.1021/acs.orglett.3c00999] [PMID: 37140942]
[45]
Ghosh, S.; Samanta, S.; Ghosh, A.K.; Neogi, S.; Hajra, A. Advances in oxosulfonylation reaction. Adv. Synth. Catal., 2020, 362(21), 4552-4578.
[http://dx.doi.org/10.1002/adsc.202000647]
[46]
Liu, W.; Hao, L.; Zhang, J.; Zhu, T. Progress in the electrochemical reactions of sulfonyl compounds. ChemSusChem, 2022, 15(7), e202102557.
[http://dx.doi.org/10.1002/cssc.202102557] [PMID: 35174969]
[47]
Yavari, I.; Shaabanzadeh, S. Electrochemical synthesis of β-ketosulfones from switchable starting materials. Org. Lett., 2020, 22(2), 464-467.
[http://dx.doi.org/10.1021/acs.orglett.9b04221] [PMID: 31910023]
[48]
Chen, P-Y.; Chang, M-Y.; Chan, C-K.; Lo, N-C. An efficient organic electrosynthesis of β-hydroxysulfones. Synthesis, 2017, 28(19), 4469-4477.
[http://dx.doi.org/10.1055/s-0036-1589051]
[49]
Luo, X.; Wang, S.; Lei, A. Electrochemical-induced hydroxysulfonylation of α-CF3 alkenes to access tertiary β-hydroxysulfones. Adv. Synth. Catal., 2022, 364(5), 1016-1022.
[http://dx.doi.org/10.1002/adsc.202101393]
[50]
Mei, H.; Liu, J.; Guo, Y.; Han, J. Electrochemical alkoxysulfonylation difunctionalization of styrene derivatives using sodium sulfinates as sulfonyl sources. ACS Omega, 2019, 4(10), 14353-14359.
[http://dx.doi.org/10.1021/acsomega.9b02442] [PMID: 31508561]
[51]
Mou, X.Q.; Ren, L.C.; Wang, M.; Zhang, H.H.; Cai, A.; Wan, K.X.; Zhang, S.M.; Cui, B.D.; Zhang, Y.; Chen, Y.Z. Electrochemically enabled intramolecular amino- and oxysulfonylation of alkenes with sodium sulfinates to access sulfonylated saturated heterocycles. J. Org. Chem., 2023, 88(5), 3238-3253.
[http://dx.doi.org/10.1021/acs.joc.3c00015] [PMID: 36866581]
[52]
Luo, M.J.; Liu, B.; Li, Y.; Hu, M.; Li, J-H. Electrochemical three-component 1,2-aminosulfonylation of alkenes: Entry to 2-sulfonylethan-1-amines. Adv. Synth. Catal., 2019, 361(7), 1538-1542.
[http://dx.doi.org/10.1002/adsc.201801492]
[53]
Mou, X.Q.; Ren, L.C.; Zhang, M.; Wang, M.; Jin, Y.F.; Guan, Q.X.; Cai, A.; Zhang, S.M.; Ren, H.; Zhang, Y.; Chen, Y.Z. Complementary copper-catalyzed and electrochemical aminosulfonylation of o-homoallyl benzimidates and n-alkenyl amidines with sodium sulfinates. Org. Lett., 2022, 24(6), 1405-1411.
[http://dx.doi.org/10.1021/acs.orglett.2c00287] [PMID: 35138858]
[54]
Huang, S.; Jiang, P.; Liu, R.; Meng, X.; Zheng, B.; Zheng, Y. Electrochemical synthesis of 3-sulfonylindoles via annulation of o-alkynylanilines with sodium sulfonates. Synthesis, 2023, 55(18), 2959-2968.
[http://dx.doi.org/10.1055/a-1996-8054]
[55]
Jiang, Y.Y.; Liang, S.; Zeng, C.C.; Hu, L-M.; Sun, B.G. Electrochemically initiated formation of sulfonyl radicals: Synthesis of oxindoles via difunctionalization of acrylamides mediated by bromide ion. Green Chem., 2016, 18(23), 6311-6319.
[http://dx.doi.org/10.1039/C6GC01970F]
[56]
Yin, Z.; Yu, Y.; Mei, H.; Han, J. Electrosynthesis of functionalized tetrahydrocarbazoles via sulfonylation triggered cyclization reaction of indole derivatives. Green Chem., 2021, 23(9), 3256-3260.
[http://dx.doi.org/10.1039/D1GC00609F]
[57]
Zhang, D.; Cai, J.; Du, J.; Wang, X.; He, W.; Yang, Z.; Liu, C.; Fang, Z.; Guo, K. Oxidant- and catalyst-free synthesis of sulfonated benzothiophenes via electrooxidative tandem cyclization. J. Org. Chem., 2021, 86(3), 2593-2601.
[http://dx.doi.org/10.1021/acs.joc.0c02679] [PMID: 33426878]
[58]
Zhang, M.M.; Sun, Y.; Wang, W.W.; Chen, K.K.; Yang, W.C.; Wang, L. Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodium sulfinates. Org. Biomol. Chem., 2021, 19(17), 3844-3849.
[http://dx.doi.org/10.1039/D1OB00079A] [PMID: 33949560]
[59]
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. Anticancer and antiviral sulfonamides. Curr. Med. Chem., 2003, 10(11), 925-953.
[http://dx.doi.org/10.2174/0929867033457647] [PMID: 12678681]
[60]
Ghazzali, M.; Khattab, S.A.N.; Elnakady, Y.A.; Al-Mekhlafi, F.A.; Al-Farhan, K.; El-Faham, A. Synthesis, structure, theoretical calculations and biological activity of sulfonate active ester new derivatives. J. Mol. Struct., 2013, 1046, 147-152.
[http://dx.doi.org/10.1016/j.molstruc.2013.04.025]
[61]
Baerlocher, F.J.; Baerlocher, M.O.; Chaulk, C.L.; Langler, R.F.; MacQuarrie, S.L. Antifungal thiosulfonates: Potency with some selectivity. Aust. J. Chem., 2000, 53(5), 399-402.
[http://dx.doi.org/10.1071/CH00030]
[62]
Jiang, Y.; Wang, Q.Q.; Liang, S.; Hu, L.M.; Little, R.D.; Zeng, C.C. Electrochemical oxidative amination of sodium sulfinates: Synthesis of sulfonamides mediated by NH4I as a redox catalyst. J. Org. Chem., 2016, 81(11), 4713-4719.
[http://dx.doi.org/10.1021/acs.joc.6b00615] [PMID: 27137813]
[63]
Zhang, C.; Chen, Y.; Yuan, G. Electrosynthesis of arylsulfonamides from amines and sodium sulfinates using H2O-NaI as the electrolyte solution at room temperature. Chin. J. Chem., 2016, 34(12), 1277-1282.
[http://dx.doi.org/10.1002/cjoc.201600452]
[64]
Terent’ev, A.O.; Mulina, O.M.; Pirgach, D.A.; Syroeshkin, M.A.; Glinushkin, A.P.; Nikishin, G.I. Electrochemical synthesis of sulfonamides from arenesulfonohydrazides or sodium p-methylbenzenesulfinate and amines. Mendeleev Commun., 2016, 26(6), 538-539.
[http://dx.doi.org/10.1016/j.mencom.2016.11.027]
[65]
Vicente, D.A.; Galdino, D.; Navarro, M.; Menezes, P.H. Electrochemical synthesis of sulfonamides in a graphite powder macroelectrode. Green Chem., 2020, 22(16), 5262-5266.
[http://dx.doi.org/10.1039/D0GC01360A]
[66]
Tian, Z.; Gong, Q.; Huang, T.; Liu, L.; Chen, T. Practical electro-oxidative sulfonylation of phenols with sodium arenesulfinates generating arylsulfonate esters. J. Org. Chem., 2021, 86(22), 15914-15926.
[http://dx.doi.org/10.1021/acs.joc.1c00260] [PMID: 33789426]
[67]
Zhong, Z.; Xu, P.; Ma, J.; Zhou, A. Electrochemical cross-coupling reactions of sodium arenesulfinates with thiophenols and phenols. Tetrahedron, 2021, 99, 132444.
[http://dx.doi.org/10.1016/j.tet.2021.132444]
[68]
Fu, Z.; Yang, Z.; Sun, L.; Yin, J.; Yi, X.; Cai, H.; Lei, A. Electrochemical synthesis of aryl sulfonates from sodium sulfinates and phenols under metal-free conditions. Youji Huaxue, 2022, 42(2), 600-606.
[http://dx.doi.org/10.6023/cjoc202107060]
[69]
Sanyal, U.; Yuk, S.F.; Koh, K.; Lee, M.S.; Stoerzinger, K.; Zhang, D.; Meyer, L.C.; Lopez-Ruiz, J.A.; Karkamkar, A.; Holladay, J.D.; Camaioni, D.M.; Nguyen, M.T.; Glezakou, V.A.; Rousseau, R.; Gutiérrez, O.Y.; Lercher, J.A. Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase. Angew. Chem. Int. Ed., 2021, 60(1), 290-296.
[http://dx.doi.org/10.1002/anie.202008178] [PMID: 32770641]
[70]
Kim, T.; Park, D.I.; Kim, S.; Yadav, D.; Hong, S.; Kim, S.H.; Yoon, H.J.; Jin, K. Mechanistic investigation of electrocatalytic reductive amination at copper electrode. Chem. Commun., 2023, 59(32), 4818-4821.
[http://dx.doi.org/10.1039/D3CC00296A] [PMID: 37009682]
[71]
Heard, D.M.; Lennox, A.J.J. Electrode materials in modern organic electrochemistry. Angew. Chem. Int. Ed., 2020, 59(43), 18866-18884.
[http://dx.doi.org/10.1002/anie.202005745] [PMID: 32633073]