Comprehensive Characterization of Graphene-zinc Oxide-silica Nanocomposites for Enhanced Conductive Applications

Article ID: e191223224671 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: The applications of nanocomposite materials require stable and high electrical performance for the potential conductive applications.

Objectives: This study aimed to present the effect of introducing different compositions of nanomaterials and to obtain the highly conductive composite composition and its relative analysis.

Methods: The XRD, SEM, and TEM tests were conducted to study different characteristics related to the characterization and composition of the nanomaterials.

Results: The laboratory results show that the conductivity test revealed that Sample-6 (Rk-6) exhibited the lowest impedance value of 15.26 Ω, indicating its superior conductivity among the samples tested. These findings significantly contribute to the field of graphene research, providing valuable insights into the potential of GZS nanocomposites for applications that require enhanced conductivity.

Conclusion: With the proposed composition of the synthesis of GZS nanocomposites using graphene, zinc oxide, and silica, the study successfully demonstrated improved storage capabilities and can be well suited for low-power applications in the fabrication of nanorods, polymers, and polyester resin.

Graphical Abstract

[1]
Jagadish, C.; Pearton, S. Zinc Oxide Bulk, Thin Films and Nanostructures, 1st ed; Elsevier Science, 2006.
[2]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385-388.
[http://dx.doi.org/10.1126/science.1157996] [PMID: 18635798]
[3]
Pearton, S.J.; Norton, D.P.; Ip, K.; Heo, Y.W.; Steiner, T. RETRACTED: Recent progress in processing and properties of ZnO. Prog. Mater. Sci., 2005, 50(3), 293-340.
[http://dx.doi.org/10.1016/j.pmatsci.2004.04.001]
[4]
Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10), 3498-3502.
[http://dx.doi.org/10.1021/nl802558y] [PMID: 18788793]
[5]
Zhang, Y.; Tang, T.T.; Girit, C.; Hao, Z.; Martin, M.C.; Zettl, A.; Crommie, M.F.; Shen, Y.R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459(7248), 820-823.
[http://dx.doi.org/10.1038/nature08105] [PMID: 19516337]
[6]
Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 2008, 146(9-10), 351-355.
[http://dx.doi.org/10.1016/j.ssc.2008.02.024]
[7]
Srikant, V.; Clarke, D.R. On the optical band gap of zinc oxide. J. Appl. Phys., 1998, 83(10), 5447-5451.
[http://dx.doi.org/10.1063/1.367375]
[8]
Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejón, P. Tight-binding description of graphene. Phys. Rev. B Condens. Matter, 2002, 66(3), 035412.
[http://dx.doi.org/10.1103/PhysRevB.66.035412]
[9]
Fang, T.; Konar, A.; Xing, H.; Jena, D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett., 2007, 91(9), 092109-3.
[http://dx.doi.org/10.1063/1.2776887]
[10]
Park, Y.S.; Schneider, J.R. Index of refraction of ZnO. J. Appl. Phys., 1968, 39(7), 3049-3052.
[http://dx.doi.org/10.1063/1.1656731]
[11]
Berger, L.I. Semiconductor materials, 1st ed; CRC Press, 1996.
[12]
Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensors. Catal. Surv. Asia, 2003, 7(1), 63-75.
[http://dx.doi.org/10.1023/A:1023436725457]
[13]
Goswami, N.; Sharma, D.K. Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique. Physica E, 2010, 42(5), 1675-1682.
[http://dx.doi.org/10.1016/j.physe.2010.01.023]
[14]
Morkoc, H.; Özgür, U. Zinc Oxide: Fundamentals, Materials and Device Technology; WILEY-VCH; Weinheim, Bergstr, 2008.
[15]
Sun, X.W.; Kwok, H.S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J. Appl. Phys., 1999, 86(1), 408-411.
[http://dx.doi.org/10.1063/1.370744]
[16]
Jagadish, C.; Pearton, S.J. Zinc oxide bulk, thin films and nanostructures processing, properties and applications; 1st edition; eBook, 2006.
[17]
Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater., 2012, 66(8), 594-597.
[http://dx.doi.org/10.1016/j.scriptamat.2012.01.012]
[18]
Djurišić A.B.; Leung, Y.H.; Tam, K.H.; Hsu, Y.F.; Ding, L.; Ge, W.K.; Zhong, Y.C.; Wong, K.S.; Chan, W.K.; Tam, H.L.; Cheah, K.W.; Kwok, W.M.; Phillips, D.L. Defect emissions in ZnO nanostructures. Nanotechnology, 2007, 18(9), 095702.
[http://dx.doi.org/10.1088/0957-4484/18/9/095702]
[19]
Guerette, M.; Ackerson, M.R.; Thomas, J.; Yuan, F.; Bruce Watson, E.; Walker, D.; Huang, L. Structure and properties of silica glass densified in cold compression and hot compression. Sci. Rep., 2015, 5(1), 15343.
[http://dx.doi.org/10.1038/srep15343] [PMID: 26469314]
[20]
Wu, W.; Yu, Q.; Peng, P.; Liu, Z.; Bao, J.; Pei, S.S. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology, 2012, 23(3), 035603.
[http://dx.doi.org/10.1088/0957-4484/23/3/035603] [PMID: 22173552]
[21]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3), 902-907.
[http://dx.doi.org/10.1021/nl0731872] [PMID: 18284217]
[22]
Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A. Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys., 2005, 98(4), 041301-103.
[http://dx.doi.org/10.1063/1.1992666]
[23]
Kucheyev, S.O.; Bradby, J.E.; Williams, J.S.; Jagadish, C.; Swain, M.V. Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett., 2002, 80(6), 956-958.
[http://dx.doi.org/10.1063/1.1448175]
[24]
Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci., 2005, 102(30), 10451-10453.
[http://dx.doi.org/10.1073/pnas.0502848102] [PMID: 16027370]
[25]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[26]
Mermin, N.D. Crystalline order in two dimensions. Phys. Rev., 1968, 176(1), 250-254.
[http://dx.doi.org/10.1103/PhysRev.176.250]
[27]
Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nat. Mater., 2007, 6(11), 858-861.
[http://dx.doi.org/10.1038/nmat2011] [PMID: 17891144]
[28]
ul Hasan, K.; Sandberg, M.O.; Nur, O.; Willander, M. Polycation stabilization of graphene suspensions. Nanoscale Res. Lett., 2011, 6(1), 493.
[http://dx.doi.org/10.1186/1556-276X-6-493] [PMID: 21846382]
[29]
Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature, 2007, 446(7131), 60-63.
[http://dx.doi.org/10.1038/nature05545] [PMID: 17330039]
[30]
Hasan, K.U. Graphene and ZnO nanostructures for nano- optoelectronic & biosensing applications, physics. Chemistry, 2012, 32-39.