Current Molecular Medicine

Author(s): Geng Geng, Lei Zhang, Ying Yu, Xingqing Guo, Qinghao Li and Ming Ming*

DOI: 10.2174/0115665240254765231117122210

DownloadDownload PDF Flyer Cite As
ADGRL4 Promotes Cell Growth, Aggressiveness, EMT, and Angiogenesis in Neuroblastoma via Activation of ERK/STAT3 Pathway

Page: [45 - 55] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Neuroblastoma (NB) is one of the most common pediatric solid tumors. Emerging evidence has indicated that ADGRL4 can act as a master regulator of tumor progression. In addition, it is well documented that the ERK/STAT3 signaling pathway can promote the proliferation, EMT, angiogenesis, and metastasis in tumors. The current study was formulated to elucidate the exact role of ADGRL4 in the malignant behaviors of NB cells and to investigate the intrinsic mechanism.

Methods: In this work, expression differences of ADGRL4 in human NB cell lines and HUVECs were assessed via RT-qPCR and western blot analysis. For functional experiments, sh-ADGRL4 was transfected into SK-N-SH cells to generate ADGRL4 knockdown stable cell line. Moreover, ADGRL4 knockdown stable SK-N-SH cells were treated with LM22B-10 (an ERK activator) for rescue experiments. CCK-8, colony formation, would healing, and transwell assays determined NB cell growth, migration, and invasion. Meanwhile, proliferation-, metastasis- and EMT- associated proteins were also detected. Additionally, a tube formation assay was employed to evaluate in vitro angiogenesis. VM-cadherin, the marker of angiogenesis, was assessed using immunofluorescence staining.

Results: Data showed notably upregulated ADGRL4 in NB cells, especially in SK-NSH cells. ADGRL4 knockdown inhibited NB cell growth, migration, invasion, EMT, and in vitro angiogenesis. ADGRL4 knockdown inactivated ERK/STAT3 signaling pathway. Activation of the ERK/STAT3 signaling pathway partially rescued the tumor suppression effects of ADGRL4 knockdown on NB cells.

Conclusion: To conclude, the downregulation of ADGRL4 may inhibit cell growth, aggressiveness, EMT, and angiogenesis in NB by inactivating the ERK/STAT3 signaling pathway.

Keywords: ADGRL4, ERK/STAT3 signaling pathway, neuroblastoma, cell growth, angiogenesis, cancer-related deaths.

[1]
Steliarova-Foucher E, Colombet M, Ries LAG, et al. International incidence of childhood cancer, 2001–10: A population-based registry study. Lancet Oncol 2017; 18(6): 719-31.
[http://dx.doi.org/10.1016/S1470-2045(17)30186-9] [PMID: 28410997]
[2]
Zafar A, Wang W, Liu G, et al. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2021; 41(2): 961-1021.
[http://dx.doi.org/10.1002/med.21750] [PMID: 33155698]
[3]
Yuan X, Jin Q, Chen Y, et al. BCL11A facilitates cell proliferation and metastasis in neuroblastoma via regulating the PI3K/Akt signaling pathway. Curr Cancer Drug Targets 2022; 22(11): 919-30.
[http://dx.doi.org/10.2174/1568009622666220728123748] [PMID: 35909289]
[4]
Wang SS, Hsiao R, Limpar MM, et al. Destabilization of MYC/MYCN by the mitochondrial inhibitors, metaiodobenzylguanidine, metformin and phenformin. Int J Mol Med 2014; 33(1): 35-42.
[http://dx.doi.org/10.3892/ijmm.2013.1545] [PMID: 24190252]
[5]
Maris JM. Recent advances in neuroblastoma. N Engl J Med 2010; 362(23): 2202-11.
[http://dx.doi.org/10.1056/NEJMra0804577] [PMID: 20558371]
[6]
Aust G, Zhu D, Van Meir EG, Xu L. Adhesion GPCRs in tumorigenesis. Handb Exp Pharmacol 2016; 234: 369-96.
[http://dx.doi.org/10.1007/978-3-319-41523-9_17] [PMID: 27832497]
[7]
Lu S, Liu S, Wietelmann A, et al. Developmental vascular remodeling defects and postnatal kidney failure in mice lacking Gpr116 (Adgrf5) and Eltd1 (Adgrl4). PLoS One 2017; 12(8): e0183166.
[http://dx.doi.org/10.1371/journal.pone.0183166] [PMID: 28806758]
[8]
Nechiporuk T, Urness LD, Keating MT. ETL, a novel seven-transmembrane receptor that is developmentally regulated in the heart. ETL is a member of the secretin family and belongs to the epidermal growth factor-seven-transmembrane subfamily. J Biol Chem 2001; 276(6): 4150-7.
[http://dx.doi.org/10.1074/jbc.M004814200] [PMID: 11050079]
[9]
Setlai BP, Hull R, Reis RM, et al. MicroRNA Interrelated Epithelial Mesenchymal Transition (EMT) in glioblastoma. Genes 2022; 13(2): 244.
[http://dx.doi.org/10.3390/genes13020244] [PMID: 35205289]
[10]
Wang XH, Wu HY, Gao J, Wang XH, Gao TH, Zhang SF. IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Manag Res 2019; 11: 5459-72.
[http://dx.doi.org/10.2147/CMAR.S196862] [PMID: 31354352]
[11]
Turrini E, Maffei F, Fimognari C. Ten years of research on fucoidan and cancer: Focus on its antiangiogenic and antimetastatic effects. Mar Drugs 2023; 21(5): 307.
[http://dx.doi.org/10.3390/md21050307] [PMID: 37233501]
[12]
Brignole C, Marimpietri D, Pastorino F, et al. Effect of bortezomib on human neuroblastoma cell growth, apoptosis, and angiogenesis. J Natl Cancer Inst 2006; 98(16): 1142-57.
[http://dx.doi.org/10.1093/jnci/djj309] [PMID: 16912267]
[13]
Sheldon H, Alexander J, Bridges E, et al. ELTD1 activation induces an endothelial-EMT transition to a myofibroblast phenotype. Int J Mol Sci 2021; 22(20): 11293.
[http://dx.doi.org/10.3390/ijms222011293] [PMID: 34681953]
[14]
Masiero M, Simões FC, Han HD, et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 2013; 24(2): 229-41.
[http://dx.doi.org/10.1016/j.ccr.2013.06.004] [PMID: 23871637]
[15]
Serban F, Artene SA, Georgescu AM, et al. Epidermal growth factor, latrophilin, and seven transmembrane domain-containing protein 1 marker, a novel angiogenesis marker. OncoTargets Ther 2015; 8: 3767-74.
[PMID: 26719704]
[16]
Kan A, Le Y, Zhang Y, et al. ELTD1 function in hepatocellular carcinoma is carcinoma-associated fibroblast-dependent. J Cancer 2018; 9(14): 2415-27.
[http://dx.doi.org/10.7150/jca.24406] [PMID: 30026838]
[17]
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019; 29(3): 212-26.
[http://dx.doi.org/10.1016/j.tcb.2018.12.001] [PMID: 30594349]
[18]
Lu CC, Tsai HC, Yang DY, et al. The chemokine CCL4 stimulates angiopoietin-2 expression and angiogenesis via the MEK/ERK/STAT3 pathway in oral squamous cell carcinoma. Biomedicines 2022; 10(7): 1612.
[http://dx.doi.org/10.3390/biomedicines10071612] [PMID: 35884919]
[19]
Kang X, Xu E, Wang X, et al. Tenascin-c knockdown suppresses vasculogenic mimicry of gastric cancer by inhibiting ERK- triggered EMT. Cell Death Dis 2021; 12(10): 890.
[http://dx.doi.org/10.1038/s41419-021-04153-1] [PMID: 34588421]
[20]
Han C, Sun B, Zhao X, et al. Phosphorylation of STAT3 promotes vasculogenic mimicry by inducing epithelial-to-mesenchymal transition in colorectal cancer. Technol Cancer Res Treat 2017; 16(6): 1209-19.
[http://dx.doi.org/10.1177/1533034617742312] [PMID: 29333928]
[21]
Li J, Shen J, Wang Z, et al. ELTD1 facilitates glioma proliferation, migration and invasion by activating JAK/STAT3/HIF-1α signaling axis. Sci Rep 2019; 9(1): 13904.
[http://dx.doi.org/10.1038/s41598-019-50375-x] [PMID: 31554859]
[22]
Cai Y, Chen K, Cheng C, et al. Prp19 is an independent prognostic marker and promotes neuroblastoma metastasis by regulating the Hippo-YAP signaling pathway. Front Oncol 2020; 10: 575366.
[http://dx.doi.org/10.3389/fonc.2020.575366] [PMID: 33224878]
[23]
Hobbie WL, Li Y, Carlson C, et al. Late effects in survivors of high‐risk neuroblastoma following stem cell transplant with and without total body irradiation. Pediatr Blood Cancer 2022; 69(3): e29537.
[http://dx.doi.org/10.1002/pbc.29537] [PMID: 34971017]
[24]
Sun J, Zhang Z, Chen J, Xue M, Pan X. ELTD1 promotes invasion and metastasis by activating MMP2 in colorectal cancer. Int J Biol Sci 2021; 17(12): 3048-58.
[http://dx.doi.org/10.7150/ijbs.62293] [PMID: 34421349]
[25]
Guihurt Santiago J, Burgos-Tirado N, Lafontaine DD, et al. Adhesion G protein-coupled receptor, ELTD1, is a potential therapeutic target for retinoblastoma migration and invasion. BMC Cancer 2021; 21(1): 53.
[http://dx.doi.org/10.1186/s12885-020-07768-3] [PMID: 33430814]
[26]
Tsai JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev 2013; 27(20): 2192-206.
[http://dx.doi.org/10.1101/gad.225334.113] [PMID: 24142872]
[27]
Beuran M, Negoi I, Paun S, et al. The epithelial to mesenchymal transition in pancreatic cancer: A systematic review. Pancreatology 2015; 15(3): 217-25.
[http://dx.doi.org/10.1016/j.pan.2015.02.011] [PMID: 25794655]
[28]
Tian X, Zhou D, Chen L, et al. Polo-like kinase 4 mediates epithelial–mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis 2018; 9(2): 54.
[http://dx.doi.org/10.1038/s41419-017-0088-2] [PMID: 29352113]
[29]
Phillips PA, McCarroll JA, Park S, et al. Rat pancreatic stellate cells secrete matrix metalloproteinases: Implications for extracellular matrix turnover. Gut 2003; 52(2): 275-82.
[http://dx.doi.org/10.1136/gut.52.2.275] [PMID: 12524413]
[30]
Chen M, Hu C, Guo Y, et al. Ophiopogonin B suppresses the metastasis and angiogenesis of A549 cells in vitro and in vivo by inhibiting the EphA2/Akt signaling pathway. Oncol Rep 2018; 40(3): 1339-47.
[http://dx.doi.org/10.3892/or.2018.6531] [PMID: 29956803]
[31]
Huang H, Georganaki M, Conze LL, et al. ELTD1 deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma. Neuro-oncol 2022; 24(3): 398-411.
[http://dx.doi.org/10.1093/neuonc/noab181] [PMID: 34347079]
[32]
Yu Y, Zhao Y, Choi J, et al. ERK inhibitor ulixertinib inhibits high-risk neuroblastoma growth in vitro and in vivo. Cancers 2022; 14(22): 5534.
[http://dx.doi.org/10.3390/cancers14225534] [PMID: 36428626]
[33]
Chen Z, Gao J, Sun J, Wu Z, Wang B. Aminoacylase 1 (ACY-1) mediates the proliferation and migration of neuroblastoma cells in humans through the ERK/transforming growth Factor β (TGF-β) signaling pathways. Med Sci Monit 2021; 27: e928813.
[http://dx.doi.org/10.12659/MSM.928813] [PMID: 33619241]
[34]
Cirmi S, Celano M, Lombardo GE, et al. Oleacein inhibits STAT3, activates the apoptotic machinery, and exerts anti-metastatic effects in the SH-SY5Y human neuroblastoma cells. Food Funct 2020; 11(4): 3271-9.
[http://dx.doi.org/10.1039/D0FO00089B] [PMID: 32219291]