Amalgamation of Transfer Learning and Explainable AI for Internet of Medical Things

Article ID: e191223224674 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The Internet of Medical Things (IoMT), a growing field, involves the interconnection of medical devices and data sources. It connects smart devices with data and optimizes patient data with real time insights and personalized solutions. It is mandatory to hold the development of IoMT and join the evolution of healthcare. This integration of Transfer Learning and Explainable AI for IoMT is considered to be an essential advancement in healthcare. By making use of knowledge transfer between medical domains, Transfer Learning enhances diagnostic accuracy while reducing data necessities. This makes IoMT applications more efficient which is considered to be a mandate in today’s healthcare. In addition, explainable AI techniques offer transparency and interpretability to AI driven medical decisions. This can foster trust among healthcare professionals and patients. This integration empowers personalized medicine, supports clinical decision making, and confirms the responsible handling of sensitive patient data. Therefore, this integration promises to revolutionize healthcare by merging the strengths of AI driven insights with the requirement for understandable, trustworthy, and adaptable systems in the IoMT ecosystem.

Graphical Abstract

[1]
B. Norgeot, B.S. Glicksberg, and A.J. Butte, "A call for deep-learning healthcare", Nat. Med., vol. 25, no. 1, pp. 14-15, 2019.
[http://dx.doi.org/10.1038/s41591-018-0320-3] [PMID: 30617337]
[2]
A. Callahan, and N.H. Shah, "Machine learning in healthcare", In: Key advances in clinical informatics., Elsevier, 2017, pp. 279-291.
[http://dx.doi.org/10.1016/B978-0-12-809523-2.00019-4]
[3]
N. Agarwal, A. Sondhi, K. Chopra, and G. Singh, "Transfer learning: Survey and classification", In: Smart Innovations in Communication and Computational Sciences, 2021, pp. 145-155.
[4]
R. Miotto, F. Wang, S. Wang, X. Jiang, and J.T. Dudley, "Deep learning for healthcare: Review, opportunities and challenges", Brief. Bioinform., vol. 19, no. 6, pp. 1236-1246, 2018.
[http://dx.doi.org/10.1093/bib/bbx044] [PMID: 28481991]
[5]
Y-W. Chen, and L.C. Jain, "Deep learning in healthcare", In: Paradigms and applications., Springer: Heidelberg, 2020.
[http://dx.doi.org/10.1007/978-3-030-32606-7]
[6]
R. Bhardwaj, A.R. Nambiar, and D. Dutta, "A study of machine learning in healthcare", In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC) 2017 04-08 July 2017, Turin, Italy
[http://dx.doi.org/10.1109/COMPSAC.2017.164]
[7]
T. Connie, Y.F. Tan, M.K.O. Goh, H.W. Hon, Z. Kadim, and L.P. Wong, "Explainable health prediction from facial features with transfer learning", J. Intell. Fuzzy Syst., vol. 42, no. 3, pp. 2491-2503, 2022.
[http://dx.doi.org/10.3233/JIFS-211737]
[8]
S. Sarp, F.O. Catak, M. Kuzlu, U. Cali, H. Kusetogullari, Y. Zhao, G. Ates, and O. Guler, "An XAI approach for COVID-19 detection using transfer learning with X-ray images", Heliyon, vol. 9, no. 4, p. e15137, 2023.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15137] [PMID: 37041935]
[9]
K. Simonyan, and A. Zisserman, "Very deep convolutional neural networks for large-scale image recognition", In Proceedings of the International Conference on Learning Representations, 2013, pp. 25-27 Kunming, China
[10]
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition", In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778
[11]
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision", In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826
27-30 June 2016, Las Vegas, NV, USA [http://dx.doi.org/10.1109/CVPR.2016.308]
[12]
S. Hamid, N.Z. Bawany, A.H. Sodhro, A. Lakhan, and S. Ahmed, "A systematic review and iomt based big data framework for COVID-19 prevention and detection", Electronics, vol. 11, no. 17, p. 2777, 2022.
[http://dx.doi.org/10.3390/electronics11172777]
[13]
S. Razdan, and S. Sharma, "Internet of medical things (IomT): Overview, emerging technologies, and case studies", IETE Tech. Rev., vol. 39, no. 4, pp. 775-788, 2022.
[http://dx.doi.org/10.1080/02564602.2021.1927863]
[14]
O. Alshorman, B. Alshorman, M.A. Al-khassaweneh, and F. Alkahtani, "A review of internet of medical things (IomT) - based remote health monitoring through wearable sensors: A case study for diabetic patients", Indones. J. Electr. Eng. Comput. Sci., vol. 20, pp. 414-422, 2020.
[15]
R.H. Jhaveri, S.J. Patel, and D.C. Jinwala, "Dos attacks in mobile ad hoc networks: A survey", In 2012 Second International Conference on Advanced Computing & Communication Technologies, 2012 07-08 January 2012, Rohtak, India
[http://dx.doi.org/10.1109/ACCT.2012.48]
[16]
M.I. Tariq, N.A. Mian, A. Sohail, T. Alyas, and R. Ahmad, "Evaluation of the challenges in the internet of medical things with multicriteria decision making (ahp and topsis) to overcome its obstruction under fuzzy environment", Mob. Inf. Syst., vol. 2020, 2020.
[http://dx.doi.org/10.1155/2020/8815651]
[17]
R. Yilmazer, and D. Birant, "Shelf auditing based on image classification using semi-supervised deep learning to increase on-shelf availability in grocery stores", Sensors, vol. 21, no. 2, p. 327, 2021.
[http://dx.doi.org/10.3390/s21020327]
[18]
F.K. Dosilovi, M. Brci, and N. Hlupic, "Explainable artificial intelligence: A survey", In 018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2018 21-25 May 2018, Opatija, Croatia
[19]
M. Ramalingam, and R. Thangarajan, "Mutated k-means algorithm for dynamic clustering to perform effective and intelligent broadcasting in medical surveillance using selective reliable broadcast protocol in VANET", Comput. Commun., vol. 150, pp. 563-568, 2020.
[http://dx.doi.org/10.1016/j.comcom.2019.11.023]
[20]
G. Verma, A.P. Shahi, and S. Prakash, "A study towards recent trends, issues and research challenges of intelligent iot healthcare techniques: IomT and CIoMT", In: M.S. Kaiser, A. Bandyopadhyay, K. Ray, R. Singh, and V. Nagar, Eds., Proceedings of Trends in Electronics and Health Informatics., Springer Nature Singapore: Singapore, 2022, pp. 177-190.
[http://dx.doi.org/10.1007/978-981-16-8826-3_16]
[21]
H.K. Bhuyan, and C. Chakraborty, "Explainable machine learning for data extraction across computational social system", IEEE Trans. Comput. Soc. Syst., pp. 1-15, 2022.
[http://dx.doi.org/10.1109/TCSS.2022.3164993]
[22]
S.A. Wagan, J. Koo, I.F. Siddiqui, M. Attique, D.R. Shin, and N.M.F. Qureshi, "Internet of medical things and trending converged technologies: A comprehensive review on real-time applications", J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 9228-9251, 2022.
[http://dx.doi.org/10.1016/j.jksuci.2022.09.005]
[23]
L. Xu, X. Zhou, X. Li, R.H. Jhaveri, T.R. Gadekallu, and Y. Ding, "Mobile collaborative secrecy performance prediction for artificial iot networks", IEEE Trans. Industr. Inform., vol. 18, no. 8, pp. 5403-5411, 2022.
[http://dx.doi.org/10.1109/TII.2021.3128506]
[24]
V.K. Prasad, P. Bhattacharya, D. Maru, S. Tanwar, A. Verma, A. Singh, A.K. Tiwari, R. Sharma, and A. Alkhayyat, "Federated learning for the internet-of-medical-things: A survey", Mathematics, vol. 11, no. 1, p. 151, 2023.
[25]
W. Saeed, and C. Omlin, "Explainable ai (xai): A systematic metasurvey of current challenges and future opportunities", Knowl Syst, vol. 263, p. 110273, 2023.
[26]
S.S. Band, A. Yarahmadi, C-C. Hsu, M. Biyari, M. Sookhak, R. Ameri, I. Dehzangi, A.T. Chronopoulos, and H-W. Liang, "Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods", Inform. Med. Unlocked., vol. 40, p. 101286, 2023.
[27]
R.H. Jhaveri, and N.M. Patel, "A sequence number based bait detection scheme to thwart grayhole attack in mobile ad hoc networks", Wirel. Netw., vol. 21, no. 8, pp. 2781-2798, 2015.
[http://dx.doi.org/10.1007/s11276-015-0945-9]
[28]
E. Khodabandehloo, D. Riboni, and A. Alimohammadi, "Healthxai: Collaborative and explainable ai for supporting early diagnosis of cognitive decline", Future Gener. Comput. Syst., vol. 116, pp. 168-189, 2021.
[29]
G. Srivastava, R.H. Jhaveri, S. Bhattacharya, S. Pandya, and P.K.R. Rajeswari, "Xai for cybersecurity: State of the art, challenges, open issues and future directions", arXiv:2206.03585, 2022.
[30]
A. Chaddad, J. Peng, J. Xu, and A. Bouridane, "Survey of explainable AI techniques in healthcare", Sensors, vol. 23, no. 2, p. 634, 2023.
[http://dx.doi.org/10.3390/s23020634]
[31]
P.N. Srinivasu, N. Sandhya, R.H. Jhaveri, R. Raut, and S. Hakak, "From blackbox to explainable ai in healthcare: Existing tools and case studies", Mob. Inf. Syst., vol. 2022, pp. 1-20, 2022.
[http://dx.doi.org/10.1155/2022/8167821]
[32]
G. Yenduri, M. Ramalingam, S.G. Chemmalar, Y. Supriya, G. Srivastava, P.K.R. Maddikunta, G. Deepti Raj, R.H. Jhaveri, B. Prabadevi, and W. Wang, "GPT (generative pre-trained transformer)–a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions", arXiv:2305.10435, 2023.
[33]
A.R. Javed, W. Ahmed, S. Pandya, P.K.R. Maddikunta, M. Alazab, and T.R. Gadekallu, "A survey of explainable artificial intelligence for smart cities", Electronics, vol. 12, no. 4, p. 1020, 2023.
[http://dx.doi.org/10.3390/electronics12041020]
[34]
K. Sokol, and P. Flach, "Explainability fact sheets", In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 2020.
[http://dx.doi.org/10.1145/3351095.3372870]
[35]
M. Ramalingam, G.C. Selvi, N. Victor, R. Chengoden, S. Bhattacharya, P.K.R. Maddikunta, D. Lee, M.J. Piran, N. Khare, G. Yenduri, and T.R. Gadekallu, "A comprehensive analysis of blockchain applications for securing computer vision systems", IEEE Access, vol. 11, pp. 107309-107330, 2023.
[http://dx.doi.org/10.1109/ACCESS.2023.3319089]
[36]
S.K. Jagatheesaperumal, Q.V. Pham, R. Ruby, Z. Yang, C. Xu, and Z. Zhang, "Explainable ai over the internet of things (iot): Overview, state-of-the-art and future directions", IEEE Open J. Commun. Soc., vol. 3, pp. 2106-2136, 2022.
[http://dx.doi.org/10.1109/OJCOMS.2022.3215676]
[37]
A. Adadi, and M. Berrada, "Peeking inside the black-box: A survey on explainable artificial intelligence (XAI)", IEEE Access, vol. 6, pp. 52138-52160, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2870052]
[38]
G. Srivastava, "Federated learning enabled edge computing security for internet of medical things: Concepts, challenges and open issues", In: Security and Risk Analysis for Intelligent Edge Computing., Springer, 2023, pp. 67-89.
[http://dx.doi.org/10.1007/978-3-031-28150-1_3]
[39]
R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, and F. Giannotti, "A survey of methods for explaining black box models", arXiv:1802.01933, 2018.
[40]
S.P. Ramu, G. Srivastava, R. Chengoden, N. Victor, P.K.R. Maddikunta, and T.R. Gadekallu, "The metaverse for cognitive health: A paradigm shift", IEEE Consum. Electron. Mag., pp. 1-6, 2023.
[http://dx.doi.org/10.1109/MCE.2023.3289034]
[41]
F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, "Explainable ai: A brief survey on history, research areas, approaches and challenges", In: J. Tang, M-Y. Kan, D. Zhao, S. Li, and H. Zan, Eds., Natural Language Processing and Chinese Computing., Springer International Publishing: Cham, 2019, pp. 563-574.
[http://dx.doi.org/10.1007/978-3-030-32236-6_51]
[42]
S. Pandya, G. Srivastava, R. Jhaveri, M.R. Babu, S. Bhattacharya, P.K.R. Maddikunta, S. Mastorakis, M.J. Piran, and T.R. Gadekallu, "Federated learning for smart cities: A comprehensive survey", Sustain. Energy Technol. Assess., vol. 55, p. 102987, 2023.
[http://dx.doi.org/10.1016/j.seta.2022.102987]
[43]
A. Das, and P. Rad, "Opportunities and challenges in explainable artificial intelligence (XAI): A survey", arXiv:2006.11371, 2020.
[44]
M.U. Islam, M.M. Mozaharul, M. Hassan, Z.I. Alam, S.M. Zobaed, and M. Fazle Rabby, The Past, Present, and Prospective Future of XAI: A Comprehensive Review., Springer International Publishing: Cham, 2022, pp. 1-29.
[45]
G. Alicioglu, and B. Sun, "A survey of visual analytics for explainable artificial intelligence methods", Comput. Graph., vol. 102, pp. 502-520, 2022.
[46]
O.A. Wahab, A. Mourad, H. Otrok, and T. Taleb, "Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems", IEEE Commun. Surv. Tutor., vol. 23, no. 2, pp. 1342-1397, 2021.
[http://dx.doi.org/10.1109/COMST.2021.3058573]
[47]
S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and M. Guizani, "A survey on federated learning: The journey from centralized to distributed on-site learning and beyond", IEEE Internet Things J., vol. 8, no. 7, pp. 5476-5497, 2020.
[48]
A. Hammoud, H. Otrok, A. Mourad, and Z. Dziong, "On demand fog federations for horizontal federated learning in iov", IEEE Trans. Netw. Serv. Manag., vol. 19, no. 3, pp. 3062-3075, 2022.
[http://dx.doi.org/10.1109/TNSM.2022.3172370]
[49]
A. Rawal, J. McCoy, D.B. Rawat, B.M. Sadler, and R.S. Amant, "Recent advances in trustworthy explainable artificial intelligence: Status, challenges, and perspectives", IEEE Trans. Artif. Intell., vol. 3, no. 6, pp. 852-866, 2022.
[http://dx.doi.org/10.1109/TAI.2021.3133846]
[50]
H.V. Tran, G. Kaddoum, H. Elgala, C. Abou-Rjeily, and H. Kaushal, "Lightwave power transfer for federated learning-based wireless networks", IEEE Commun. Lett., vol. 24, no. 7, pp. 1472-1476, 2020.
[http://dx.doi.org/10.1109/LCOMM.2020.2985698]
[51]
S.A. Rahman, H. Tout, C. Talhi, and A. Mourad, "Internet of things intrusion detection: Centralized, on-device, or federated learning?", IEEE Netw., vol. 34, no. 6, pp. 310-317, 2020.
[http://dx.doi.org/10.1109/MNET.011.2000286]
[52]
S. Muneer, and M.A. Rasool, "A enhancing healthcare outcomes with explainable ai (XAI) for disease prediction: A comprehensive review", Int J Adv Comput Sci Appl, vol. 1, no. 1, pp. 37-42, 2022.
[53]
P. Guleria, P. Naga Srinivasu, S. Ahmed, N. Almusallam, and F.K. Alarfaj, "XAI framework for cardiovascular disease prediction using classification techniques", Electronics, vol. 11, no. 24, p. 4086, 2022.
[http://dx.doi.org/10.3390/electronics11244086]
[54]
S.A. Ajagbe, J.B. Awotunde, A.O. Adesina, P. Achimugu, and T.A. Kumar, "Internet of medical things (iomt): Applications, challenges, and prospects in a data-driven technology", In: Intelligent Healthcare: Infrastructure., Springer, 2022, pp. 299-319.
[55]
L.P. Malasinghe, N. Ramzan, and K. Dahal, "Remote patient monitoring: A comprehensive study", J. Ambient Intell. Humaniz. Comput., vol. 10, no. 1, pp. 57-76, 2019.
[http://dx.doi.org/10.1007/s12652-017-0598-x]
[56]
F.A.C. Farias, C.M. Dagostini, Y.A. Bicca, V.F. Falavigna, and A. Falavigna, "Remote patient monitoring: A systematic review", Telemed. J. E Health, vol. 26, no. 5, pp. 576-583, 2020.
[http://dx.doi.org/10.1089/tmj.2019.0066] [PMID: 31314689]
[57]
M.A. Rahman, M.S. Hossain, A.J. Showail, N.A. Alrajeh, and M.F. Alhamid, "A secure, private, and explainable IoHT framework to support sustainable health monitoring in a smart city", Sustain Cities Soc., vol. 72, p. 103083, 2021.
[http://dx.doi.org/10.1016/j.scs.2021.103083]
[58]
P. Ajmani, V. Sharma, P. Samuel, K. Somasundaram, and V. Vidhya, "Patient behaviour analysis and social health predictions through iomt", In 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 2022 13-14 October 2022, Noida, India
[http://dx.doi.org/10.1109/ICRITO56286.2022.9964846]
[59]
S. Bharati, M.R.H. Mondal, P. Podder, and U. Kose, "Explainable artificial intelligence (XAI) with ioht for smart healthcare: A review", In: Interpretable Cognitive Internet of Things for Healthcare., Springer, 2023, pp. 1-24.
[http://dx.doi.org/10.1007/978-3-031-08637-3_1]
[60]
M.N. Hossen, V. Panneerselvam, D. Koundal, K. Ahmed, F.M. Bui, and S.M. Ibrahim, "Federated machine learning for detection of skin diseases and enhancement of internet of medical things (iomt) security", IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 835-841, 2023.
[http://dx.doi.org/10.1109/JBHI.2022.3149288] [PMID: 35133971]
[61]
P. Manickam, S.A. Mariappan, S.M. Murugesan, S. Hansda, A. Kaushik, R. Shinde, and S.P. Thipperudraswamy, "Artificial intelligence (AI) and internet of medical things (IomT) assisted biomedical systems for intelligent healthcare", Biosensors, vol. 12, no. 8, p. 562, 2022.
[http://dx.doi.org/10.3390/bios12080562] [PMID: 35892459]
[62]
M.A. Kassem, S.M. Naguib, H.M. Hamza, M.M. Fouda, M.K. Saleh, and K.M. Hosny, "Explainable transfer learning-based deep learning model for pelvis fracture detection", Int. J. Intell. Syst., vol. 2023, 2023.
[http://dx.doi.org/10.1155/2023/3281998]
[63]
G. Marvin, and M.G.R. Alam, "Explainable augmented intelligence and deep transfer learning for pediatric pulmonary health evaluation", In 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), 2022, pp. 272-277
26-27 February 2022, Chittagong, Bangladesh [http://dx.doi.org/10.1109/ICISET54810.2022.9775845]
[64]
T. Yigit, ˘.N. S¸engoz, ¨.O.¨. Ozmen, ¨.J. Hemanth, and A.H. Is¸ık, "Diagnosis of paratuberculosis in histopathological images based on explainable artificial intelligence and deep learning", 2208.01674.
[65]
P. Murugiah, A. Muthuramalingam, and S. Anandamurugan, "A design of predictive manufacturing system in IoT‐assisted Industry 4.0 using heuristic‐derived deep learning", Int. J. Commun. Syst., vol. 36, no. 5, p. e5432, 2023.
[http://dx.doi.org/10.1002/dac.5432]
[66]
V. Malamas, F. Chantzis, T.K. Dasaklis, G. Stergiopoulos, P. Kotzanikolaou, and C. Douligeris, "Risk assessment methodologies for the internet of medical things: A survey and comparative appraisal", IEEE Access, vol. 9, pp. 40049-40075, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3064682]
[67]
P. Pritika, B. Shanmugam, and S. Azam, "Risk assessment of heterogeneous iomt devices: A review", Technologies, vol. 11, no. 1, p. 31, 2023.
[http://dx.doi.org/10.3390/technologies11010031]
[68]
K. Hjerppe, J. Ruohonen, and V. Leppanen, "The general data protection regulation: Requirements, architectures, and constraints", In 2019 IEEE 27th International Requirements Engineering Conference (RE), 2019 23-27 September 2019, Jeju, Korea
[69]
C. Bhate, C.H. Ho, and R.T. Brodell, "Time to revisit the health insurance portability and accountability act (HIPAA)? accelerated telehealth adoption during the COVID-19 pandemic", J. Am. Acad. Dermatol., vol. 83, no. 4, pp. e313-e314, 2020.
[http://dx.doi.org/10.1016/j.jaad.2020.06.989] [PMID: 32603725]
[70]
A.S. Albahri, A.M. Duhaim, M.A. Fadhel, A. Alnoor, N.S. Baqer, L. Alzubaidi, O.S. Albahri, A.H. Alamoodi, J. Bai, A. Salhi, J. Santamaría, C. Ouyang, A. Gupta, Y. Gu, and M. Deveci, "A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion", Inf. Fusion, vol. 96, pp. 156-191, 2023.
[http://dx.doi.org/10.1016/j.inffus.2023.03.008]
[71]
D. Saraswat, P. Bhattacharya, A. Verma, V.K. Prasad, S. Tanwar, G. Sharma, P.N. Bokoro, and R. Sharma, "Explainable ai for healthcare 5.0: Opportunities and challenges", IEEE Access, vol. 10, pp. 84486-84517, 2022.
[http://dx.doi.org/10.1109/ACCESS.2022.3197671]
[72]
T. Evans, C.O. Retzlaff, C. Geißler, M. Kargl, M. Plass, H. Müller, T.R. Kiehl, N. Zerbe, and A. Holzinger, "The explainability paradox: Challenges for XAI in digital pathology", Future Gener. Comput. Syst., vol. 133, pp. 281-296, 2022.
[http://dx.doi.org/10.1016/j.future.2022.03.009]