Recent Progress in Free Radical Transformations of Allenamides

Page: [889 - 902] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Allenamides are special allenes, and the unique reactivity, selectivity (both stereoselective and regionally selective) and stability of allenamides have been widely studied. In this review, the development of the free radical transformation of allenamides over the last few years will be summarized. This review discusses in detail in three parts: intermolecular radical addition to C- X (X = N, S, O, Se) bonds, metal salt mediated cyclization of allenamides, and photocatalytic cyclization of allenamides. In addition, reasonable details of the mechanisms are provided for the vast majority of these transformations.

Graphical Abstract

[1]
Wu, X.; Gong, L.Z. Palladium(0)-Catalyzed Difunctionalization of 1,3-Dienes: From Racemic to Enantioselective. Synthesis, 2019, 51(1), 122-134.
[http://dx.doi.org/10.1055/s-0037-1610379]
[2]
Geng, D. Recent Advances on Transition-Metal-Catalyzed Allenamides Cyclization. Youji Huaxue, 2019, 39(2), 301-317.
[http://dx.doi.org/10.6023/cjoc201807028]
[3]
Santhoshkumar, R.; Cheng, C.H. Fickle Reactivity of Allenes in Transition‐Metal‐Catalyzed C−H Functionalizations. Asian J. Org. Chem., 2018, 7(7), 1151-1163.
[http://dx.doi.org/10.1002/ajoc.201800133]
[4]
Hori, H.; Arai, S.; Nishida, A. Olefin-Migrative Cleavage of Cyclopropane Rings through the Nickel-Catalyzed Hydrocyanation of Allenes and Alkenes. Adv. Synth. Catal., 2017, 359(7), 1170-1176.
[http://dx.doi.org/10.1002/adsc.201601400]
[5]
Lu, T.; Lu, Z.; Ma, Z.X.; Zhang, Y.; Hsung, R.P. Allenamides: A powerful and versatile building block in organic synthesis. Chem. Rev., 2013, 113(7), 4862-4904.
[http://dx.doi.org/10.1021/cr400015d] [PMID: 23550917]
[6]
Standen, P.E.; Kimber, M.C. Cycloaddition chemistry of allenamides. Curr. Opin. Drug Discov. Devel., 2010, 13(6), 645-657.
[PMID: 21061228]
[7]
Krause, N.; Hashimi, A.S.K. Modern Allene Chemistry; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619573]
[8]
Vila, J.; Solà, M.; Achard, T.; Bellemin-Laponnaz, S.; Pla-Quintana, A.; Roglans, A. Rh(I) Complexes with Hemilabile Thioether-Functionalized NHC Ligands as Catalysts for [2 + 2 + 2] Cycloaddition of 1,5-Bisallenes and Alkynes. ACS Catal., 2023, 13(5), 3201-3210.
[http://dx.doi.org/10.1021/acscatal.2c05790] [PMID: 36910871]
[9]
Huang, W.; Bai, J.; Guo, Y.; Chong, Q.; Meng, F. Cobalt‐Catalyzed Regiodivergent and Enantioselective Intermolecular Coupling of 1,1‐Disubstituted Allenes and Aldehydes. Angew. Chem. Int. Ed., 2023, 62(19), e202219257.
[http://dx.doi.org/10.1002/anie.202219257] [PMID: 36863999]
[10]
Dai, J.; Li, L.; Ye, R.; Wang, S.; Wang, Y.; Peng, F.; Shao, Z. Construction of Acyclic All‐Carbon Quaternary Stereocenters and 1,3‐Nonadjacent Stereoelements via Organo/Metal Dual Catalyzed Asymmetric Allenylic Substitution of Aldehydes. Angew. Chem., 2023, 135(20), e202300756.
[http://dx.doi.org/10.1002/ange.202300756]
[11]
Bai, J.; Wang, H.; Huang, T.; Teng, J.; Song, Y. In situ generation of propadiene from 1-cyclopropyl-1-nitrosourea for Rh(III)-catalyzed synthesis of isoquinolinones and pyridinones containing a methylene functionality. Org. Lett., 2023, 25(16), 2771-2776.
[http://dx.doi.org/10.1021/acs.orglett.3c00596] [PMID: 37058368]
[12]
Wei, L.; Xiong, H.; Hsung, R.P. The emergence of allenamides in organic synthesis. Acc. Chem. Res., 2003, 36(10), 773-782.
[http://dx.doi.org/10.1021/ar030029i] [PMID: 14567711]
[13]
Cui, J.; Meng, L.; Chi, X.; Liu, Q.; Zhao, P.; Zhang, D.; Chen, L.; Li, X.; Dong, Y.; Liu, H. A palladium-catalyzed regiocontrollable hydroarylation reaction of allenamides with B 2 pin 2/H 2 O. Chem. Commun. (Camb.), 2019, 55(30), 4355-4358.
[http://dx.doi.org/10.1039/C9CC00797K] [PMID: 30911748]
[14]
Wang, C.; Xu, G.; Shao, Y.; Tang, S.; Sun, J. Gold-Catalyzed Intermolecular Formal [4 + 2 + 2]-Cycloaddition of Anthranils with Allenamides. Org. Lett., 2020, 22(15), 5990-5994.
[http://dx.doi.org/10.1021/acs.orglett.0c02083] [PMID: 32678606]
[15]
Hubert, A.J.; Viehe, H.G. Base-catalysed prototropic isomerisations. Part I. Preparation of NN-dialkylprop-1-ynylamines and allenamines from NN-dialkylprop-2-ynylamines (a novel method for the preparation of ynamines). J. Chem. Soc. C, 1968, 228–230, 228.
[http://dx.doi.org/10.1039/j39680000228]
[16]
Beccalli, E.M.; Broggini, G.; Clerici, F.; Galli, S.; Kammerer, C.; Rigamonti, M.; Sottocornola, S. Palladium-catalyzed domino carbopalladation/5-exo-allylic amination of α-amino allenamides: an efficient entry to enantiopure imidazolidinones. Org. Lett., 2009, 11(7), 1563-1566.
[http://dx.doi.org/10.1021/ol900171g] [PMID: 19260702]
[17]
Chen, G.; Zhang, Y.; Fu, C.; Ma, S. A facile synthesis of β-allenyl furanimines via Pd-catalyzed cyclization of 2,3-allenamides with propargylic carbonates. Tetrahedron, 2011, 67(12), 2332-2337.
[http://dx.doi.org/10.1016/j.tet.2011.01.041]
[18]
Cao, C.; Yang, Y.; Li, X.; Liu, Y.; Liu, H.; Zhao, Z.; Chen, L. Pd‐Catalyzed Cascade Metallo‐Ene Cyclization/Metallo‐Carbene Coupling of Allenamides. Eur. J. Org. Chem., 2021, 2021(10), 1538-1542.
[http://dx.doi.org/10.1002/ejoc.202001625]
[19]
Hyland, C.J.T.; Hegedus, L.S. Gold-catalyzed and N-iodosuccinimide-mediated cyclization of γ-substituted allenamides. J. Org. Chem., 2006, 71(22), 8658-8660.
[http://dx.doi.org/10.1021/jo061340r] [PMID: 17064053]
[20]
Pirovano, V.; Borri, M.; Abbiati, G.; Rizzato, S.; Rossi, E. Gold(I)-Catalyzed Enantioselective Synthesis of Tetrahydrocarbazoles through Dearomative [4+2] Cycloadditions of 3/2-Substituted 2/3-Vinylindoles. Adv. Synth. Catal., 2017, 359(11), 1912-1918.
[http://dx.doi.org/10.1002/adsc.201700280]
[21]
Jia, M.; Monari, M.; Yang, Q.Q.; Bandini, M. Enantioselective gold catalyzed dearomative[2+2]-cycloaddition between indoles and allenamides. Chem. Commun. (Camb.), 2015, 51(12), 2320-2323.
[http://dx.doi.org/10.1039/C4CC08736D] [PMID: 25562811]
[22]
Lin, T.Y.; Zhu, C.Z.; Zhang, P.; Wang, Y.; Wu, H.H.; Feng, J.J.; Zhang, J. Regiodivergent Intermolecular [3+2]. Cycloadditions of Vinyl Aziridines and Allenes: Stereospecific Synthesis of Chiral Pyrrolidines. Angew. Chem. Int. Ed., 2016, 55(36), 10844-10848.
[http://dx.doi.org/10.1002/anie.201605530] [PMID: 27485044]
[23]
Zheng, W.F.; Bora, P.P.; Sun, G.J.; Kang, Q. Rhodium-Catalyzed Regio- and Stereoselective [2+2]. Cycloaddition of Allenamides. Org. Lett., 2016, 18(15), 3694-3697.
[http://dx.doi.org/10.1021/acs.orglett.6b01731] [PMID: 27403894]
[24]
Nada, T.; Yoneshige, Y.; Ii, Y.; Matsumoto, T.; Fujioka, H.; Shuto, S.; Arisawa, M. Nonmetathesis Heterocycle Formation by Ruthenium-Catalyzed Intramolecular [2 + 2] Cycloaddition of Allenamide-enes to Azabicyclo[3.1.1]heptanes. ACS Catal., 2016, 6(5), 3168-3171.
[http://dx.doi.org/10.1021/acscatal.6b00628]
[25]
Liu, R.R.; Hu, J.P.; Hong, J.J.; Lu, C.J.; Gao, J.R.; Jia, Y.X. Enantioselective [2 + 2] cycloaddition of N-allenamides with cyclic N-sulfonylketimines: access to polysubstituted azetidines bearing quaternary stereocenters. Chem. Sci. (Camb.), 2017, 8(4), 2811-2815.
[http://dx.doi.org/10.1039/C6SC05450A] [PMID: 28553518]
[26]
Manoni, E.; Bandini, M. N-Allenyl Amides and O-Allenyl Ethers in Enantioselective Catalysis. Eur. J. Org. Chem., 2016, 2016(19), 3135-3142.
[http://dx.doi.org/10.1002/ejoc.201600304]
[27]
Mascareñas, J.L.; Varela, I.; López, F. Allenes and Derivatives in Gold(I)- and Platinum(II)-Catalyzed Formal Cycloadditions. Acc. Chem. Res., 2019, 52(2), 465-479.
[http://dx.doi.org/10.1021/acs.accounts.8b00567] [PMID: 30640446]
[28]
Praveen, C. Carbophilic activation of π-systems via gold coordination: Towards regioselective access of intermolecular addition products. Coord. Chem. Rev., 2019, 392, 1-34.
[http://dx.doi.org/10.1016/j.ccr.2019.04.010]
[29]
Li, X.X.; Liu, Y.C.; Gang, Z.Z. Recent progress in transition-metal-free functionalization of allenamides. Org. Biomol. Chem., 2022, 20, 9069-9084.
[http://dx.doi.org/10.1039/D0RA07119F] [PMID: 35517974]
[30]
Hourtoule, M.; Miesch, L. Construction of C–N and C–O bonds based on N -allenamide functionalization. Org. Biomol. Chem., 2022, 20(46), 9069-9084.
[http://dx.doi.org/10.1039/D2OB01768G] [PMID: 36367191]
[31]
Liu, L.; Ward, R.M.; Schomaker, J.M. Mechanistic Aspects and Synthetic Applications of Radical Additions to Allenes. Chem. Rev., 2019, 119(24), 12422-12490.
[http://dx.doi.org/10.1021/acs.chemrev.9b00312] [PMID: 31833759]
[32]
Smith, J.R.L.; Mead, L.A.V. Amine oxidation. Part VII. The effect of structure on the reactivity of alkyl tertiary amines towards alkaline potassium hexacyanoferrate(III). J. Chem. Soc., Perkin Trans. 2, 1973, 2(2), 206-210.
[http://dx.doi.org/10.1039/p29730000206]
[33]
Smith, J.R.L.; Masheder, D. Amine oxidation. Part IX. The electrochemical oxidation of some tertiary amines: the effect of structure on reactivity. J. Chem. Soc., Perkin Trans. 2, 1976, 1(1), 47-51.
[http://dx.doi.org/10.1039/p29760000047]
[34]
Viehe, H.G.; Merényi, R.; Stella, L.; Janousek, Z. Capto-dative Substituent Effects in Syntheses with Radicals and Radicophiles [New synthetic methods (32)]. Angew. Chem. Int. Ed. Engl., 1979, 18(12), 917-932. [New synthetic methods (32)].
[http://dx.doi.org/10.1002/anie.197909171]
[35]
Wang, Y.; Jiang, M.; Liu, J.T. Copper‐Catalyzed Regioselective Oxytrifluoromethylation of Allenes Using a CF 3 ‐Transfer Reagent. Adv. Synth. Catal., 2014, 356(14-15), 2907-2912.
[http://dx.doi.org/10.1002/adsc.201400320]
[36]
Koleoso, O.K.; Turner, M.; Plasser, F.; Kimber, M.C. A complementary approach to conjugated N -acyliminium formation through photoredox-catalyzed intermolecular radical addition to allenamides and allencarbamates. Beilstein J. Org. Chem., 2020, 16, 1983-1990.
[http://dx.doi.org/10.3762/bjoc.16.165] [PMID: 32831955]
[37]
Courant, T.; Masson, G. Photoredox-initiated α-alkylation of imines through a three-component radical/cationic reaction. Chemistry, 2012, 18(2), 423-427.
[http://dx.doi.org/10.1002/chem.201103062] [PMID: 22161892]
[38]
Roth, H.G.; Romero, N.A.; Experimental, D.A. Synlett, 2016, 27, 714-723.
[http://dx.doi.org/10.1055/s-0035-1561297]
[39]
Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Photoredox-induced three-component oxy-, amino-, and carbotrifluoromethylation of enecarbamates. Org. Lett., 2014, 16(4), 1240-1243.
[http://dx.doi.org/10.1021/ol500374e] [PMID: 24520865]
[40]
Dagousset, G.; Carboni, A.; Magnier, E.; Masson, G. Photoredox-induced three-component azido- and aminotrifluoromethylation of alkenes. Org. Lett., 2014, 16(16), 4340-4343.
[http://dx.doi.org/10.1021/ol5021477] [PMID: 25102254]
[41]
Liu, Y.; Ding, N.; Tan, X.; Li, X.; Zhao, Z. Iron(II)-chloride-catalyzed regioselective azidation of allenamides with TMSN 3. Chem. Commun. (Camb.), 2020, 56(54), 7507-7510.
[http://dx.doi.org/10.1039/C9CC10056C] [PMID: 32510062]
[42]
Yuan, X.; Tan, X.; Ding, N.; Liu, Y.; Li, X.; Zhao, Z. NIS-promoted intermolecular bis-sulfenylation of allenamides via a two-step radical process: synthesis of 1,3-dithioethers. Org. Chem. Front., 2020, 7(18), 2725-2730.
[http://dx.doi.org/10.1039/D0QO00690D]
[43]
Ni, S.; Sha, W.; Zhang, L.; Xie, C.; Mei, H.; Han, J.; Pan, Y. N -Iodosuccinimide-Promoted Cascade Trifunctionalization of Alkynoates: Access to 1,1-Diiodoalkenes. Org. Lett., 2016, 18(4), 712-715.
[http://dx.doi.org/10.1021/acs.orglett.5b03685] [PMID: 26862990]
[44]
Ni, S.; Cao, J.; Mei, H.; Han, J.; Li, S.; Pan, Y. Sunlight-promoted cyclization versus decarboxylation in the reaction of alkynoates with N-iodosuccinimide: easy access to 3-iodocoumarins. Green Chem., 2016, 18(14), 3935-3939.
[http://dx.doi.org/10.1039/C6GC01027J]
[45]
Ogawa, A.; Obayashi, R.; Doi, M.; Sonoda, N.; Hirao, T. A Novel Photoinduced Thioselenation of Allenes by Use of a Disulfide−Diselenide Binary System. J. Org. Chem., 1998, 63(13), 4277-4281.
[http://dx.doi.org/10.1021/jo972253p]
[46]
Pasto, D.J.; Warren, S.E. Isotope effects and relative reactivities in the radical-chain addition of benzenethiol to substituted allenes. J. Org. Chem., 1981, 46(14), 2842-2846.
[http://dx.doi.org/10.1021/jo00327a002]
[47]
Tan, X.; Zhao, K.; Zhong, X.; Yang, L.; Dong, Y.; Wang, T.; Yu, S.; Li, X.; Zhao, Z. Synthesis of 1,2-diselenides via potassium persulfate-mediated diselenation of allenamides with diselenides. Org. Biomol. Chem., 2022, 20(33), 6566-6570.
[http://dx.doi.org/10.1039/D2OB00964A] [PMID: 35903979]
[48]
Shen, L.; Hsung, R.P. Highly regioselective radical cyclizations of allenamides. Org. Lett., 2005, 7(5), 775-778.
[http://dx.doi.org/10.1021/ol047572z] [PMID: 15727438]
[49]
Añorbe, L.; Poblador, A.; Domínguez, G.; Pérez-Castells, J. New regio and stereoselective intermolecular Pauson–Khand reactions of allenamides. Tetrahedron Lett., 2004, 45(23), 4441-4444.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.061]
[50]
Achmatowicz, M.; Hegedus, L.S. Synthesis of 1-deoxy-D-galactohomonojirimycin via enantiomerically pure allenylstannanes. J. Org. Chem., 2004, 69(7), 2229-2234.
[http://dx.doi.org/10.1021/jo0303012] [PMID: 15049613]
[51]
Ranslow, P.B.D.; Hegedus, L.S.; de los Rios, C. Syntheses and reactions of optically active α-aminoallenylstannanes. J. Org. Chem., 2004, 69(1), 105-111.
[http://dx.doi.org/10.1021/jo0302861] [PMID: 14703385]
[52]
Huang, J.; Hsung, R.P. Chiral Lewis acid-catalyzed highly enantioselective [4 + 3] cycloaddition reactions of nitrogen-stabilized oxyallyl cations derived from allenamides. J. Am. Chem. Soc., 2005, 127(1), 50-51.
[http://dx.doi.org/10.1021/ja044760b] [PMID: 15631443]
[53]
Rameshkumar, C.; Hsung, R.P. A tandem epoxidation/stereoselective intramolecular [4+3] cycloaddition reaction involving nitrogen-stabilized oxyallyl cations derived from chiral allenamides. Angew. Chem. Int. Ed., 2004, 43(5), 615-618.
[http://dx.doi.org/10.1002/anie.200352632] [PMID: 14743419]
[54]
Iwasaki, H.; Suzuki, K.; Yamane, M.; Yoshida, S.; Kojima, N.; Ozeki, M.; Yamashita, M. Indole synthesis from N-allenyl-2-iodoanilines under mild conditions mediated by samarium(II) diiodide. Org. Biomol. Chem., 2014, 12(35), 6812-6815.
[http://dx.doi.org/10.1039/C4OB01164C] [PMID: 25072695]
[55]
Iwasaki, H.; Tsutsui, N.; Eguchi, T.; Ohno, H.; Yamashita, M.; Tanaka, T. A novel samarium(II)-mediated tandem spirocyclization onto an aromatic ring. Tetrahedron Lett., 2011, 52(15), 1770-1772.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.010]
[56]
Iwasaki, H.; Eguchi, T.; Tsutsui, N.; Ohno, H.; Tanaka, T. Samarium(II)-mediated spirocyclization by intramolecular aryl radical addition onto an aromatic ring. J. Org. Chem., 2008, 73(18), 7145-7152.
[http://dx.doi.org/10.1021/jo800656a] [PMID: 18698825]
[57]
Ohno, H.; Iwasaki, H.; Eguchi, T.; Tanaka, T. The first samarium(ii)-mediated aryl radical cyclisation onto an aromatic ring. Chem. Commun. (Camb.), 2004, 19(19), 2228-2229.
[http://dx.doi.org/10.1039/b410457a] [PMID: 15467885]
[58]
Parmar, D.; Matsubara, H.; Price, K.; Spain, M.; Procter, D.J. Lactone radical cyclizations and cyclization cascades mediated by SmI2-H2O. J. Am. Chem. Soc., 2012, 134(30), 12751-12757.
[http://dx.doi.org/10.1021/ja3047975] [PMID: 22746316]
[59]
Molander, G.A.; Cormier, E.P. Ketyl-allene cyclizations promoted by samarium(II) iodide. J. Org. Chem., 2005, 70(7), 2622-2626.
[http://dx.doi.org/10.1021/jo047887s] [PMID: 15787552]
[60]
Hölemann, A.; Reissig, H.U. Samarium diiodide-induced couplings of carbonyl compounds with methoxyallene leading to 4-hydroxy 1-enol ethers. Org. Lett., 2003, 5(9), 1463-1466.
[http://dx.doi.org/10.1021/ol0342251] [PMID: 12713299]
[61]
Ohno, H.; Okumura, M.; Maeda, S.; Iwasaki, H.; Wakayama, R.; Tanaka, T. Samarium(II)-promoted radical spirocyclization onto an aromatic ring. J. Org. Chem., 2003, 68(20), 7722-7732.
[http://dx.doi.org/10.1021/jo034767w] [PMID: 14510548]
[62]
Hölemann, A.; Reißig, H.U. Regioselective samarium diiodide induced couplings of carbonyl compounds with 1,3-diphenylallene and alkoxyallenes: a new route to 4-hydroxy-1-enol ethers. Chemistry, 2004, 10(21), 5493-5506.
[http://dx.doi.org/10.1002/chem.200400418] [PMID: 15372682]
[63]
Adler, P.; Perez, V.; Roupnel, L.; Fadel, A.; Rabasso, N. Cerium(IV)‐Mediated Carbon‐Carbon Bond Formation for the Synthesis of Spirodienone Lactams. Eur. J. Org. Chem., 2022, 2022(26), e202200646.
[http://dx.doi.org/10.1002/ejoc.202200646]
[64]
Nair, V.; Balagopal, L.; Sheeba, V.; Panicker, S.B.; Rath, N.P. Oxidative cyclisation of cinnamyl ethers mediated by CAN: a stereoselective synthesis of 3,4-trans disubstituted tetrahydrofuran derivatives. Chem. Commun. (Camb.), 2001, 1682–1683(17), 1682-1683.
[http://dx.doi.org/10.1039/b103111m] [PMID: 12240442]
[65]
Song, J.; Zhang, H.; Chen, X.; Li, X.; Xu, D. Oxidative Coupling of 1,3-Dicarbonyl Compounds by Cerium(IV). Ammonium Nitrate. Synth. Commun., 2010, 40(12), 1847-1855.
[http://dx.doi.org/10.1080/00397910903161876]
[66]
Sivan, A.; Deepthi, A. Facile synthesis of 1,2,3-tricarbonyls from 1,3-dicarbonyls mediated by cerium(IV) ammonium nitrate. Tetrahedron Lett., 2014, 55(11), 1890-1893.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.145]
[67]
Serafino, A.; Balestri, D.; Marchiò, L.; Malacria, M.; Derat, E.; Maestri, G. Orthogonal Syntheses of 3.2.0 Bicycles from Enallenes Promoted by Visible Light. Org. Lett., 2020, 22(16), 6354-6359.
[http://dx.doi.org/10.1021/acs.orglett.0c02193] [PMID: 32806183]
[68]
Oderinde, M.S.; Mao, E.; Ramirez, A.; Pawluczyk, J.; Jorge, C.; Cornelius, L.A.M.; Kempson, J.; Vetrichelvan, M.; Pitchai, M.; Gupta, A.; Gupta, A.K.; Meanwell, N.A.; Mathur, A.; Dhar, T.G.M. Synthesis of Cyclobutane-Fused Tetracyclic Scaffolds via Visible-Light Photocatalysis for Building Molecular Complexity. J. Am. Chem. Soc., 2020, 142(6), 3094-3103.
[http://dx.doi.org/10.1021/jacs.9b12129] [PMID: 31927959]
[69]
Zheng, J.; Swords, W.B.; Jung, H.; Skubi, K.L.; Kidd, J.B.; Meyer, G.J.; Baik, M.H.; Yoon, T.P. Enantioselective Intermolecular Excited-State Photoreactions Using a Chiral Ir Triplet Sensitizer: Separating Association from Energy Transfer in Asymmetric Photocatalysis. J. Am. Chem. Soc., 2019, 141(34), 13625-13634.
[http://dx.doi.org/10.1021/jacs.9b06244] [PMID: 31329459]
[70]
Serafino, A.; Chiminelli, M.; Balestri, D.; Marchiò, L.; Bigi, F.; Maggi, R.; Malacria, M.; Maestri, G. Dimerizing cascades of enallenamides reveal the visible-light-promoted activation of cumulated C–C double bonds. Chem. Sci. (Camb.), 2022, 13(9), 2632-2639.
[http://dx.doi.org/10.1039/D1SC06719B] [PMID: 35340858]
[71]
Großkopf, J.; Kratz, T.; Rigotti, T.; Bach, T. Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer. Chem. Rev., 2022, 122(2), 1626-1653.
[http://dx.doi.org/10.1021/acs.chemrev.1c00272] [PMID: 34227803]
[72]
Sarkar, D.; Bera, N.; Ghosh, S. [2+2] Photochemical Cycloaddition in Organic Synthesis. Eur. J. Org. Chem., 2020, 2020(10), 1310-1326.
[http://dx.doi.org/10.1002/ejoc.201901143]
[73]
Zhou, Q.Q.; Zou, Y.Q.; Lu, L.Q.; Xiao, W.J. Visible‐Light‐Induced Organic Photochemical Reactions through Energy‐Transfer Pathways. Angew. Chem. Int. Ed., 2019, 58(6), 1586-1604.
[http://dx.doi.org/10.1002/anie.201803102] [PMID: 29774651]
[74]
Chiminelli, M.; Serafino, A.; Malacria, M.; Maestri, G. Visible-Light Promoted Intramolecular para-Cycloadditions on Simple Aromatics. Angew. Chem. Int. Ed. Engl., 2023, 62(12), e202216817.
[http://dx.doi.org/10.1002/anie.202216817]
[75]
Das, S.; Azim, A.; Hota, S.K.; Panda, S.P.; Murarka, S.; De Sarkar, S. An organophotoredox-catalyzed redox-neutral cascade involving N -(acyloxy)phthalimides and allenamides: synthesis of indoles. Chem. Commun. (Camb.), 2021, 57(97), 13130-13133.
[http://dx.doi.org/10.1039/D1CC05397C] [PMID: 34806725]
[76]
Hari, D.P.; König, B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun. (Camb.), 2014, 50(51), 6688-6699.
[http://dx.doi.org/10.1039/C4CC00751D] [PMID: 24699920]
[77]
Tang, Q.; Liu, X.; Liu, S.; Xie, H.; Liu, W.; Zeng, J.; Cheng, P. N-(Acyloxy)phthalimides as tertiary alkyl radical precursors in the visible light photocatalyzed tandem radical cyclization of N-arylacrylamides to 3,3-dialkyl substituted oxindoles. RSC Advances, 2015, 5(108), 89009-89014.
[http://dx.doi.org/10.1039/C5RA17292F]
[78]
Quintavalla, A.; Veronesi, R.; Speziali, L.; Martinelli, A.; Zaccheroni, N.; Mummolo, L.; Lombardo, M. Allenamides Playing Domino: A Redox‐Neutral Photocatalytic Synthesis of Functionalized 2‐Aminofurans. Adv. Synth. Catal., 2022, 364(2), 362-371.
[http://dx.doi.org/10.1002/adsc.202101015]
[79]
Giordanetto, F.; Knerr, L.; Nordberg, P.; Pettersen, D.; Selmi, N.; Beisel, H.G.; de la Motte, H.; Månsson, Å.; Dahlström, M.; Broddefalk, J.; Saarinen, G.; Klingegård, F.; Hurt-Camejo, E.; Rosengren, B.; Wikström, J.; Wågberg, M.; Brengdahl, J.; Rohman, M.; Sandmark, J.; Åkerud, T.; Roth, R.G.; Jansen, F.; Ahlqvist, M. Design of Selective sPLA 2 -X Inhibitor (−)-2-2-[Carbamoyl-6-(trifluoromethoxy)-1 H -indol-1-yl]pyridine-2-ylpropanoic Acid. ACS Med. Chem. Lett., 2018, 9(7), 600-605.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00507] [PMID: 30034586]
[80]
Hedidi, M.; Bentabed-Ababsa, G.; Derdour, A.; Roisnel, T.; Dorcet, V.; Chevallier, F.; Picot, L.; Thiéry, V.; Mongin, F. Synthesis of C,N′-linked bis-heterocycles using a deprotometalation–iodination–N-arylation sequence and evaluation of their antiproliferative activity in melanoma cells. Bioorg. Med. Chem., 2014, 22(13), 3498-3507.
[http://dx.doi.org/10.1016/j.bmc.2014.04.028] [PMID: 24831678]
[81]
Hall, A.; Billinton, A.; Brown, S.H.; Chowdhury, A.; Giblin, G.M.P.; Goldsmith, P.; Hurst, D.N.; Naylor, A.; Patel, S.; Scoccitti, T.; Theobald, P.J. Discovery of a novel indole series of EP1 receptor antagonists by scaffold hopping. Bioorg. Med. Chem. Lett., 2008, 18(8), 2684-2690.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.018] [PMID: 18378447]
[82]
Liou, J.P.; Mahindroo, N.; Chang, C.W.; Guo, F.M.; Lee, S.W.H.; Tan, U.K.; Yeh, T.K.; Kuo, C.C.; Chang, Y.W.; Lu, P.H.; Tung, Y.S.; Lin, K.T.; Chang, J.Y.; Hsieh, H.P. Structure-activity relationship studies of 3-aroylindoles as potent antimitotic agents. ChemMedChem, 2006, 1(10), 1106-1118.
[http://dx.doi.org/10.1002/cmdc.200600125] [PMID: 16952120]