An Eco-friendly Strategy for the Synthesis of Spiro-benzimidazoquinazolinone and Spiro-benzothiazoloquinazolinone Derivatives using β-cyclodextrin as a Supramolecular Catalyst

Article ID: e271223224897 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Cyclodextrins selectively bind with reactants and facilitate chemical reactions through supramolecular catalysis, similar to the mechanisms employed by enzymes. In this paper, β-cyclodextrin was used as a supramolecular catalyst in water as a green, reusable, and ecofriendly solvent system to synthesize spiro-benzimidazoquinazolinones and spiro-benzothiazoloquinazolinones.

Objective: A supramolecular catalyst β-cyclodextrin (β-CD) is used to synthesize spiro- benzimidazoquinazolinones and spiro-benzothiazoloquinazolinones via multicomponent reaction involving the condensation of dimedone, isatin, and 2-aminobenzimidazole/2-aminobenzothiazole.

Methods: In a 50 mL round bottom flask were added the respective mixture of substituted isatin (1 mmol), dimedone (1mmol), and 2-aminobenzimidazole/2-aminobenzothiazole (1 mmol) in water (5 ml) containing β-CD (113 mg, 10 mol. %) was stirred at 60oC for 30 min. The desired product was obtained with excellent yield. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with water and extracted with ethyl acetate (4X5 ml). The combined organic layers were washed with brine solution, dried over anhydrous Na2SO4 and evaporated under reduced pressure. The crude product was purified by silica gel chromatography.

Results: β-cyclodextrin catalyst showed very good efficiency in the synthesis of the desired compounds and can be easily recovered and reused at least five times with minimal deactivation in catalytic activity.

Conclusion: The catalyst demonstrated remarkable effectiveness in producing the target compounds and conducting the reaction with different initial substances, resulting in excellent yields of the products, thereby confirming the broad applicability and versatility of this method.

Graphical Abstract

[1]
(a) Rahmani R, Gharanfoli M, Gholamin M, et al. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceram Int 2020; 46(3): 3051-8.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.005];
(b) Chamani J. Comparison of the conformational stability of the non-native α-helical intermediate of thiol-modified β-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH. J Colloid Interface Sci 2006; 299(2): 636-46.
[http://dx.doi.org/10.1016/j.jcis.2006.02.049] [PMID: 16554059];
(c) Moosavi-Movahedi AA, Hakimelahi S, Chamani J, et al. Design, synthesis, and anticancer activity of phosphonic acid diphosphate derivative of adenine-containing butenolide and its water-soluble derivatives of paclitaxel with high antitumor activity. Bioorg Med Chem 2003; 11(20): 4303-13.
[http://dx.doi.org/10.1016/S0968-0896(03)00524-8] [PMID: 13129566];
(d) Zohoorian-Abootorabi T, Sanee H, Iranfar H, Saberi MR, Chamani J. Spectrochim. Acta A Mol. Biomol Spectrosc SPECTROCHIM ACTA A 2012; 88: 177-91.
[http://dx.doi.org/10.1016/j.saa.2011.12.026]
[2]
Guo X, Hu W. Novel multicomponent reactions via trapping of protic onium ylides with electrophiles. Acc Chem Res 2013; 46(11): 2427-40.
[http://dx.doi.org/10.1021/ar300340k] [PMID: 24246000]
[3]
(a) Vine KL, Matesic L, Locke JM, Ranson M, Skropeta D. Cytotoxic and anticancer activities of isatin and its derivatives: A comprehensive review from 2000-2008. Anticancer Agents Med Chem 2009; 9(4): 397-414.
[http://dx.doi.org/10.2174/1871520610909040397] [PMID: 19442041];
(b) Hilton ST, Ho TCT, Pljevaljcic G, Jones K. A new route to spirooxindoles. Org Lett 2000; 2(17): 2639-41.
[http://dx.doi.org/10.1021/ol0061642] [PMID: 10990416]
[4]
(a) Chang, M.Y.; Pai, C.L.; Kung, Y.H. Synthesis of (±)-coerulescine and a formal synthesis of (±)-horsfiline. Tetrahedron Lett 2005; 46(49): 8463-5.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.015];
(b) Baran, P.S.; Richter, J.M. Enantioselective total syntheses of welwitindolinone A and fischerindoles I and G. J Am Chem Soc 2005; 127(44): 15394-6.
[http://dx.doi.org/10.1021/ja056171r] [PMID: 16262402]
[5]
Maloo P, Roy TK, Sawant DM, Pardasani RT, Salunkhe MM. A catalyst-free, one-pot multicomponent synthesis of spiro-benzimidazoquinazolinones via a Knoevenagel–Michael-imine pathway: A microwave assisted approach. RSC Advances 2016; 6(48): 41897-906.
[http://dx.doi.org/10.1039/C6RA05322J]
[6]
Arya AK, Kumar M. An efficient green chemical approach for the synthesis of structurally diverse spiroheterocycles with fused heterosystems. Green Chem 2011; 13(5): 1332-8.
[http://dx.doi.org/10.1039/c1gc00008j]
[7]
Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: A novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009; 49(1): 223-41.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094723] [PMID: 18834305]
[8]
(a) Witt A. Bergman. J Curr Org Chem 2003; 7: 659.
[http://dx.doi.org/10.2174/1385272033486738];
(b) Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Synthesis of quinazolinones and quinazolines. Tetrahedron 2005; 61(43): 10153-202.
[http://dx.doi.org/10.1016/j.tet.2005.07.010];
(c) Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 1999; 16(6): 697-709.
[http://dx.doi.org/10.1039/a809408j] [PMID: 10641323];
(d) Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 2002; 19(6): 742-60.
[http://dx.doi.org/10.1039/b104971m] [PMID: 12521267];
(e) Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 2003; 20(5): 476-93.
[http://dx.doi.org/10.1039/b208140g] [PMID: 14620843]
[9]
Grasso S, Micale N, Monforte AM, Monforte P, Polimeni S, Zappalà M. Synthesis and in vitro antitumour activity evaluation of 1-aryl-1H,3H-thiazolo[4,3-b]quinazolines. Eur J Med Chem 2000; 35(12): 1115-9.
[http://dx.doi.org/10.1016/S0223-5234(00)01195-8] [PMID: 11248410]
[10]
(a) Testard A, Picot L, Lozach O, et al. Synthesis and evaluation of the antiproliferative activity of novel thiazoloquinazolinone kinases inhibitors. J Enzyme Inhib Med Chem 2005; 20(6): 557-68.
[http://dx.doi.org/10.1080/14756360500212399];
(b) Shaabani A, Farhangi E, Shaabani S. Iran J Chem Chem Eng 2013; 32(1)
[11]
Van Zandt MC, Jones ML, Gunn DE, et al. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J Med Chem 2005; 48(9): 3141-52.
[http://dx.doi.org/10.1021/jm0492094] [PMID: 15857120]
[12]
Henriksen G, Yousefi BH, Drzezga A, Wester HJ. Development and evaluation of compounds for imaging of β-amyloid plaque by means of positron emission tomography. Eur J Nucl Med Mol Imaging 2008; 35(S1): 75-81.
[http://dx.doi.org/10.1007/s00259-007-0705-x]
[13]
Yoshida M, Hayakawa I, Hayashi N, et al. Synthesis and biological evaluation of benzothiazole derivatives as potent antitumor agents. Bioorg Med Chem Lett 2005; 15(14): 3328-32.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.077] [PMID: 15955697]
[14]
Solomon VR, Hu C, Lee H. Hybrid pharmacophore design and synthesis of isatin–benzothiazole analogs for their anti-breast cancer activity. Bioorg Med Chem 2009; 17(21): 7585-92.
[http://dx.doi.org/10.1016/j.bmc.2009.08.068] [PMID: 19804979]
[15]
a) Z.; Harkov, S.; Chaban, T.; Klenina, O.; Ogurtsov, V.; Chaban, I. Pharmacia 2017; 64(3): 52-66.;
(b) Jung FH, Pasquet G, Lambert-van der Brempt C, et al. Discovery of novel and potent thiazoloquinazolines as selective Aurora A and B kinase inhibitors. J Med Chem 2006; 49(3): 955-70.
[http://dx.doi.org/10.1021/jm050786h] [PMID: 16451062];
(c) Bekheit MS, Farahat AA, Abdel-Wahab BF. Synthetic routes to thiazoloquinazolines. Chem Heterocycl Compd 2016; 52(10): 766-72.
[http://dx.doi.org/10.1007/s10593-016-1961-0]
[16]
French D. The Schardinger dextrins. Adv Carbohydr Chem 1957; 12: 189-260.
[http://dx.doi.org/10.1016/S0096-5332(08)60209-X] [PMID: 13617118]
[17]
(a) Chevry M, Vanbésien T, Menuel S, Monflier E, Hapiot F. Tetronics/cyclodextrin-based hydrogels as catalyst-containing media for the hydroformylation of higher olefins. Catal Sci Technol 2017; 7(1): 114-23.
[http://dx.doi.org/10.1039/C6CY02070D];
(b) Sharma N, Baldi A. Exploring versatile applications of cyclodextrins: An overview. Drug Deliv 2016; 23(3): 729-47.
[http://dx.doi.org/10.3109/10717544.2014.938839]
[18]
Zhang Y, Duan J, Ma D, et al. Angew Chem Int Ed Engl 2017; 56(51): 16313-7.
[PMID: 29106041]
[19]
Floresta G, Talotta C, Gaeta C, et al. Y-cyclodextrin as a catalyst for the synthesis of 2-methyl-3, 5-oliarylisoxazolidines in water. J Org Chem 2017; 82(9): 4631-9.
[PMID: 28406307]
[20]
Dalal DS, Patil DR, Tayade YA. β‐Cyclodextrin: A green and efficient supramolecular catalyst for organic transformations. Chem Rec 2018; 18(11): 1560-82.
[http://dx.doi.org/10.1002/tcr.201800016] [PMID: 29855139]
[21]
Xu W, Li X, Wang L, et al. Design of cyclodextrin-based functional systems for biomedical applications. Front Chem 2021; 9: 635507.
[http://dx.doi.org/10.3389/fchem.2021.635507] [PMID: 33681149]
[22]
Shin JA, Lim YG, Lee KH. Copper-catalyzed azide-alkyne cycloaddition reaction in water using cyclodextrin as a phase transfer catalyst. J Org Chem 2012; 77(8): 4117-22.
[http://dx.doi.org/10.1021/jo3000095] [PMID: 22448725]
[23]
(a) Londhe BS, Pratap UR, Mali JR, Mane RA. Synthesis of 2-arylbenzothiazoles catalyzed by biomimetic catalyst, β-cyclodextrin. Bull Korean Chem Soc 2010; 31(8): 2329-32.
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2329];
(b) Hu YL, Jiang H, Lu M. Efficient and convenient C-3 functionalization of indoles through Ce(OAc)3/TBHP-mediated oxidative C–H bond activation in the presence of β-cyclodextrin. Green Chem 2011; 13(11): 3079.
[http://dx.doi.org/10.1039/c1gc15639j]
[24]
Tiwari J, Singh S, Jaiswal D, et al. Supramolecular catalysis: An efficient and sustainable multicomponent approach to the synthesis of novel Hexahydro-4H-indazol-4-one derivatives. Curr Catal 2021; 9(2): 92-101.
[http://dx.doi.org/10.2174/2211544709999200614165508]
[25]
(a) Hapiot F, Ponchel A, Tilloy S, Monflier E. Cyclodextrins and their applications in aqueous-phase metal-catalyzed reactions. C R Chim 2011; 14(2-3): 149-66.
[http://dx.doi.org/10.1016/j.crci.2010.04.003];
(b) Bai C, Tian B, Zhao T, Huang Q, Wang Z. Cyclodextrin-catalyzed organic synthesis: Reactions, mechanisms, and applications. Molecules 2017; 22(9): 1475.
[http://dx.doi.org/10.3390/molecules22091475] [PMID: 28880241];
(c) Alrabiah H, Aljohar HI, Bakheit AH, Homoda AM. Mostafa, G. A. H. Drug Des Devel Ther 2019; 2283-93.
[http://dx.doi.org/10.2147/DDDT.S201907] [PMID: 31371922]
[26]
Xu Y, Rashwan AK, Osman AI, et al. Synthesis and potential applications of cyclodextrin-based metal–organic frameworks: A review. Environ Chem Lett 2023; 21(1): 447-77.
[http://dx.doi.org/10.1007/s10311-022-01509-7] [PMID: 36161092]
[27]
Shen HM, Ji HB. Biomimetic asymmetric aldol reactions catalyzed by proline derivatives attached to β-cyclodextrin in water. Tetrahedron Lett 2012; 53(28): 3541-5.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.140]
[28]
Rai P, Srivastava M, Yadav S, Singh J, Singh J. β-Cyclodextrin: A biomimetic catalyst used for the synthesis of 4h-chromene-3-carbonitrile and tetrahydro-1h-xanthen-1-one derivatives. Catal Lett 2015; 145(12): 2020-8.
[http://dx.doi.org/10.1007/s10562-015-1588-2]
[29]
Singh SB, Tiwari K, Verma PK, Srivastava M, Tiwari KP, Singh J. A new eco-friendly strategy for the synthesis of novel antimicrobial spiro-oxindole derivatives via supramolecular catalysis. Supramol Chem 2013; 25(5): 255-62.
[http://dx.doi.org/10.1080/10610278.2012.761341]
[30]
(a) Baranwal J, Kushwaha S, Singh S, Jyoti A. Synergistic effect of ethyl lactate/glycerol: A new route for the synthesis of hexahydro-4H-indazol-4-one and its derivatives. Heterocycl Lett 2022; 12(3): 621-30.;
(b) Baranwal J, Kushwaha S, Singh S, Jyoti A. A review on the synthesis and pharmacological activity of heterocyclic compounds. Curr Phys Chem 2023; 13(1): 2-19.
[http://dx.doi.org/10.2174/1877946813666221021144829];
(c) Baranwal J, Singh S, Kushwaha S, Jyoti A. Acemannan from aloe vera extract: A catalyst-free, approach for the access of imidazole-fused nitrogen-bridgehead heterocycles. Lett Org Chem 2023; 20(5): 446-56.
[http://dx.doi.org/10.2174/1570178620666221116093457];
(d) Kushwaha S, Baranwal J, Singh S, Jyoti A. A review on green synthesis of biologically active compounds. Curr Green Chem 2022; 9(3): 174-95.
[http://dx.doi.org/10.2174/2213346110666221213092734];
(e) Kushwaha S, Singh S, Baranwal J, Jyoti A. 5-sulphosalicylic acid: An expeditious organocatalyst for one-pot synthesis of indenopyrazolones and its derivatives. Curr Orgcatalysis 2024; 10(3): 215-24.
[31]
(a) Kushwaha S, Baranwal J, Singh S, Jyoti A. Synergistic effect of ethyl lactate/GVL: A new route for the synthesis of spirooxindole-indazolones and its derivatives. Heterocycl Lett 2023; 13(2): 319-29.;
(b) Baranwal J, Singh S, Kushwaha S, Jyoti A. Stepping into the World of Technology. Research Culture Society and Publication 2023.;
(c) Kushwaha S, Singh S, Baranwal J, Jyoti A. Stepping into the World of Technology. Research Culture Society and Publication 2023.;
(d) Tufail F, Saquib M, Singh S, et al. Bioorganopromoted green friedländer synthesis: A versatile new malic acid promoted solvent free approach to multisubstituted quinolones. New J Chem 2017; 41: 1618.
[http://dx.doi.org/10.1039/C6NJ03907C];
(e) Tiwari J, Saquib M, Singh S, et al. Visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem 2016; 18: 3221.
[http://dx.doi.org/10.1039/C5GC02855H]
[32]
(a) Singh S, Saquib M, Singh M, Tiwari J, Tufail F, Singh J. Singh. J. A catalyst free, multicomponent-tandem, facile synthesis of pyrido[2,3-d]pyrimidines using glycerol as a recyclable promoting medium. New J Chem 2016; 40: 63.
[http://dx.doi.org/10.1039/C5NJ01938A];
(b) Tufail F, Saquib M, Singh S, et al. A practical green approach to diversified spirochromene/spiropyran scaffolds via a glucose–water synergy driven organocatalytic system. New J Chem 2018; 42(21): 17279-90.
[http://dx.doi.org/10.1039/C8NJ03028F];
(c) Tufail F, Singh S, Saquib M, Tiwari J, Singh J, Singh J. Catalyst-free, glycerol-assisted facile approach to imidazole-fused nitrogen-bridgehead heterocycles. ChemistrySelect 2017; 2(21): 6082-9.
[http://dx.doi.org/10.1002/slct.201700557];
(d) Tiwari J, Singh S, Tufail F, Jaiswal D, Singh J. Singh. J. Glycerol micellar catalysis: An efficient multicomponent-tandem green synthetic approach to biologically important 2, 4-disubstituted thiazole derivatives. ChemistrySelect 2018; 3(41): 11634-42.
[http://dx.doi.org/10.1002/slct.201802511];
(e) Tiwari J, Singh S, Jaiswal D, Sharma AK, Singh S, Singh J. Singh. J. Supramolecular catalysis: an efficient and sustainable multicomponent approach to the synthesis of novel hexahydro-4h-indazol-4-one derivatives. Curr Catal 2020; 9(2): 92-101.
[http://dx.doi.org/10.2174/2211544709999200614165508]