Organic Electrosynthesis: A Promising Green Tool in Solving Key Steps for the Total Synthesis of Complex Natural Products

Page: [148 - 171] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Electro-organic synthesis, an atom-efficient, sustainable, mild process, permits an ecofriendly and elegant green path to synthesize structurally complex, still valuable molecules, avoiding the use of conventional harsh oxidizing and reducing agents and long-route reaction protocols. Being one of the oldest forms of reaction setups in a laboratory, it deals with fundamental redox chemistry through the direct application of electrical potential. Here flow of electrons acts as an oxidizing agent at the anode at the same time reducing agent at the cathode, depending upon the requirement of the reaction. Simultaneously, it minimizes the generation of reagent waste during the reaction. However, electrifying organic synthesis plays more than preventing the waste footprint. This technology provides an alternative roadmap through nonclassical bond disconnections to access desired target molecules by cutting down a number of steps with the formation of apparently looking difficult bonds with excellent regio-, chemo-and stereoselectivity. Hence, it emerges as an alternative and attractive technique for the contemporary synthetic communities. Consequently, in recent years, multiple milestones have been achieved in the electro-organic synthesis of fascinating natural products through oxidative C-C bond formation, C-H/N-H functionalization, very rare oxidative N-N dimerization, RCDA dimerization, etc. Thus, synthesis of extremely complex natural products through finding new electro-synthetic route as a key methodology have become one of the alluring synthetic targets to synthetic chemists because of their versatile utilities in medicine, agriculture, food, and cosmetic industry. This review presents advances in electrochemistry in the total synthesis of 20 complex natural products reported since 2013. Enabling synthetic steps are analyzed alongside innate advantages as well as future prospects are speculated.

Graphical Abstract

[1]
a) Noyori, R. Synthesizing our future. Nat. Chem., 2009, 1(1), 5-6.
[http://dx.doi.org/10.1038/nchem.143] [PMID: 21378778];
b) Whitesides, G.M. Reinventing chemistry. Angew. Chem. Int. Ed., 2015, 54(11), 3196-3209.
[http://dx.doi.org/10.1002/anie.201410884] [PMID: 25682927];
c) Hoffmann, R.W. Complex molecule synthesis, a personal view. Isr. J. Chem., 2018, 58(1-2), 73-79.
[http://dx.doi.org/10.1002/ijch.201700086];
d) Kühlborn, J.; Groß, J.; Opatz, T. Making natural products from renewable feedstocks: Back to the roots? Nat. Prod. Rep., 2020, 37(3), 380-424.
[http://dx.doi.org/10.1039/C9NP00040B] [PMID: 31625546]
[2]
Faraday, P.M. On the primary and secondary character of the substances developed on electrodes. Ann. Phys. Chem, 1834, 33, 438.
[3]
Kolbe, H. Observations on the oxidizing effect of oxygen when it is developed with the help of an electric column. J. Prakt. Chem., 1847, 41(1), 137-139.
[http://dx.doi.org/10.1002/prac.18470410118]
[4]
Schoenbein, ChF. Liebigs Ann. Chem., 1845, 54, 164.
[5]
a) Lund, H. A century of organic electrochemistry. J. Electrochem. Soc., 2002, 149(4), S21-S33.
[http://dx.doi.org/10.1149/1.1462037];
b) Shatskiy, A.; Lundberg, H.; Kärkäs, M.D. Organic electrosynthesis: Applications in complex molecule synthesis. ChemElectroChem, 2019, 6(16), 4067-4092.
[http://dx.doi.org/10.1002/celc.201900435];
c) Pollok, D.; Waldvogel, S.R. Electro-organic synthesis-a 21st century technique. Chem. Sci., 2020, 11(46), 12386-12400.
[http://dx.doi.org/10.1039/D0SC01848A] [PMID: 34123227];
d) Schotten, C.; Nicholls, T.P.; Bourne, R.A.; Kapur, N.; Nguyen, B.N.; Willans, C.E. Making electrochemistry easily accessible to the synthetic chemist. Green Chem., 2020, 22(11), 3358-3375.
[http://dx.doi.org/10.1039/D0GC01247E]
[6]
Naito, Y.; Tanabe, T.; Kawabata, Y.; Ishikawa, Y.; Nishiyama, S. Electrochemical construction of the diaryl ethers: A synthetic approach to o-methylthalibrine. Tetrahedron Lett., 2010, 51(36), 4776-4778.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.037]
[7]
a) Wagner, H.; Lin, L.Z.; Seligmann, O. Alkaloids from Thalictrum faberi. Planta Med., 1984, 50(1), 14-16.
[http://dx.doi.org/10.1055/s-2007-969608] [PMID: 17340238];
b) Wu, W.N.; Liao, W.; Mahmoud, Z.F.; Beal, J.L.; Doskotch, R.W. Alkaloids of Thalictrum XXXIV. Three new alkaloids, thalmirabine, thalistine, and o-methylthalibrine, and others from roots of Thalictrum minus race B. J. Nat. Prod., 1980, 43(4), 472-481.
[http://dx.doi.org/10.1021/np50010a007]
[8]
Nguyen, V.K.; Kou, K.G.M. The biology and total syntheses of bisbenzylisoquinoline alkaloids. Org. Biomol. Chem., 2021, 19(35), 7535-7543.
[http://dx.doi.org/10.1039/D1OB00812A] [PMID: 34524341]
[9]
Blank, N.; Opatz, T. Enantioselective synthesis of tetrahydroprotoberberines and bisbenzylisoquinoline alkaloids from a deprotonated α-aminonitrile. J. Org. Chem., 2011, 76(23), 9777-9784.
[http://dx.doi.org/10.1021/jo201871c] [PMID: 22004161]
[10]
Werner, F.; Blank, N.; Opatz, T. Synthesis of (–)‐(S)‐norlaudanosine, (+)‐(R)‐O,O‐dimethylcoclaurine, and (+)‐(R)‐salsolidine by alkylation of an α‐aminonitrile. Eur. J. Org. Chem., 2007, 2007(23), 3911-3915.
[http://dx.doi.org/10.1002/ejoc.200700261]
[11]
Kawabata, Y.; Naito, Y.; Saitoh, T.; Kawa, K.; Fuchigami, T.; Nishiyama, S. Synthesis of (+)‐O‐Methylthalibrine by employing a stereocontrolled bischler–napieralski reaction and an electrochemically generated diaryl ether. Eur. J. Org. Chem., 2014, 2014(1), 99-104.
[http://dx.doi.org/10.1002/ejoc.201301128]
[12]
a) Tajima, H. Master Thesis, Tokyo Institute of Technology, 2004.;
b) Tajima, H.; Fuchigami, T. Farumashia, 2003, 32, 5-11.
[13]
a) Slosse, P.; Hootelé, C. Structure and absolute configuration of myrtine, a new quinolizidine alkaloid from. Tetrahedron Lett., 1978, 19(4), 397-398.
[http://dx.doi.org/10.1016/S0040-4039(01)85135-2];
b) Slosse, P.; Hootelé, C. Myrtine and epimyrtine, quinolizidine alkaloids from Vaccinium myrtillus. Tetrahedron, 1981, 37(24), 4287-4294.
[http://dx.doi.org/10.1016/0040-4020(81)85024-7];
c) Michael, J.P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep., 2004, 21(5), 625-649.
[http://dx.doi.org/10.1039/b310689f] [PMID: 15459758]
[14]
a) Comins, D.L.; LaMunyon, D.H. Enantiopure 2,3-dihydro-4-pyridones as synthetic intermediates. Asymmetric syntheses of the quinolizidine alkaloids, (+)-myrtine, (-)-lasubine I, and (+)-subcosine I. J. Org. Chem., 1992, 57(22), 5807-5809.
[http://dx.doi.org/10.1021/jo00048a003];
b) Pizzuti, M.G.; Minnaard, A.J.; Feringa, B.L. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine. Org. Biomol. Chem., 2008, 6(19), 3464-3466.
[http://dx.doi.org/10.1039/b807575a] [PMID: 19082145];
c) Ying, Y.; Kim, H.; Hong, J. Stereoselective synthesis of 2,6-cis- and 2,6-trans-piperidines through organocatalytic aza-Michael reactions: A facile synthesis of (+)-myrtine and (-)-epimyrtine. Org. Lett., 2011, 13(4), 796-799.
[http://dx.doi.org/10.1021/ol103064f] [PMID: 21250755];
d) Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.C.; Perrin, B.; Remuson, R. Enantioselective synthesis of the quinolizidine alkaloids (+)-myrtine and (−)-epimyrtine. Tetrahedron Asymmetry, 1998, 9(10), 1823-1828.
[http://dx.doi.org/10.1016/S0957-4166(98)00170-0];
e) Davis, F.A.; Xu, H.; Zhang, J. Asymmetric synthesis of ring functionalized trans-2,6-disubstituted piperidines from N-sulfinyl δ-amino β-keto phosphonates. total synthesis of (-)-myrtine. J. Org. Chem., 2007, 72(6), 2046-2052.
[http://dx.doi.org/10.1021/jo062365t] [PMID: 17305397]
[15]
Vu, V.H.; Louafi, F.; Girard, N.; Marion, R.; Roisnel, T.; Dorcet, V.; Hurvois, J.P. Electrochemical access to 8-(1-phenyl-ethyl)-1,4-dioxa-8-aza-spiro[4.5]decane-7-carbonitrile. Application to the asymmetric syntheses of (+)-myrtine and alkaloid (+)-241D. J. Org. Chem., 2014, 79(8), 3358-3373.
[http://dx.doi.org/10.1021/jo500104c] [PMID: 24670203]
[16]
Edwards, M.W.; Daly, J.W.; Myers, C.W. Alkaloids from a panamanian poison frog, Dendrobates speciosus: identification of pumiliotoxin-A and allopumiliotoxin class alkaloids, 3,5-disubstituted indolizidines, 5-substituted 8-methylindolizidines, and a 2-methyl-6-nonyl-4-hydroxypiperidine. J. Nat. Prod., 1988, 51(6), 1188-1197.
[http://dx.doi.org/10.1021/np50060a023] [PMID: 3236011]
[17]
a) Abrunhosa-Thomas, I.; Plas, A.; Vogrig, A.; Kandepedu, N.; Chalard, P.; Troin, Y. Access to 2,6-disubstituted piperidines: Control of the diastereoselectivity, scope, and limitations. Applications to the stereoselective synthesis of (-)-solenopsine A and alkaloid (+)-241D. J. Org. Chem., 2013, 78(6), 2511-2526.
[http://dx.doi.org/10.1021/jo302712f] [PMID: 23397886];
b) Murali, R.V.N.S.; Chandrasekhar, S. Stereocontrolled synthesis of piperidine alkaloids, (−)-241D and (−)-isosolenopsin. Tetrahedron Lett., 2012, 53(27), 3467-3470.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.115];
c) Saha, N.; Chattopadhyay, S.K. Enantiodivergency and enantioconvergency in the synthesis of the dendrobate alkaloid 241D. J. Org. Chem., 2012, 77(24), 11056-11063.
[http://dx.doi.org/10.1021/jo3019329] [PMID: 23205643]
[18]
a) Leverrier, A.; Dau, M.E.T.H.; Retailleau, P.; Awang, K.; Guéritte, F.; Litaudon, M.; Kingianin, A. Kingianin A: A new natural pentacyclic compound from Endiandra kingiana. Org. Lett., 2010, 12(16), 3638-3641.
[http://dx.doi.org/10.1021/ol101427m] [PMID: 20704409];
b) Leverrier, A.; Awang, K.; Guéritte, F.; Litaudon, M. Pentacyclic polyketides from Endiandra kingiana as inhibitors of the Bcl-xL/Bak interaction. Phytochemistry, 2011, 72(11-12), 1443-1452.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.005] [PMID: 21550092]
[19]
Lim, H.N.; Parker, K.A. Total synthesis of kingianin A. Org. Lett., 2013, 15(2), 398-401.
[http://dx.doi.org/10.1021/ol303388k] [PMID: 23273168]
[20]
Drew, S.L.; Lawrence, A.L.; Sherburn, M.S. Total synthesis of kingianins A, D, and F. Angew. Chem. Int. Ed., 2013, 52(15), 4221-4224.
[http://dx.doi.org/10.1002/anie.201210084] [PMID: 23468400]
[21]
Moore, J.C.; Davies, E.S.; Walsh, D.A.; Sharma, P.; Moses, J.E. Formal synthesis of kingianin A based upon a novel electrochemically-induced radical cation Diels–Alder reaction. Chem. Commun., 2014, 50(83), 12523-12525.
[http://dx.doi.org/10.1039/C4CC05906A] [PMID: 25196219]
[22]
a) Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; Ju, J.; Kurtán, T.; Zhang, C. ́ ́ N-N coupled indolo-sesquiterpene atropo-diastereomers from a marine-derived actinomycete. Eur. J. Org. Chem., 2012, 2012(27), 5256-5262.
[http://dx.doi.org/10.1002/ejoc.201200599];
b) Xu, Z.; Baunach, M.; Ding, L.; Hertweck, C. Bacterial synthesis of diverse indole terpene alkaloids by an unparalleled cyclization sequence. Angew. Chem. Int. Ed., 2012, 51(41), 10293-10297.
[http://dx.doi.org/10.1002/anie.201204087] [PMID: 22968942];
c) Baunach, M.; Ding, L.; Bruhn, T.; Bringmann, G.; Hertweck, C. Regiodivergent N-C and N-N aryl coupling reactions of indoloterpenes and cycloether formation mediated by a single bacterial flavoenzyme. Angew. Chem. Int. Ed., 2013, 52(34), 9040-9043.
[http://dx.doi.org/10.1002/anie.201303733] [PMID: 23843280]
[23]
a) Baran, P.S.; Richter, J.M. Direct coupling of indoles with carbonyl compounds: Short, enantioselective, gram-scale synthetic entry into the hapalindole and fischerindole alkaloid families. J. Am. Chem. Soc., 2004, 126(24), 7450-7451.
[http://dx.doi.org/10.1021/ja047874w] [PMID: 15198586];
b) Perkin, W.H.; Tucker, S.H. XXVI.-The oxidation of carbazole. J. Chem. Soc. Trans., 1921, 119(0), 216-225.
[http://dx.doi.org/10.1039/CT9211900216]
[24]
Tanis, S.P.; Chuang, Y.H.; Head, D.B. Furans in synthesis. 8. Formal total syntheses of (.+-.)- and (+)-aphidicolin. J. Org. Chem., 1988, 53(21), 4929-4938.
[http://dx.doi.org/10.1021/jo00256a007]
[25]
Rosen, B.R.; Werner, E.W.; O’Brien, A.G.; Baran, P.S. Total synthesis of dixiamycin B by electrochemical oxidation. J. Am. Chem. Soc., 2014, 136(15), 5571-5574.
[http://dx.doi.org/10.1021/ja5013323] [PMID: 24697810]
[26]
Üstünes, L.; Özer, A.; Laekeman, G.M.; Corthout, J.; Pieters, L.A.C.; Baeten, W.; Herman, A.G.; Claeys, M.; Vlietinck, A.J. Chemical characterization and pharmacological activity of nazlinin, a novel indole alkaloid from Nitraria schoberi. J. Nat. Prod., 1991, 54(4), 959-966.
[http://dx.doi.org/10.1021/np50076a006] [PMID: 1791481]
[27]
Wanner, M. J.; Velzel, A. W.; Koomen, G.-J. Biomimetic synthesis of nazlinin, a structural revision. J. Chem. Soc., Chem. Comm, 1993, 174-175.
[28]
Diker, K.; El Biach, K.; Döé de Maindreville, M.; Lévy, J. Reductive pictet−spengler cyclization of nitriles in the presence of tryptamine: Synthesis of indolo[2,3-a]quinolizidine, nazlinine, and elaeocarpidine. J. Nat. Prod., 1997, 60(8), 791-793.
[http://dx.doi.org/10.1021/np970191s]
[29]
Kabeshov, M.A.; Musio, B.; Murray, P.R.D.; Browne, D.L.; Ley, S.V. Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology. Org. Lett., 2014, 16(17), 4618-4621.
[http://dx.doi.org/10.1021/ol502201d] [PMID: 25147957]
[30]
a) Ward, R.S. Lignans neolignans, and related compounds. Nat. Prod. Rep., 1993, 10(1), 1-28.
[http://dx.doi.org/10.1039/np9931000001] [PMID: 8383826];
b) Ward, R.S. Lignans, neolignans and related compounds. Nat. Prod. Rep., 1999, 16(1), 75-96.
[http://dx.doi.org/10.1039/a705992b]
[31]
a) Dickey, E. Liriodendrin, a new lignan diglucoside from the inner bark of yellow poplar (Liriodendron tulipifera L.). J. Org. Chem., 1958, 23(2), 179-184.
[http://dx.doi.org/10.1021/jo01096a007];
b) Iida, T.; Nakano, M.; Ito, K. Hydroperoxysesquiterpene and lignan constituents of Magnolia kobus. Phytochemistry, 1982, 21(3), 673-675.
[http://dx.doi.org/10.1016/0031-9422(82)83163-4];
c) Kakisawa, H.; Chen, Y.P.; Hsü, H.Y. Lignans in flower buds of Magnolia fargesii. Phytochemistry, 1972, 11(7), 2289-2293.
[http://dx.doi.org/10.1016/S0031-9422(00)88392-2];
d) Bertram, S.H.; Van der Steur, J-P-K.; Waterman, H-I. Biochem. Z., 1928, 197, 1.;
e) Dryselius, E.; Lindberg, B.; Waterman, H.I.; Eliasson, N.A.; Thorell, B. Pinoresinol and its Dimethyl Ether from Araucaria angustifolia. Acta Chem. Scand., 1956, 10, 445-446.
[http://dx.doi.org/10.3891/acta.chem.scand.10-0445]
[32]
Mori, N.; Furuta, A.; Watanabe, H. Electochemical asymmetric dimerization of cinnamic acid derivatives and application to the enantioselective syntheses of Furofuran lignans. Tetrahedron, 2016, 72(51), 8393-8399.
[http://dx.doi.org/10.1016/j.tet.2016.10.058]
[33]
Sofowora, A. Medicinal plants and traditional medicine in Africa, 1st ed; John Wiley and Sons: Chichester, UK, 1982, pp. 221-223.
[34]
Dhanabal, T.; Sangeetha, R.; Mohan, P.S. Heteroatom directed photoannulation: synthesis of indoloquinoline alkaloids: Cryptolepine, cryptotackieine, cryptosanguinolentine, and their methyl derivatives. Tetrahedron, 2006, 62(26), 6258-6263.
[http://dx.doi.org/10.1016/j.tet.2006.04.050]
[35]
Meyers, C.; Rombouts, G.; Loones, K.T.J.; Coelho, A.; Maes, B.U.W. Auto-Tandem Catalysis: Synthesis of substituted 11H-Indolo[3,2-c]quinolones via palladium-catalyzed intermolecular C-N and intramolecular C-C bond formation. Adv. Synth. Catal., 2008, 350(3), 465-470.
[http://dx.doi.org/10.1002/adsc.200700328]
[36]
a) Molina, A.; Vaquero, J.J.; Garcia-Navio, J.L.; Alvarez-Builla, J.; de Pascual-Teresa, B.; Gago, F.; Rodrigo, M.M.; Ballesteros, M. Synthesis and DNA binding properties of γ-carbolinium derivatives and benzologues. J. Org. Chem., 1996, 61(16), 5587-5599.
[http://dx.doi.org/10.1021/jo960266h];
b) Whittell, L.R.; Batty, K.T.; Wong, R.P.M.; Bolitho, E.M.; Fox, S.A.; Davis, T.M.E.; Murray, P.E. Synthesis and antimalarial evaluation of novel isocryptolepine derivatives. Bioorg. Med. Chem., 2011, 19(24), 7519-7525.
[http://dx.doi.org/10.1016/j.bmc.2011.10.037] [PMID: 22055713]
[37]
Hou, Z.W.; Mao, Z.Y.; Zhao, H.B.; Melcamu, Y.Y.; Lu, X.; Song, J.; Xu, H.C. Electrochemical C−H/N−H functionalization for the synthesis of highly functionalized (Aza)indoles. Angew. Chem. Int. Ed., 2016, 55(32), 9168-9172.
[http://dx.doi.org/10.1002/anie.201602616] [PMID: 27240116]
[38]
Ruzicka, L.; Pfeiffer, M. Über Jasminriechstoffe I. Die Konstitution des Jasmons. Helv. Chim. Acta, 1933, 16(1), 1208-1214.
[http://dx.doi.org/10.1002/hlca.193301601153]
[39]
Dąbrowska, P.; Boland, W. Iso-OPDA: An early precursor of cis-jasmone in plants? ChemBioChem, 2007, 8(18), 2281-2285.
[http://dx.doi.org/10.1002/cbic.200700464] [PMID: 18033720]
[40]
a) Bulat, J.A.; Liu, H.J. A practical synthesis of cis-jasmone from levulinic acid. Can. J. Chem., 1976, 54(24), 3869-3871.
[http://dx.doi.org/10.1139/v76-556];
b) Hassner, A.; Rai, K.M.L. The benzoin and related acyl anion equivalent reactions; , 1991.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00017-2];
c) Stetter, H. Catalyzed addition of aldehydes to activated double bonds-a new synthetic approach. Angew. Chem. Int. Ed. Engl., 1976, 15(11), 639-647.
[http://dx.doi.org/10.1002/anie.197606391];
d) Mattson, A.E.; Bharadwaj, A.R.; Scheidt, K.A. The thiazolium-catalyzed Sila-Stetter reaction: Conjugate addition of acylsilanes to unsaturated esters and ketones. J. Am. Chem. Soc., 2004, 126(8), 2314-2315.
[http://dx.doi.org/10.1021/ja0318380] [PMID: 14982429];
e) Corey, E.J.; Hegedus, L.S. 1,4 Addition of acyl groups to conjugated enones. J. Am. Chem. Soc., 1969, 91(17), 4926-4928.
[http://dx.doi.org/10.1021/ja01045a061];
f) Liu, Y.J.; Li, Y.Y.; Qi, Y.; Wan, J. Samarium-promoted michael addition between aroyl chlorides and chalcones. Synthesis, 2010, 24, 4188-4192.;
g) Ballini, R.; Barboni, L.; Bosica, G.; Fiorini, D. One-pot synthesis of γ-Diketones, γ-Keto Esters, and conjugated cyclopentenones from Nitroalkanes. Synthesis, 2002, 18(18), 2725-2728.
[http://dx.doi.org/10.1055/s-2002-35993]
[41]
Tsukasa, H. Synthesis of cis-Jasmone. Biosci. Biotechnol. Biochem., 1994, 58(6), 1181-1182.
[http://dx.doi.org/10.1271/bbb.58.1181]
[42]
Ma, X.; Dewez, D.F.; Du, L.; Luo, X.; Markó, I.E.; Lam, K. Synthesis of diketones, ketoesters, and tetraketones by electrochemical oxidative decarboxylation of malonic acid derivatives: Application to the synthesis of cis-Jasmone. J. Org. Chem., 2018, 83(19), 12044-12055.
[http://dx.doi.org/10.1021/acs.joc.8b01994] [PMID: 30208277]
[43]
Yoshikawa, M.; Morikawa, T.; Xu, F.; Ando, S.; Matsuda, H. (7R,8S) and (7S,8R) 8-5′ linked neolignans from egyptian herbal medicine Anastatica hierochuntica and inhibitory activities of lignans on nitric oxide production. Heterocycles, 2003, 60(8), 1787-1792.
[http://dx.doi.org/10.3987/COM-03-9804]
[44]
a) Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant, 2010, 3(1), 2-20.
[http://dx.doi.org/10.1093/mp/ssp106] [PMID: 20035037];
b) Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed., 2011, 50(3), 586-621.
[http://dx.doi.org/10.1002/anie.201000044] [PMID: 21226137];
c) Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R.J. Chemistry and biology of resveratrol-derived natural products. Chem. Rev., 2015, 115(17), 8976-9027.
[http://dx.doi.org/10.1021/cr500689b] [PMID: 25835567]
[45]
Ingold, K.U.; Pratt, D.A. Advances in radical-trapping antioxidant chemistry in the 21st century: A kinetics and mechanisms perspective. Chem. Rev., 2014, 114(18), 9022-9046.
[http://dx.doi.org/10.1021/cr500226n] [PMID: 25180889]
[46]
Matsuura, B.S.; Keylor, M.H.; Li, B.; Lin, Y.; Allison, S.; Pratt, D.A.; Stephenson, C.R.J. A scalable biomimetic synthesis of resveratrol dimers and systematic evaluation of their antioxidant activities. Angew. Chem. Int. Ed., 2015, 54(12), 3754-3757.
[http://dx.doi.org/10.1002/anie.201409773] [PMID: 25650836]
[47]
Romero, K.J.; Galliher, M.S.; Raycroft, M.A.R.; Chauvin, J.P.R.; Bosque, I.; Pratt, D.A.; Stephenson, C.R.J.; Stephenson, C.R.J. Electrochemical dimerization of phenylpropenoids and the surprising antioxidant activity of the resultant quinone methide dimers. Angew. Chem. Int. Ed., 2018, 57(52), 17125-17129.
[http://dx.doi.org/10.1002/anie.201810870] [PMID: 30474921]
[48]
Blackman, A.J.; Hambley, T.W.; Picker, K.; Taylor, W.C.; Thirasasana, N. Hinckdentine-a: A novel alkaloid from the marine bryozoan hincksinoflustra denticulata. Tetrahedron Lett., 1987, 28(45), 5561-5562.
[http://dx.doi.org/10.1016/S0040-4039(00)96781-9]
[49]
a) Cockrum, P.A.; Colegate, S.M.; Edgar, J.A.; Flower, K.; Gardner, D.; Willing, R.I. (−)-Phalarine, a furanobisindole alkaloid from Phalariscoerulescens. Phytochemistry, 1999, 51(1), 153-157.
[http://dx.doi.org/10.1016/S0031-9422(98)00725-0];
b) Sears, J.E.; Boger, D.L. Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure-function properties. Acc. Chem. Res., 2015, 48(3), 653-662.
[http://dx.doi.org/10.1021/ar500400w] [PMID: 25586069]
[50]
Higuchi, K.; Sato, Y.; Tsuchimochi, M.; Sugiura, K.; Hatori, M.; Kawasaki, T. First total synthesis of hinckdentine A. Org. Lett., 2009, 11(1), 197-199.
[http://dx.doi.org/10.1021/ol802394n] [PMID: 19055376]
[51]
Douki, K.; Ono, H.; Taniguchi, T.; Shimokawa, J.; Kitamura, M.; Fukuyama, T. Enantioselective total synthesis of (+)-Hinckdentine A via a catalytic dearomatization approach. J. Am. Chem. Soc., 2016, 138(44), 14578-14581.
[http://dx.doi.org/10.1021/jacs.6b10237]
[52]
Hou, Z.W.; Yan, H.; Song, J.S.; Xu, H.C. Electrochemical synthesis of (Aza)indolines via Dehydrogenative [3+2] Annulation: Application to total synthesis of (±)‐Hinckdentine A. Chin. J. Chem., 2018, 36(10), 909-915.
[http://dx.doi.org/10.1002/cjoc.201800301]
[53]
a) Cassayre, J.; Gagosz, F.; Zard, S.Z. A short synthesis of (+/-)-13-deoxyserratine. Angew. Chem. Int. Ed., 2002, 41(10), 1783-1785.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1783:AID-ANIE1783>3.0.CO;2-I] [PMID: 19750716];
b) Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. Cyclization cascades via N-amidyl radicals toward highly functionalized heterocyclic scaffolds. J. Am. Chem. Soc., 2015, 137(2), 964-973.
[http://dx.doi.org/10.1021/ja5115858] [PMID: 25561161]
[54]
a) Wu, Z.J.; Xu, H.C. Synthesis of C3‐fluorinated oxindoles through reagent‐free cross‐dehydrogenative coupling. Angew. Chem. Int. Ed., 2017, 56(17), 4734-4738.
[http://dx.doi.org/10.1002/anie.201701329] [PMID: 28295965];
b) Lennox, A.J.J.; Nutting, J.E.; Stahl, S.S. Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chem. Sci., 2018, 9(2), 356-361.
[http://dx.doi.org/10.1039/C7SC04032F] [PMID: 29732109];
c) Wu, Z.J.; Li, S.R.; Long, H.; Xu, H.C. Electrochemical dehydrogenative cyclization of 1,3-dicarbonyl compounds. Chem. Commun., 2018, 54(36), 4601-4604.
[http://dx.doi.org/10.1039/C8CC02472C] [PMID: 29670957]
[55]
Katoh, T. Stud. Total synthesis of diterpenoid pyrones, nalanthalide, sesquicillin, candelalides A–C, and Subglutinols A, B. Nat. Prod. Chem., 2014, 43, 1-39.
[56]
a) Engel, B.; Erkel, G.; Anke, T.; Sterner, O. Sesquicillin, an inhibitor of glucocorticoid mediated signal transduction. J. Antibiot., 1998, 51(5), 518-521.
[http://dx.doi.org/10.7164/antibiotics.51.518] [PMID: 9666183];
b) Uchida, R.; Imasato, R.; Yamaguchi, Y.; Masuma, R.; Shiomi, K.; Tomoda, H.; Ōmura, S. New insecticidal antibiotics, hydroxyfungerins A and B, produced by Metarhizium sp. FKI-1079. J. Antibiot., 2005, 58(12), 804-809.
[http://dx.doi.org/10.1038/ja.2005.107] [PMID: 16506697]
[57]
a) Zhang, F.; Danishefsky, S.J. An efficient stereoselective total synthesis of DL-sesquicillin, a glucocorticoid antagonist. Angew. Chem. Int. Ed., 2002, 41(8), 1434-1437.
[http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1434:AID-ANIE1434>3.0.CO;2-A] [PMID: 19750790];
b) Kim, H.; Baker, J.B.; Lee, S.U.; Park, Y.; Bolduc, K.L.; Park, H.B.; Dickens, M.G.; Lee, D.S.; Kim, Y.; Kim, S.H.; Hong, J. Stereoselective synthesis and osteogenic activity of subglutinols A and B. J. Am. Chem. Soc., 2009, 131(9), 3192-3194.
[http://dx.doi.org/10.1021/ja8101192] [PMID: 19216570]
[58]
Gaich, T.; Baran, P.S. Aiming for the ideal synthesis. J. Org. Chem., 2010, 75(14), 4657-4673.
[http://dx.doi.org/10.1021/jo1006812] [PMID: 20540516]
[59]
Merchant, R.R.; Oberg, K.M.; Lin, Y.; Novak, A.J.E.; Felding, J.; Baran, P.S. Divergent synthesis of pyrone diterpenes via radical cross coupling. J. Am. Chem. Soc., 2018, 140(24), 7462-7465.
[http://dx.doi.org/10.1021/jacs.8b04891] [PMID: 29921130]
[60]
Shimizu, I.; Tsuji, J. Palladium-catalyzed decarboxylation-dehydrogenation of allyl. beta.-oxo carboxylates and allyl enol carbonates as a novel synthetic method for. alpha.-substituted. alpha.beta.-unsaturated ketones. J. Am. Chem. Soc., 1982, 104(21), 5844-5846.
[http://dx.doi.org/10.1021/ja00385a075]
[61]
Aceto, M.D.; Harris, L.S.; Abood, M.E.; Rice, K.C. Stereoselective μ- and δ-opioid receptor-related antinociception and binding with (+)-thebaine. Eur. J. Pharmacol., 1999, 365(2-3), 143-147.
[http://dx.doi.org/10.1016/S0014-2999(98)00862-0] [PMID: 9988096]
[62]
a) Schwartz, M.A.; Mami, I.S. Biogenetically patterned synthesis of the morphine alkaloids. J. Am. Chem. Soc., 1975, 97(5), 1239-1240.
[http://dx.doi.org/10.1021/ja00838a046] [PMID: 1133384];
b) Trost, B.M.; Tang, W. Enantioselective synthesis of (-)-codeine and (-)-morphine. J. Am. Chem. Soc., 2002, 124(49), 14542-14543.
[http://dx.doi.org/10.1021/ja0283394] [PMID: 12465957]
[63]
Barton, D.H.R.; Kirby, G.W.; Steglich, W.; Thomas, G.M.; Battersby, A.R.; Dobson, T.A.; Ramuz, H. 444. Investigations on the biosynthesis of morphine alkaloids. J. Chem. Soc., 1965, 65, 2423-2438.
[http://dx.doi.org/10.1039/jr9650002423] [PMID: 14288334]
[64]
Lipp, A.; Ferenc, D.; Gütz, C.; Geffe, M.; Vierengel, N.; Schollmeyer, D.; Schäfer, H.J.; Waldvogel, S.R.; Opatz, T. A regio‐ and diastereoselective anodic Aryl–Aryl coupling in the biomimetic total synthesis of (−)‐Thebaine. Angew. Chem. Int. Ed., 2018, 57(34), 11055-11059.
[http://dx.doi.org/10.1002/anie.201803887] [PMID: 29786941]
[65]
a) Miller, L.L.; Stermitz, F.R.; Becker, J.Y.; Ramachandran, V. Anchimeric assistance to the anodic annellation of alkaloids. J. Am. Chem. Soc., 1975, 97(10), 2922-2923.
[http://dx.doi.org/10.1021/ja00843a063];
b) Christensen, L.; Miller, L.L. Electrochemical oxidation of morphinandienones. J. Org. Chem., 1981, 46(24), 4876-4880.
[http://dx.doi.org/10.1021/jo00337a010]
[66]
Jakubska, A.; Przado, D.; Steininger, M.; Aniol-Kwiatkowska, A.; Kadej, M. why do pollinators become “sluggish”? nectar chemical constituents from Epipactis helleborine (l.) crantz (orchidaceae). Appl. Ecol. Environ. Res., 2005, 3(2), 29-38.
[http://dx.doi.org/10.15666/aeer/0302_029038]
[67]
a) Heiskanen, T.; Kalso, E. Controlled-release oxycodone and morphine in cancer related pain. Pain, 1997, 73(1), 37-45.
[http://dx.doi.org/10.1016/S0304-3959(97)00072-9] [PMID: 9414055];
b) Mercadante, S.; Arcuri, E. Breakthrough pain in cancer patients: Pathophysiology and treatment. Cancer Treat. Rev., 1998, 24(6), 425-432.
[http://dx.doi.org/10.1016/S0305-7372(98)90005-6] [PMID: 10189409];
c) Watson, C.P.; Babul, N. Efficacy of oxycodone in neuronathic pain. Neurology, 1998, 50, 1837.
[http://dx.doi.org/10.1212/WNL.50.6.1837] [PMID: 9633737];
d) Silvestri, B.; Bandieri, E.; Del Prete, S.; Ianniello, G.P.; Micheletto, G.; Dambrosio, M.; Sabbatini, G.; Endrizzi, L.; Marra, A.; Aitini, E.; Calorio, A.; Garetto, F.; Nastasi, G.; Piantedosi, F.; Sidoti, V.; Spanu, P. Oxycodone controlled-release as first-choice therapy for moderate-to-severe cancer pain in Italian patients: Results of an open-label, multicentre, observational study. Clin. Drug Investig., 2008, 28(7), 399-407.
[http://dx.doi.org/10.2165/00044011-200828070-00001] [PMID: 18544000]
[68]
Kimishima, A.; Umihara, H.; Mizoguchi, A.; Yokoshima, S.; Fukuyama, Y. Synthesis of (−)-Oxycodone. Org. Lett., 2014, 16, 6244-6247.
[69]
Park, K.H.K.; Chen, D.Y.K. A desymmetrization-based approach to morphinans: Application in the total synthesis of oxycodone. Chem. Commun., 2018, 54(92), 13018-13021.
[http://dx.doi.org/10.1039/C8CC07667G] [PMID: 30394459]
[70]
Lipp, A.; Selt, M.; Ferenc, D.; Schollmeyer, D.; Waldvogel, S.R.; Opatz, T. Total synthesis of (−)-Oxycodone via Anodic Aryl–Aryl coupling. Org. Lett., 2019, 21(6), 1828-1831.
[http://dx.doi.org/10.1021/acs.orglett.9b00419] [PMID: 30775928]
[71]
Grundon, M.F. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep., 1989, 6(5), 523-536.
[http://dx.doi.org/10.1039/np9890600523] [PMID: 2694030]
[72]
Maddry, J.A.; Joshi, B.S.; Ali, A.A.; Newton, M.G.; Pelletier, S.W. Revised structures of pratorinine and pratorimine. Tetrahedron Lett., 1985, 26(36), 4301-4302.
[http://dx.doi.org/10.1016/S0040-4039(00)98718-5]
[73]
a) Hafiz, M.; Ramadan, M.; Jung, M.; Beck, J.; Anton, R. Cytotoxic activity of Amaryllidaceae alkaloids from Crinum augustum and Crinum bulbispermum. Planta Med., 1991, 57(5), 437-439.
[http://dx.doi.org/10.1055/s-2006-960144] [PMID: 1798796];
b) Min, B.S.; Gao, J.J.; Nakamura, N.; Kim, Y.H. Hattori, Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells. M. Chem. Pharm. Bull., 2001, 49, 1217-1219.
[http://dx.doi.org/10.1248/cpb.49.1217] [PMID: 11558618];
c) Ghosal, S.; Lochan, R.; Kumar, A.Y.; Srivastava, R.S. Alkaloids of Haemanthus kalbreyeri. Phytochemistry, 1985, 24(8), 1825-1828.
[http://dx.doi.org/10.1016/S0031-9422(00)82560-1];
d) Chattopadhyay, S.; Chattopadhyay, U.; Mathur, P.; Saini, K.; Ghosal, S. Effects of hippadine, an Amaryllidaceae alkaloid, on testicular function in rats. Planta Med., 1983, 49(12), 252-254.
[http://dx.doi.org/10.1055/s-2007-969864] [PMID: 6669644]
[74]
a) Black, D.S.C.; Keller, P.A.; Kumar, N. A direct synthesis of pyrrolophenanthridone alkaloids. Tetrahedron Lett., 1989, 30(42), 5807-5808.
[http://dx.doi.org/10.1016/S0040-4039(00)76203-4];
b) Boger, D.L.; Wolkenberg, S.E. Total synthesis of Amaryllidaceae alkaloids utilizing sequential intramolecular heterocyclic azadiene Diels-Alder reactions of an unsymmetrical 1,2,4,5-tetrazine. J. Org. Chem., 2000, 65(26), 9120-9124.
[http://dx.doi.org/10.1021/jo0012546] [PMID: 11149859];
c) Ganton, M.D.; Kerr, M.A. A domino amidation route to indolines and indoles: Rapid syntheses of anhydrolycorinone, hippadine, oxoassoanine, and pratosine. Org. Lett., 2005, 7(21), 4777-4779.
[http://dx.doi.org/10.1021/ol052086c] [PMID: 16209533]
[75]
Okamoto, K.; Chiba, K. Electrochemical total synthesis of pyrrolophenanthridone alkaloids: Controlling the anodically initiated electron transfer process. Org. Lett., 2020, 22(9), 3613-3617.
[http://dx.doi.org/10.1021/acs.orglett.0c01082] [PMID: 32286833]
[76]
a) Chiba, K.; Miura, T.; Kim, S.; Kitano, Y.; Tada, M. Electrocatalytic intermolecular olefin cross-coupling by anodically induced formal [2+2] cycloaddition between enol ethers and alkenes. J. Am. Chem. Soc., 2001, 123(45), 11314-11315.
[http://dx.doi.org/10.1021/ja016885b] [PMID: 11697984];
b) Miura, T.; Kim, S.; Kitano, Y.; Tada, M.; Chiba, K. Electrochemical enol ether/olefin cross-metathesis in a lithium perchlorate/nitromethane electrolyte solution. Angew. Chem. Int. Ed., 2006, 45(9), 1461-1463.
[http://dx.doi.org/10.1002/anie.200503656] [PMID: 16440381]
[77]
a) Sun, H.D.; Huang, S.X.; Han, Q.B. Diterpenoids from Isodon species and their biological activities. Nat. Prod. Rep., 2006, 23(5), 673-698.
[http://dx.doi.org/10.1039/b604174d] [PMID: 17003905];
b) Liu, M.; Wang, W.G.; Sun, H.D.; Pu, J.X. Diterpenoids from Isodon species: An update. Nat. Prod. Rep., 2017, 34(9), 1090-1140.
[http://dx.doi.org/10.1039/C7NP00027H] [PMID: 28758169]
[78]
a) Nagao, Y.; Ito, N.; Kohno, T.; Kuroda, H.; Fujita, E. Antitumor activity of Rabdosia and Teucrium diterpenoids against P 388 lymphocytic leukemia in mice. Chem. Pharm. Bull., 1982, 30(2), 727-729.
[http://dx.doi.org/10.1248/cpb.30.727] [PMID: 7094154];
b) Fuji, K.; Node, M.; Ito, N.; Fujita, E.; Takeda, S.; Unemi, N.; Terpenoids, L. Antitumor activity of diterpenoids from Rabdosia shikokiana var. occidentalis. Chem. Pharm. Bull., 1985, 33(3), 1038-1042.
[http://dx.doi.org/10.1248/cpb.33.1038]
[79]
a) Paquette, L.A.; Backhaus, D.; Braun, R. Direct asymmetric entry into the cytotoxic 8,9-secokaurene diterpenoids. Total synthesis of (−)-O -Methylshikoccin and (+)-O-(Methylepoxy)shikoccin. J. Am. Chem. Soc., 1996, 118(47), 11990-11991.
[http://dx.doi.org/10.1021/ja962799d];
b) Paquette, L.A.; Backhaus, D.; Braun, R.; Underiner, T.L.; Fuchs, K. First synthesis of cytotoxic 8,9-secokaurene diterpenoids. An enantioselective route to (−)- O -Methylshikoccin and (+)- O -Methylepoxyshikoccin. J. Am. Chem. Soc., 1997, 119(41), 9662-9671.
[http://dx.doi.org/10.1021/ja971527n]
[80]
Wang, B.; Liu, Z.; Tong, Z.; Gao, B.; Ding, H. Asymmetric total syntheses of 8,9‐Seco‐ent‐kaurane diterpenoids enabled by an electrochemical ODI‐[5+2] Cascade. Angew. Chem. Int. Ed., 2021, 60(27), 14892-14896.
[http://dx.doi.org/10.1002/anie.202104410] [PMID: 33900670]
[81]
Lin, L.G.; Ung, C.; Feng, Z.L.; Huang, L.; Hu, H. Naturally occurring diterpenoids dimers: Source, biosynthesis, chemistry and bioactivities. Planta Med., 2016, 82(15), 1309-1328.
[http://dx.doi.org/10.1055/s-0042-114573] [PMID: 27542177]
[82]
Zhou, M.; Zhang, H.B.; Wang, W.G.; Gong, N.B.; Zhan, R.; Li, X.N.; Du, X.; Li, L.M.; Li, Y.; Lu, Y.; Pu, J.X.; Sun, H.D. Scopariusic acid, a new meroditerpenoid with a unique cyclobutane ring isolated from Isodon scoparius. Org. Lett., 2013, 15(17), 4446-4449.
[http://dx.doi.org/10.1021/ol401991u] [PMID: 23944990]
[83]
a) Stanley, P.A.; Spiteri, C.; Moore, J.C.; Barrow, A.S.; Sharma, P.; Moses, J.E. Biomimetic approaches towards the synthesis of complex dimeric natural products. Curr. Pharm. Des., 2016, 22(12), 1628-1657.
[http://dx.doi.org/10.2174/1381612822666160101123106] [PMID: 26721256];
b) Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Divergent strategy in natural product total synthesis. Chem. Rev., 2018, 118(7), 3752-3832.
[http://dx.doi.org/10.1021/acs.chemrev.7b00653] [PMID: 29516724];
c) Sarkar, A.; Santra, S.; Kundu, S.K.; Hajra, A.; Zyryanov, G.V.; Chupakhin, O.N.; Charushin, V.N.; Majee, A. A decade update on solvent and catalyst-free neat organic reactions: A step forward towards sustainability. Green Chem., 2016, 18(16), 4475-4525.
[http://dx.doi.org/10.1039/C6GC01279E];
d) Kärkäs, M.D.; Porco, J.A., Jr; Stephenson, C.R.J. Photochemical approaches to complex chemotypes: Applications in natural product synthesis. Chem. Rev., 2016, 116(17), 9683-9747.
[http://dx.doi.org/10.1021/acs.chemrev.5b00760] [PMID: 27120289]
[84]
Li, X.R.; Yan, B.C.; Hu, K.; He, S.; Sun, H.D.; Zuo, J.; Puno, P.T. Spiro ent -Clerodane Dimers: Discovery and green approaches for a scalable biomimetic synthesis. Org. Lett., 2021, 23(15), 5647-5651.
[http://dx.doi.org/10.1021/acs.orglett.1c01724] [PMID: 34170713]
[85]
Horn, E.J.; Rosen, B.R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M.D.; Baran, P.S. Scalable and sustainable electrochemical allylic C–H oxidation. Nature, 2016, 533(7601), 77-81.
[http://dx.doi.org/10.1038/nature17431] [PMID: 27096371]
[86]
a) Proskurnina, N.f.; Yakovleva, A.P. Narcissus and Daffodil: The genus Narcissus. J. Gen. Chem. USSR, 1952, 22, 1899-1902.;
b) Kondo, H.; Tomimura, K.; Ishiwata, S. J. Pharm. Soc. Jpn., 1932, 52, 51.
[87]
Scott, L.J.; Goa, K.L. Galantamine. Drugs, 2000, 60(5), 1095-1122.
[http://dx.doi.org/10.2165/00003495-200060050-00008] [PMID: 11129124]
[88]
a) Trost, B.M.; Toste, F.D. Enantioselective total synthesis of (−)-Galanthamine. J. Am. Chem. Soc., 2000, 122(45), 11262-11263.
[http://dx.doi.org/10.1021/ja002231b];
b) Zhang, Y.; Shen, S.; Fang, H.; Xu, T. Total synthesis of galanthamine and lycoramine featuring an Early-Stage C–C and a late-stage dehydrogenation via C–H Activation. Org. Lett., 2020, 22(4), 1244-1248.
[http://dx.doi.org/10.1021/acs.orglett.9b04337] [PMID: 31904968];
c) Küenburg, B.; Czollner, L.; Fröhlich, J.; Jordis, U. Development of a pilot scale process for the anti-alzheimer drug (−)-galanthamine using large-scale phenolic oxidative coupling and crystallisation-induced chiral conversion. Org. Process Res. Dev., 1999, 3(6), 425-431.
[http://dx.doi.org/10.1021/op990019q]
[89]
Xiong, Z.; Weidlich, F.; Sanchez, C.; Wirth, T. Biomimetic total synthesis of (−)-galanthamine via intramolecular anodic aryl–phenol coupling. Org. Biomol. Chem., 2022, 20(20), 4123-4127.
[http://dx.doi.org/10.1039/D2OB00669C] [PMID: 35537211]
[90]
Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Amaryllidaceae alkaloids: Absolute configuration and biological activity. Chirality, 2017, 29(9), 486-499.
[http://dx.doi.org/10.1002/chir.22719] [PMID: 28649696]
[91]
Pollok, D.; Großmann, L.M.; Behrendt, T.; Opatz, T.; Waldvogel, S.R. A general electro‐synthesis approach to amaryllidaceae alkaloids. Chemistry, 2022, 28(50), e202201523.
[http://dx.doi.org/10.1002/chem.202201523] [PMID: 35662286]
[92]
a) Pelletier, P.J.; Caventou, J.B. Ann. Chim. Phys., 1820, 14, 69-81.;
b) Dewar, M.J.S. Structure of colchicine. Nature, 1945, 155(3927), 141-142.
[http://dx.doi.org/10.1038/155141d0]
[93]
Rapoport, H.; Williams, A.R.; Cisney, M.E. The synthesis of DL-Colchinol methyl ether 1,2. J. Am. Chem. Soc., 1951, 73(4), 1414-1421.
[http://dx.doi.org/10.1021/ja01148a005]
[94]
Besong, G.; Jarowicki, K.; Kocienski, P.J.; Sliwinski, E.; Boyle, F.T. Synthesis of (S)-(−)-N-acetylcolchinol using intramolecular biaryl oxidative coupling. Org. Biomol. Chem., 2006, 4(11), 2193-2207.
[http://dx.doi.org/10.1039/B603857C] [PMID: 16729129]
[95]
Pollok, D.; Rausch, F.U.; Beil, S.B.; Franzmann, P.; Waldvogel, S.R. Allocolchicines—synthesis with electro-organic key transformations. Org. Lett., 2022, 24(21), 3760-3765.
[http://dx.doi.org/10.1021/acs.orglett.2c01084] [PMID: 35503929]
[96]
Röckl, J.L.; Pollok, D.; Franke, R.; Waldvogel, S.R. A decade of electrochemical dehydrogenative C,C-coupling of aryls. Acc. Chem. Res., 2020, 53(1), 45-61.
[http://dx.doi.org/10.1021/acs.accounts.9b00511] [PMID: 31850730]
[97]
Thodey, K.; Galanie, S.; Smolke, C.D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol., 2014, 10(10), 837-844.
[http://dx.doi.org/10.1038/nchembio.1613] [PMID: 25151135]
[98]
Yamada, R.; Sakata, K.; Yamada, T. Electrochemical synthesis of substituted morpholines via a Decarboxylative Intramolecular Etherification. Org. Lett., 2022, 24(9), 1837-1841.
[http://dx.doi.org/10.1021/acs.orglett.2c00377] [PMID: 35212222]
[99]
Sharma, D.; Kotwal, N.; Chauhan, P. Electro-oxidative synthesis of phenazines. Org. Lett., 2023, 25(20), 3772-3777.
[http://dx.doi.org/10.1021/acs.orglett.3c01270] [PMID: 37184442]
[100]
Glotz, G.; Kappe, C.O.; Cantillo, D. Electrochemical N -Demethylation of 14-Hydroxy morphinans: Sustainable access to opioid antagonists. Org. Lett., 2020, 22(17), 6891-6896.
[http://dx.doi.org/10.1021/acs.orglett.0c02424] [PMID: 32790319]
[101]
Novaes, L.F.T.; Ho, J.S.K.; Mao, K.; Liu, K.; Tanwar, M.; Neurock, M.; Villemure, E.; Terrett, J.A.; Lin, S. Exploring Electrochemical C(sp3)–H oxidation for the late-stage methylation of complex molecules. J. Am. Chem. Soc., 2022, 144(3), 1187-1197.
[http://dx.doi.org/10.1021/jacs.1c09412] [PMID: 35015533]
[102]
Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev., 2017, 117(21), 13230-13319.
[http://dx.doi.org/10.1021/acs.chemrev.7b00397] [PMID: 28991454]