Current Nanoscience

Author(s): Vilas A. Chavan, Devidas S. Bhagat*, Ajit K. Gangawane, K. Vijaya Babu, Dattatraya Pansare, Bapu R. Thorat, Ravikumar M. Borade, Viney Chawla and Pooja A. Chawla*

DOI: 10.2174/0115734137277198231218060425

DownloadDownload PDF Flyer Cite As
Detection of Explosive Residues using Nanomaterial-based Sensors: A Review

Page: [274 - 287] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Due to the recent rise in explosive-based terrorism and ecological issues, the invention of good capacity detectors for the identification of explosives has emerged as one of the major thirsts in the scientific community. Due to their unique optical and electrical properties, nanocomposites can meet all of the prerequisites for developing preferential, responsive, easy, and cost-effective sensor nodes for the sensing of various explosives. This study primarily throws light on current developments in explosives detection using nanomaterial-based sensors. In particular, it describes how quantum dots, carbon nanomaterials, monometallic nanomaterials, and bimetallic nanomaterials have been used to detect explosives optically and electrochemically. The accurate and consistent features of the nanomaterials, including their synthesis, the explosive detection technique, and the analytical facets, are all thoroughly examined.

Keywords: Explosives, nano-material, naano-sensor, quantum dots, bimetallic, explosive detection, forensic application.

Graphical Abstract

[1]
Chavan, V.A.; Bhagat, D.S.; Gangawane, A.K. Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces. Problems Forensic Sci., 2022, (129), 75-91.
[http://dx.doi.org/10.4467/12307483PFS.22.004.16305]
[2]
Chavan, V.A.; Kumar, R. Exploring the potential of ridge density as a measure of sex identification. J. Forensics Res., 2020, 11, 5.
[3]
Bell, S. Forensic chemistry, 2nd ed; Pearson-Prentice Hall: Upper Saddle River, 2006.
[4]
Houck, J.A.; Siegel, M.M. Fundamentals of forensic science; Elsevier Academic Press: Burlington, MA, 2006.
[5]
Doty, K.C.; Muro, C.K.; Bueno, J.; Halámková, L.; Lednev, I.K. What can Raman spectroscopy do for criminalistics? J. Raman Spectrosc., 2016, 47(1), 39-50.
[http://dx.doi.org/10.1002/jrs.4826]
[6]
Marić, M.; van Bronswijk, W.; Lewis, S.W.; Pitts, K. Rapid characterisation and classification of automotive clear coats by attenuated total reflectance infrared spectroscopy. Anal. Methods, 2012, 4(9), 2687.
[http://dx.doi.org/10.1039/c2ay25419k]
[7]
Mohd, M.I.; Badruzaman, N.A.; Peng, K.S.; Long, K. Quantification of cytokinins in coconut water from different maturation stages of malaysia’s coconut (Cocos nucifera L.) Varieties. J. Food Process. Technol., 2015, 6(11)
[http://dx.doi.org/10.4172/2157-7110.1000515]
[8]
Lloyd-Hughes, H.; Shiatis, A.E.; Pabari, A. Current and future nanotechnology applications in the management of melanoma: A review. J. Nanomed. Nanotechnol., 2015, 6(6), 1.
[http://dx.doi.org/10.4172/2157-7439.1000334]
[9]
Dennis, E.; Peoples, V.A.; Johnson, F.; Bibbs, R.K.; Topps, D.; Bopola-Wafflo, A.; Coats, M.I. Utilizing nanotechnology to combat malaria. J. Infect. Dis. Ther., 2015, 3(4)
[http://dx.doi.org/10.4172/2332-0877.1000229]
[10]
Tamiri, T.; Zitrin, S. Explosives: analysis. In: Elsevier eBooks; , 2013; pp. 64-84.
[http://dx.doi.org/10.1016/B978-0-12-382165-2.00083-0]
[11]
Kumar, S.; Jain, P. Importance of forensic investigation in explosion: A case study. J. Forensics Res., 2016, 7(347)
[http://dx.doi.org/10.4172/2157-7145.1000347]
[12]
Agarwal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2010, pp. 1-67.
[http://dx.doi.org/10.1002/9783527628803]
[13]
Saferstein, R. Criminalistics: An Introduction to Forensic Science, 13th ed; Pearson Education: New Jersey, USA, 2021.
[14]
a) Klapec, D.J.; Czarnopys, G.; Pannuto, J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Science International: Synergy, 2023, 6, 100298.
[http://dx.doi.org/10.1016/j.fsisyn.2022.100298] [PMID: 36685733];
b) Bajaj, A.; John, C.; Singh, M. Explosive post blast analysis: A case study. Eur. J. Forensic Sci., 2016, 3(2), 50.
[http://dx.doi.org/10.5455/ejfs.197667]
[15]
(a) Liu, S.; Du, G.; Ran, X.; Yang, H.; Yuan, J.; Wu, Y.; Li, J.; Lin, X.; Gao, W.; Yang, L. Visual, customizable wood-based colorimetric test paper encapsulated with fluorescent carbon dots for rapid explosive detection. Ind. Crops Prod., 2023, 194, 116398.
[http://dx.doi.org/10.1016/j.indcrop.2023.116398];
(b) John, D. Kelleher. Explosives Residue: Origin and Distribution; Forensic Sci. Comm, 2002, p. 4.
[16]
a) Zheng, C.; Ling, Y.; Chen, J.; Yuan, X.; Li, S.; Zhang, Z. Design of a versatile and selective electrochemical sensor based on dummy molecularly imprinted PEDOT/laser-induced graphene for nitroaromatic explosives detection. Environ. Res., 2023, 236(Pt 2), 116769.
[http://dx.doi.org/10.1016/j.envres.2023.116769] [PMID: 37517500];
(b) Yinon, J.; Hoffsommer, J.C. Analysis of explosives. Crit. Rev. Anal. Chem., 1977, 7(1), 1-35.
[http://dx.doi.org/10.1080/10408347708085699]
[17]
(a) Liu, W.; Wang, Z.; Liu, Z.; Chen, J.; Shi, L.; Huang, L.; Liu, Y.; Cui, S.; He, X. Utilizing an automated SERS-digital microfludic system for high-throughput detection of explosives. ACS Sens., 2023, 8(4), 1733-1741.
[http://dx.doi.org/10.1021/acssensors.3c00012] [PMID: 36950737];
(b) Yinon, J. Explosives. In: Handbook of analytical separations; , 2000; pp. 603-613.
[http://dx.doi.org/10.1016/S1567-7192(00)80072-8]
[18]
(a) Tamiri, T.; Zitrin, S. Explosives: analysis., 2013.
[http://dx.doi.org/10.1016/B978-0-12-382165-2.00083-0];
(b) Apak, R.; Üzer, A.; Sağlam, Ş.; Arman, A. Selective electrochemical detection of explosives with nanomaterial based electrodes. Electroanalysis, 2023, 35(1), e202200175.
[http://dx.doi.org/10.1002/elan.202200175]
[19]
Bumbrah, GS; Jani, M; Bhagat, DS; Dalal, K; Kaushal, A; Sadhana, K Zinc oxide nanoparticles for detection of latent fingermarks on nonporous surfaces. Materials Chemistry and Physics., 2022, 278, 125660.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125660]
[20]
Chavan, V.; Bhagat, D.; Gangwane, A.; Khawashi, H.; Thorat, B. Bimetallic nanomaterials-based electroanalytical methods for detection of pesticide residues. Biointerface Res. Appl. Chem., 2023, 13(5), 468.
[http://dx.doi.org/10.33263/BRIAC135.468]
[21]
Khawashi, H.; Chavan, V.; Bhagat, D.; Deshmukh, S.; Thorat, B. Recent advances in the detection of lead ions using nanoparticle-based sensors. Biointerface Res. Appl. Chem., 2023, 13(5), 466.
[http://dx.doi.org/10.33263/BRIAC135.466]
[22]
Wang, H.; Mi, D.; Wang, W.; Zhang, H.; Tong, D.; Wang, S.; Gao, F. Latent fingerprint visualization and subsequent DNA extraction using electron beam evaporation of metallic Ultra-Thin films. Curr. Nanosci., 2019, 15(3), 248-253.
[http://dx.doi.org/10.2174/1573413714666180628155824]
[23]
Alkhuder, K. Surface-enhanced raman scattering: A promising nanotechnology for anti-counterfeiting and tracking systems. Curr. Nanosci., 2023, 19(5), 636-650.
[http://dx.doi.org/10.2174/1573413718666220607164053]
[24]
Dilag, J.; Kobus, H.; Ellis, A. Nanotechnology as a new tool for fingermark detection: A review. Curr. Nanosci., 2011, 7(2), 153-159.
[http://dx.doi.org/10.2174/157341311794653596]
[25]
(a) Hehet, P.; Pütz, M.; Kämmerer, B.; Umlauf, G.; Geiss, O.; Caetano, J.G.N.; Karaghiosoff, K.; Wende, M. Determination of triacetone triperoxide (TATP) traces using passive samplers in combination with GC-MS and GC-PCI-MS/MS methods. Forensic Sci. Int., 2023, 348, 111673.
[http://dx.doi.org/10.1016/j.forsciint.2023.111673] [PMID: 37031011];
(b) Rawtani, D.; Tharmavaram, M.; Pandey, G.; Hussain, C.M. Functionalized nanomaterial for forensic sample analysis. Trends Analyt. Chem., 2019, 120, 115661.
[http://dx.doi.org/10.1016/j.trac.2019.115661]
[26]
Sharma, V.; Mehata, M.S. Rapid optical sensor for recognition of explosive 2,4,6-TNP traces in water through fluorescent ZnSe quantum dots. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 260, 119937.
[http://dx.doi.org/10.1016/j.saa.2021.119937] [PMID: 34034075]
[27]
Mitri, F.; De Iacovo, A.; De Santis, S.; Giansante, C.; Sotgiu, G.; Colace, L. Chemiresistive device for the detection of nitroaromatic explosives based on colloidal PBS quantum dots. ACS Appl. Electron. Mater., 2021, 3(7), 3234-3239.
[http://dx.doi.org/10.1021/acsaelm.1c00401]
[28]
Mitri, F.; De Iacovo, A.; De Santis, S.; Giansante, C.; Spirito, D.; Sotgiu, G.; Colace, L. A compact optical sensor for explosive detection based on NIR luminescent quantum dots. Appl. Phys. Lett., 2021, 119(4), 041106.
[http://dx.doi.org/10.1063/5.0060400]
[29]
Sharma, P.; Mehata, M.S. Colloidal MoS2 quantum dots based optical sensor for detection of 2,4,6-TNP explosive in an aqueous medium. Opt. Mater., 2020, 100, 109646.
[http://dx.doi.org/10.1016/j.optmat.2019.109646]
[30]
Maluleke, R.; Sakho, E.H.M.; Oluwafemi, O.S. Aqueous synthesis of glutathione-capped CuInS2/ZnS quantum dots-graphene oxide nanocomposite as fluorescence “switch OFF” for explosive detection. Mater. Lett., 2020, 269, 127669.
[http://dx.doi.org/10.1016/j.matlet.2020.127669]
[31]
Chen, X.; Sun, C.; Liu, Y.; Yu, L.; Zhang, K.; Asiri, A.M.; Marwani, H.M.; Tan, H.; Ai, Y.; Wang, X.; Wang, S. All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid. Chem. Eng. J., 2020, 379, 122360.
[http://dx.doi.org/10.1016/j.cej.2019.122360]
[32]
Tian, X.; Peng, H.; Li, Y.; Yang, C.; Zhou, Z.; Wang, Y. Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater. Sens. Actuators B Chem., 2017, 243, 1002-1009.
[http://dx.doi.org/10.1016/j.snb.2016.12.079]
[33]
Yi, K.Y. Application of CdSe quantum dots for the direct detection of TNT. Forensic Sci. Int., 2016, 259, 101-105.
[http://dx.doi.org/10.1016/j.forsciint.2015.12.028] [PMID: 26773219]
[34]
Peveler, W.J.; Roldan, A.; Hollingsworth, N.; Porter, M.J.; Parkin, I.P. Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano, 2016, 10(1), 1139-1146.
[http://dx.doi.org/10.1021/acsnano.5b06433] [PMID: 26579950]
[35]
Chen, Z.; Tao, Z.; Cong, S.; Hou, J.; Zhang, D.; Geng, F.; Zhao, Z. Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection. Chem. Commun., 2016, 52(76), 11442-11445.
[http://dx.doi.org/10.1039/C6CC06325J] [PMID: 27711305]
[36]
Kauffman, D.R.; Star, A. Carbon nanotube gas and vapor sensors. Angew. Chem. Int. Ed., 2008, 47(35), 6550-6570.
[http://dx.doi.org/10.1002/anie.200704488] [PMID: 18642264]
[37]
Ma, Y.; Wang, S.; Wang, L. Nanomaterials for luminescence detection of nitroaromatic explosives. Trends Analyt. Chem., 2015, 65, 13-21.
[http://dx.doi.org/10.1016/j.trac.2014.09.007]
[38]
Lu, S.; Xue, M.; Tao, A.; Weng, Y.; Yao, B.; Weng, W.; Lin, X. Facile microwave-assisted synthesis of functionalized carbon nitride quantum dots as fluorescence probe for fast and highly selective detection of 2,4,6-Trinitrophenol. J. Fluoresc., 2021, 31(1), 1-9.
[http://dx.doi.org/10.1007/s10895-020-02633-9] [PMID: 33057853]
[39]
Tan, X.; Zhang, T.; Zeng, W.; He, S.; Liu, X.; Tian, H.; Shi, J.; Cao, T. A fluorescence sensing determination of 2, 4, 6-Trinitrophenol based on cationic water-soluble pillar[6]arene graphene nanocomposite. Sensors, 2018, 19(1), 91.
[http://dx.doi.org/10.3390/s19010091] [PMID: 30597872]
[40]
Siddique, A.B.; Pramanick, A.K.; Chatterjee, S.; Ray, M. Amorphous carbon dots and their remarkable ability to detect 2,4,6-Trinitrophenol. Sci. Rep., 2018, 8(1), 9770.
[http://dx.doi.org/10.1038/s41598-018-28021-9] [PMID: 29950660]
[41]
Kumar, D.; Jha, P.; Chouksey, A.; Tandon, R.P.; Chaudhury, P.K.; Rawat, J.S. Flexible single walled nanotube based chemical sensor for 2,4-dinitrotoluene sensing. J. Mater. Sci. Mater. Electron., 2018, 29(8), 6200-6205.
[http://dx.doi.org/10.1007/s10854-018-8595-1]
[42]
Ju, B.; Wang, Y.; Zhang, Y.M.; Zhang, T.; Liu, Z.; Li, M.; Xiao-An Zhang, S. Photostable and low-toxic yellow-green carbon dots for highly selective detection of explosive 2,4,6-Trinitrophenol based on the dual electron transfer mechanism. ACS Appl. Mater. Interfaces, 2018, 10(15), 13040-13047.
[http://dx.doi.org/10.1021/acsami.8b02330] [PMID: 29589747]
[43]
Zhang, Y.; Xu, M.; Bunes, B.R.; Wu, N.; Gross, D.E.; Moore, J.S.; Zang, L. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives. ACS Appl. Mater. Interfaces, 2015, 7(14), 7471-7475.
[http://dx.doi.org/10.1021/acsami.5b01532] [PMID: 25823968]
[44]
Ruan, W.; Li, Y.; Tan, Z.; Liu, L.; Jiang, K.; Wang, Z. In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens. Actuators B Chem., 2013, 176, 141-148.
[http://dx.doi.org/10.1016/j.snb.2012.10.026]
[45]
Niu, Q.; Gao, K.; Lin, Z.; Wu, W. Amine-capped carbon dots as a nanosensor for sensitive and selective detection of picric acid in aqueous solution via electrostatic interaction. Anal. Methods, 2013, 5(21), 6228.
[http://dx.doi.org/10.1039/c3ay41275j]
[46]
Anuradha, B.T.; Bhatia, T. Novel nanomaterials in forensic investigations: A review. Mater. Today Proc., 2022, 50, 1071-1079.
[http://dx.doi.org/10.1016/j.matpr.2021.07.466]
[47]
Adegoke, O.; Nic Daeid, N. Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective. Emerg. Top. Life Sci., 2021, 5(3), 367-379.
[http://dx.doi.org/10.1042/ETLS20200281] [PMID: 33960382]
[48]
Chou Chau, Y.F.; Ming, T.Y.; Chou Chao, C.T.; Thotagamuge, R.; Kooh, M.R.R.; Huang, H.J.; Lim, C.M.; Chiang, H.P. Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci. Rep., 2021, 11(1), 18515.
[http://dx.doi.org/10.1038/s41598-021-98001-z] [PMID: 34531463]
[49]
Chao, C.T.; Kooh, M.; Chau, Y.F.; Thotagamuge, R. Susceptible plasmonic photonic crystal fiber sensor with elliptical air holes and external-flat gold-coated surface. Photonics, 2022, 9(12), 916.
[http://dx.doi.org/10.3390/photonics9120916]
[50]
Zubaidah, B.H.J.S.; Chou, C.C-T.; Chou, C.Y-F.; Mahadi, A.H.; Kooh, M.R.R.; Kumara, N.T.R.N.; Chiang, H-P. Plasmonic refractive index sensor based on the combination of rectangular and circular resonators including baffles. Zhongguo Wuli Xuekan, 2021, 71, 286-299.
[http://dx.doi.org/10.1016/j.cjph.2021.02.006]
[51]
Passoni, M.; Perego, C.; Sgattoni, A.; Batani, D. Advances in target normal sheath acceleration theory. Phys. Plasmas, 2013, 20(6), 060701.
[http://dx.doi.org/10.1063/1.4812708]
[52]
Chou Chao, C-T.; Chou Chau, Y-F.; Chiang, H.P. Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects. J. Phys. D Appl. Phys., 2021, 54(11), 115301.
[http://dx.doi.org/10.1088/1361-6463/abce7f]
[53]
Zhang, Y.; McKelvie, I.D.; Cattrall, R.W.; Kolev, S.D. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: Merits, inherent shortcomings and future prospects. Talanta, 2016, 152, 410-422.
[http://dx.doi.org/10.1016/j.talanta.2016.02.015] [PMID: 26992537]
[54]
Üzer, A.; Yalçın, U.; Can, Z.; Erçağ, E.; Apak, R. Indirect determination of pentaerythritol tetranitrate (PETN) with a gold nanoparticles−based colorimetric sensor. Talanta, 2017, 175, 243-249.
[http://dx.doi.org/10.1016/j.talanta.2017.06.049] [PMID: 28841986]
[55]
Ular, N.; Üzer, A.; Durmazel, S.; Erçağ, E.; Apak, R. Diaminocyclohexane-functionalized/thioglycolic acid-modified gold nanoparticle-based colorimetric sensing of trinitrotoluene and tetryl. ACS Sens., 2018, 3(11), 2335-2342.
[http://dx.doi.org/10.1021/acssensors.8b00709] [PMID: 30350589]
[56]
Özcan, Ç.; Üzer, A.; Durmazel, S.; Apak, R. Colorimetric sensing of nitroaromatic energetic materials using Surfactant-Stabilized and Dithiocarbamate-Functionalized gold nanoparticles. Anal. Lett., 2019, 52(17), 2794-2808.
[http://dx.doi.org/10.1080/00032719.2019.1608555]
[57]
Chaiendoo, K.; Ngamdee, K.; Limbut, W.; Saiyasombat, C.; Busayaporn, W.; Ittisanronnachai, S.; Promarak, V.; Promsuwan, K.; Thavarungkul, P.; Kanatharana, P.; Ngeontae, W. Gold nanoparticle-based cascade reaction-triggered fluorogenicity for highly selective nitrite ion detection in forensic samples. Microchem. J., 2021, 168, 106470.
[http://dx.doi.org/10.1016/j.microc.2021.106470]
[58]
Aparna, R.S.; Anjali Devi, J.S.; Anjana, R.R.; Nebu, J.; George, S. Zn(II) ion modulated red emitting copper nanocluster probe for the fluorescence turn on sensing of RDX. Sens. Actuators B Chem., 2019, 291, 298-305.
[http://dx.doi.org/10.1016/j.snb.2019.04.051]
[59]
Raza, A.; Saha, B. In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes. Forensic Sci. Int., 2014, 237, e42-e46.
[http://dx.doi.org/10.1016/j.forsciint.2014.01.019] [PMID: 24582080]
[60]
Ponlakhet, K.; Phooplub, K.; Phongsanam, N.; Phongsraphang, T.; Phetduang, S.; Surawanitkun, C.; Buranachai, C.; Loilome, W.; Ngeontae, W. Smartphone-based portable fluorescence sensor with gold nanoparticle mediation for selective detection of nitrite ions. Food Chem., 2022, 384, 132478.
[http://dx.doi.org/10.1016/j.foodchem.2022.132478] [PMID: 35219228]
[61]
Kayhomayun, Z.; Ghani, K.; Zargoosh, K. Synthesis of samarium orthoferrite-based perovskite nanoparticles as a turn-on fluorescent probe for trace level detection of picric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 281, 121627.
[http://dx.doi.org/10.1016/j.saa.2022.121627] [PMID: 35853251]
[62]
Demircioğlu, T.; Kaplan, M.; Tezgin, E.; Kaan Koç, Ö.; Durmazel, S.; Üzer, A.; Apak, R. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl. Microchem. J., 2022, 176, 107251.
[http://dx.doi.org/10.1016/j.microc.2022.107251]
[63]
Uzunboy, S.; Avan, A.N.; Demirci-Çekiç, S.; Apak, R. Indirect colorimetric determination of trace hydrogen peroxide by its oxidizing power on chromium(III) oxide nanoparticles. Microchem. J., 2022, 178, 107335.
[http://dx.doi.org/10.1016/j.microc.2022.107335]
[64]
Chau, Y.F.; Jiang, Z.H.; Li, H.Y.; Lin, G.M.; Wu, F.L.; Lin, W.H. Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains. Prog. Electromagn. Res. B Pier B, 2011, 28, 183-199.
[http://dx.doi.org/10.2528/PIERB10102705]
[65]
Chau, Y.F.; Yeh, H.H.; Tsai, D.P. A new type of optical antenna: Plasmonics nanoshell bowtie antenna with dielectric hole. J. Electromagn. Waves Appl., 2010, 24(11-12), 1621-1632.
[http://dx.doi.org/10.1163/156939310792149588]
[66]
Song, G.; Yu, L.; Duan, G.Y.; Wang, L.L. Tunable band-stop filters based on the strong coupling-like phenomenon in metal–insulator–metal cavities involving molecular J-aggregates. J. Phys. D Appl. Phys., 2017, 50(20), 205104.
[http://dx.doi.org/10.1088/1361-6463/aa6a00]
[67]
de Barros, M.R.; Winiarski, J.P.; Elias, W.C.; de Campos, C.E.M.; Jost, C.L. Au-on-Pd bimetallic nanoparticles applied to the voltammetric determination and monitoring of 4-nitroaniline in environmental samples. J. Environ. Chem. Eng., 2021, 9(5), 105821.
[http://dx.doi.org/10.1016/j.jece.2021.105821]
[68]
Adegoke, O.; Daeid, N.N. Polymeric-coated Fe-doped ceria/gold hybrid nanocomposite as an aptasensor for the catalytic enhanced colorimetric detection of 2,4-dinitrophenol. Colloids Surf. A Physicochem. Eng. Asp., 2021, 627, 127194.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127194]
[69]
Thirumalai, D.; Lee, J.U.; Choi, H.; Kim, M.; Lee, J.; Kim, S.; Shin, B.S.; Chang, S.C. In situ synthesis of copper–ruthenium bimetallic nanoparticles on laser-induced graphene as a peroxidase mimic. Chem. Commun., 2021, 57(15), 1947-1950.
[http://dx.doi.org/10.1039/D0CC07518C] [PMID: 33501483]
[70]
Li, J.; He, L.; Jiang, J.; Xu, Z.; Liu, M.; Liu, X.; Tong, H.; Liu, Z.; Qian, D. Facile syntheses of bimetallic Prussian blue analogues (KxM[Fe(CN)6]·nH2O, M=Ni, Co, and Mn) for electrochemical determination of toxic 2-nitrophenol. Electrochim. Acta, 2020, 353, 136579.
[http://dx.doi.org/10.1016/j.electacta.2020.136579]
[71]
Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Rapid detection of low concentration H2 using Au@Pd/SnO2 nanocomposites. Sens. Actuators B Chem., 2022, 366, 131971.
[http://dx.doi.org/10.1016/j.snb.2022.131971]
[72]
Arshad, A.; Wang, H.; Bai, X.; Jiang, R.; Xu, S.; Wang, L. Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 16-22.
[http://dx.doi.org/10.1016/j.saa.2018.07.095] [PMID: 30077892]
[73]
Moram, S.S.B.; Shaik, A.K.; Byram, C.; Hamad, S.; Soma, V.R. Instantaneous trace detection of nitro-explosives and mixtures with nanotextured silicon decorated with Ag–Au alloy nanoparticles using the SERS technique. Anal. Chim. Acta, 2020, 1101, 157-168.
[http://dx.doi.org/10.1016/j.aca.2019.12.026] [PMID: 32029107]
[74]
Sree Satya Bharati, M.; Byram, C.; Soma, V.R. Femtosecond laser fabricated AG@AU and CU@AU alloy nanoparticles for surface enhanced RAMAN spectroscopy based trace explosives detection. Front. Phys., 2018, 6, 28.
[http://dx.doi.org/10.3389/fphy.2018.00028]
[75]
Byram, C.; Soma, V.R. 2,4-dinitrotoluene detected using portable Raman spectrometer and femtosecond laser fabricated Au–Ag nanoparticles and nanostructures. Nano-Structures & Nano-Objects, 2017, 12, 121-129.
[http://dx.doi.org/10.1016/j.nanoso.2017.09.019]