[3]
N. Agarwal, A. Sondhi, K. Chopra, and G. Singh, "Transfer learning: Survey and classification", In: Smart Innovations in Communication and Computational Sciences, 2021, pp. 145-155.
[9]
K. Simonyan, and A. Zisserman, "Very deep convolutional neural networks for large-scale image recognition", In Proceedings of the International Conference on Learning Representations, 2013, pp. 25-27 Kunming, China
[10]
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition", In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778
[14]
O. Alshorman, B. Alshorman, M.A. Al-khassaweneh, and F. Alkahtani, "A review of internet of medical things (IomT) - based remote health monitoring through wearable sensors: A case study for diabetic patients", Indones. J. Electr. Eng. Comput. Sci., vol. 20, pp. 414-422, 2020.
[18]
F.K. Dosilovi, M. Brci, and N. Hlupic, "Explainable artificial intelligence: A survey", In 018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2018 21-25 May 2018, Opatija, Croatia
[24]
V.K. Prasad, P. Bhattacharya, D. Maru, S. Tanwar, A. Verma, A. Singh, A.K. Tiwari, R. Sharma, and A. Alkhayyat, "Federated learning for the internet-of-medical-things: A survey", Mathematics, vol. 11, no. 1, p. 151, 2023.
[25]
W. Saeed, and C. Omlin, "Explainable ai (xai): A systematic metasurvey of current challenges and future opportunities", Knowl Syst, vol. 263, p. 110273, 2023.
[26]
S.S. Band, A. Yarahmadi, C-C. Hsu, M. Biyari, M. Sookhak, R. Ameri, I. Dehzangi, A.T. Chronopoulos, and H-W. Liang, "Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods", Inform. Med. Unlocked., vol. 40, p. 101286, 2023.
[28]
E. Khodabandehloo, D. Riboni, and A. Alimohammadi, "Healthxai: Collaborative and explainable ai for supporting early diagnosis of cognitive decline", Future Gener. Comput. Syst., vol. 116, pp. 168-189, 2021.
[29]
G. Srivastava, R.H. Jhaveri, S. Bhattacharya, S. Pandya, and P.K.R. Rajeswari, "Xai for cybersecurity: State of the art, challenges, open issues and future directions", arXiv:2206.03585, 2022.
[32]
G. Yenduri, M. Ramalingam, S.G. Chemmalar, Y. Supriya, G. Srivastava, P.K.R. Maddikunta, G. Deepti Raj, R.H. Jhaveri, B. Prabadevi, and W. Wang, "GPT (generative pre-trained transformer)–a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions", arXiv:2305.10435, 2023.
[39]
R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, and F. Giannotti, "A survey of methods for explaining black box models", arXiv:1802.01933, 2018.
[43]
A. Das, and P. Rad, "Opportunities and challenges in explainable artificial intelligence (XAI): A survey", arXiv:2006.11371, 2020.
[44]
M.U. Islam, M.M. Mozaharul, M. Hassan, Z.I. Alam, S.M. Zobaed, and M. Fazle Rabby, The Past, Present, and Prospective Future of XAI: A Comprehensive Review., Springer International Publishing: Cham, 2022, pp. 1-29.
[45]
G. Alicioglu, and B. Sun, "A survey of visual analytics for explainable artificial intelligence methods", Comput. Graph., vol. 102, pp. 502-520, 2022.
[47]
S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and M. Guizani, "A survey on federated learning: The journey from centralized to distributed on-site learning and beyond", IEEE Internet Things J., vol. 8, no. 7, pp. 5476-5497, 2020.
[52]
S. Muneer, and M.A. Rasool, "A enhancing healthcare outcomes with explainable ai (XAI) for disease prediction: A comprehensive review", Int J Adv Comput Sci Appl, vol. 1, no. 1, pp. 37-42, 2022.
[54]
S.A. Ajagbe, J.B. Awotunde, A.O. Adesina, P. Achimugu, and T.A. Kumar, "Internet of medical things (iomt): Applications, challenges, and prospects in a data-driven technology", In: Intelligent Healthcare: Infrastructure., Springer, 2022, pp. 299-319.
[64]
T. Yigit, ˘.N. S¸engoz, ¨.O.¨. Ozmen, ¨.J. Hemanth, and A.H. Is¸ık, "Diagnosis of paratuberculosis in histopathological images based on explainable artificial intelligence and deep learning", 2208.01674.
[68]
K. Hjerppe, J. Ruohonen, and V. Leppanen, "The general data protection regulation: Requirements, architectures, and constraints", In 2019 IEEE 27th International Requirements Engineering Conference (RE), 2019 23-27 September 2019, Jeju, Korea