Pharmacological Strategies for Enzyme Inhibition in Disease Therapeutics: A Comprehensive Review

Page: [96 - 108] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Enzyme inhibition is a crucial pharmacological approach for treating various diseases as it targets enzymes involved in disease pathogenesis. This review explores the fundamental concepts of enzyme inhibition, including reversible and irreversible mechanisms, and the various types of enzymes, such as proteases, kinases, and polymerases, and their contributions to different disease states. The review discusses the design and production of enzyme inhibitors using methods like structurebased drug design, high-throughput screening, and rational drug design. The review also discusses the challenges and successes encountered in discovering and optimizing potent and selective enzyme inhibitors. Examples of enzyme inhibition's therapeutic benefits include protease inhibitors in HIV/AIDS therapy, kinase inhibitors in cancer treatment, and acetylcholinesterase inhibitors in Alzheimer's disease management. The review also examines possible side effects and limits of enzyme inhibition, focusing on ways to reduce off-target effects and make drugs more specific. At the end of the review, new trends and future possibilities in enzyme inhibition for treating diseases are talked about. These include personalized medicine, combination therapies, and new ways to get drugs into the body. By shedding light on the latest developments, challenges, and future directions, the review aims to contribute to the advancement of this vital field and revolutionize disease treatment modalities.

Graphical Abstract

[1]
Geronikaki A. Recent trends in enzyme inhibition and activation in drug design. Molecules 2020; 26(1): 17.
[http://dx.doi.org/10.3390/molecules26010017] [PMID: 33375159]
[2]
de la Fuente M, Lombardero L, Gómez-González A, et al. Enzyme therapy: Current challenges and future perspectives. Int J Mol Sci 2021; 22(17): 9181.
[http://dx.doi.org/10.3390/ijms22179181] [PMID: 34502086]
[3]
Robinson PK. Enzymes: principles and biotechnological applications. Essays Biochem 2015; 59: 1-41.
[http://dx.doi.org/10.1042/bse0590001] [PMID: 26504249]
[4]
Ramsay R, Tipton K. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules 2017; 22(7): 1192.
[http://dx.doi.org/10.3390/molecules22071192] [PMID: 28714881]
[5]
Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimers Dement 2017; 3(4): 651-7.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[6]
Schenone M. Dančík V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 2013; 9(4): 232-40.
[http://dx.doi.org/10.1038/nchembio.1199] [PMID: 23508189]
[7]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[8]
Lu Y, Kim S, Park K. In vitro–in vivo correlation: Perspectives on model development. Int J Pharm 2011; 418(1): 142-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.010] [PMID: 21237256]
[9]
Coussens NP, Braisted JC, Peryea T, Sittampalam GS, Simeonov A, Hall MD. Small-molecule screens: A gateway to cancer therapeutic agents with case studies of food and drug administration–approved drugs. Pharmacol Rev 2017; 69(4): 479-96.
[http://dx.doi.org/10.1124/pr.117.013755] [PMID: 28931623]
[10]
Strelow J, Dewe W, Iversen PW, Brooks HB, Radding JA, McGee J, et al. Mechanism of action assays for enzymes. Assay Guid Man 2012.
[11]
Delaune KP, Alsayouri K. Physiology, Noncompetitive Inhibitor. StatPearls 2022.
[12]
Holdgate GA, Meek TD, Grimley RL. Mechanistic enzymology in drug discovery: A fresh perspective. Nat Rev Drug Discov 2018; 17(2): 115-32.
[http://dx.doi.org/10.1038/nrd.2017.219] [PMID: 29192286]
[13]
Punekar SR, Velcheti V, Neel BG, Wong KK. The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol 2022; 19(10): 637-55.
[http://dx.doi.org/10.1038/s41571-022-00671-9] [PMID: 36028717]
[14]
Szymański P, Markowicz M, Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int J Mol Sci 2011; 13(1): 427-52.
[http://dx.doi.org/10.3390/ijms13010427] [PMID: 22312262]
[15]
Miethke M, Pieroni M, Weber T, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 2021; 5(10): 726-49.
[http://dx.doi.org/10.1038/s41570-021-00313-1]
[16]
Pedre B, Barayeu U. Ezeriņa D, Dick TP. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol Ther 2021; 228: 107916.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107916] [PMID: 34171332]
[17]
Bickle M. The beautiful cell: high-content screening in drug discovery. Anal Bioanal Chem 2010; 398(1): 219-26.
[http://dx.doi.org/10.1007/s00216-010-3788-3] [PMID: 20577725]
[18]
Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: A systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet 2019; 58(10): 1281-94.
[http://dx.doi.org/10.1007/s40262-019-00750-8] [PMID: 30972694]
[19]
Copeland RA. Evaluation of Enzyme Inhibitors in Drug Discovery. A Guide for Medicinal Chemists and Pharmacologists Wiley 2013; 1-538.
[http://dx.doi.org/10.1002/9781118540398]
[20]
Cascorbi I. Drug interactions--principles, examples and clinical consequences. Dtsch Arztebl Int 2012; 109(33-34): 546-55.
[PMID: 23152742]
[21]
Alomar MJ. Factors affecting the development of adverse drug reactions. Saudi Pharm J 2014; 22(2): 83-94.
[http://dx.doi.org/10.1016/j.jsps.2013.02.003] [PMID: 24648818]
[22]
Palleria C, Di Paolo A, Giofrè C, et al. Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci 2013; 18(7): 601-10.
[PMID: 24516494]
[23]
Singh K, Gupta JK, Pathak D, Kumar S. The use of enzyme inhibitors in drug discovery: Current strategies and future prospects. Curr Enzym Inhib 2023; 19(3): 157-66.
[http://dx.doi.org/10.2174/1573408019666230731113105]
[24]
Peng Y, Cheng Z, Xie F. Evaluation of pharmacokinetic drug-drug interactions: A review of the mechanisms, in vitro and in silico approaches. Metabolites 2021; 11(2): 75.
[http://dx.doi.org/10.3390/metabo11020075] [PMID: 33513941]
[25]
Delaune KP, Alsayouri K. Physiology, Noncompetitive Inhibitor. StatPearls 2022.
[26]
Deodhar M, Al Rihani SB, Arwood MJ, et al. Mechanisms of CYP450 inhibition: Understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics 2020; 12(9): 846.
[http://dx.doi.org/10.3390/pharmaceutics12090846] [PMID: 32899642]
[27]
Blat Y. Non-competitive inhibition by active site binders. Chem Biol Drug Des 2010; 75(6): 535-40.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00972.x] [PMID: 20374252]
[28]
Balestri F, Cappiello M, Moschini R, Mura U, Del-Corso A. Models of enzyme inhibition and apparent dissociation constants from kinetic analysis to study the differential inhibition of aldose reductase. J Enzyme Inhib Med Chem 2022; 37(1): 1426-36.
[http://dx.doi.org/10.1080/14756366.2022.2076089] [PMID: 35607924]
[29]
Ogu CC, Maxa JL. Drug interactions due to cytochrome P450. Proc Bayl Univ Med Cent 2000; 13(4): 421-3.
[http://dx.doi.org/10.1080/08998280.2000.11927719] [PMID: 16389357]
[30]
Masubuchi Y, Horie T. Toxicological significance of mechanism-based inactivation of cytochrome p450 enzymes by drugs. Crit Rev Toxicol 2007; 37(5): 389-412.
[http://dx.doi.org/10.1080/10408440701215233] [PMID: 17612953]
[31]
Debela DT, Muzazu SGY, Heraro KD, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med 2021; 9.
[http://dx.doi.org/10.1177/20503121211034366] [PMID: 34408877]
[32]
Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 2008; 21 (Suppl. 2): S37-43.
[http://dx.doi.org/10.1038/modpathol.2008.10] [PMID: 18437172]
[33]
Gallick GE, Corn PG, Zurita AJ, Lin SH. Small-molecule protein tyrosine kinase inhibitors for the treatment of metastatic prostate cancer. Future Med Chem 2012; 4(1): 107-19.
[http://dx.doi.org/10.4155/fmc.11.161] [PMID: 22168167]
[34]
Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors: An expanding army attacking a unique target. Chem Biol 2012; 19(1): 99-115.
[http://dx.doi.org/10.1016/j.chembiol.2012.01.003] [PMID: 22284358]
[35]
Kisselev AF. Site-specific proteasome inhibitors. Biomolecules 2021; 12(1): 54.
[http://dx.doi.org/10.3390/biom12010054] [PMID: 35053202]
[36]
Frankland-Searby S, Bhaumik SR. The 26S proteasome complex: An attractive target for cancer therapy. Biochim Biophys Acta 2012; 1825(1): 64-76.
[PMID: 22037302]
[37]
Chen A. PARP inhibitors: Its role in treatment of cancer. Chin J Cancer 2011; 30(7): 463-71.
[http://dx.doi.org/10.5732/cjc.011.10111] [PMID: 21718592]
[38]
Mégnin-Chanet F, Bollet MA, Hall J. Targeting poly(ADP-ribose) polymerase activity for cancer therapy. Cell Mol Life Sci 2010; 67(21): 3649-62.
[http://dx.doi.org/10.1007/s00018-010-0490-8] [PMID: 20725763]
[39]
Alhmoud JF, Woolley JF, Al Moustafa AE, Malki MI. DNA Damage/repair management in cancers. Cancers 2020; 12(4): 1050.
[http://dx.doi.org/10.3390/cancers12041050] [PMID: 32340362]
[40]
Wu Y, Xu S, Cheng S, Yang J, Wang Y. Clinical application of PARP inhibitors in ovarian cancer: From molecular mechanisms to the current status. J Ovarian Res 2023; 16(1): 6.
[http://dx.doi.org/10.1186/s13048-023-01094-5] [PMID: 36611214]
[41]
Nitiss JL. DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 2009; 9(5): 327-37.
[http://dx.doi.org/10.1038/nrc2608] [PMID: 19377505]
[42]
Gilbert DC, Chalmers AJ, El-Khamisy SF. Topoisomerase I inhibition in colorectal cancer: Biomarkers and therapeutic targets. Br J Cancer 2012; 106(1): 18-24.
[http://dx.doi.org/10.1038/bjc.2011.498] [PMID: 22108516]
[43]
Seo YH. Dual inhibitors against topoisomerases and histone deacetylases. J Cancer Prev 2015; 20(2): 85-91.
[http://dx.doi.org/10.15430/JCP.2015.20.2.85] [PMID: 26151040]
[44]
Shaik BB, Katari NK, Jonnalagadda SB. Role of natural products in developing novel anticancer agents: A perspective. Chem Biodivers 2022; 19(11): e202200535.
[http://dx.doi.org/10.1002/cbdv.202200535] [PMID: 36347633]
[45]
Kluska M. Woźniak K. Natural polyphenols as modulators of etoposide anti-cancer activity. Int J Mol Sci 2021; 22(12): 6602.
[http://dx.doi.org/10.3390/ijms22126602] [PMID: 34202987]
[46]
Brittan M, Wright NA. The gastrointestinal stem cell. Cell Prolif 2004; 37(1): 35-53.
[http://dx.doi.org/10.1111/j.1365-2184.2004.00299.x] [PMID: 14871236]
[47]
Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat Rev Drug Discov 2021; 20(7): 551-69.
[http://dx.doi.org/10.1038/s41573-021-00195-4] [PMID: 34002056]
[48]
Li X, Wood TE, Sprangers R, et al. Effect of noncompetitive proteasome inhibition on bortezomib resistance. J Natl Cancer Inst 2010; 102(14): 1069-82.
[http://dx.doi.org/10.1093/jnci/djq198] [PMID: 20505154]
[49]
Grant C, Rahman F, Piekarz R, et al. Romidepsin: A new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther 2010; 10(7): 997-1008.
[http://dx.doi.org/10.1586/era.10.88] [PMID: 20645688]
[50]
Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 2011; 125(1-2): 13-22.
[http://dx.doi.org/10.1016/j.jsbmb.2011.02.001] [PMID: 21335088]
[51]
Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J 2018; 475(2): 373-98.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[52]
Cebollero A, Puértolas T, Pajares I, Calera L, Antón A. Comparative safety of BRAF and MEK inhibitors (vemurafenib, dabrafenib and trametinib) in first-line therapy for BRAF-mutated metastatic melanoma. Mol Clin Oncol 2016; 5(4): 458-62.
[http://dx.doi.org/10.3892/mco.2016.978] [PMID: 27699043]
[53]
Valabrega G, Scotto G, Tuninetti V, Pani A, Scaglione F. Differences in PARP inhibitors for the treatment of ovarian cancer: Mechanisms of action, pharmacology, safety, and efficacy. Int J Mol Sci 2021; 22(8): 4203.
[http://dx.doi.org/10.3390/ijms22084203] [PMID: 33921561]
[54]
Dufour M, Dormond-Meuwly A, Demartines N, Dormond O. Targeting the mammalian target of rapamycin (mTOR) in cancer therapy: Lessons from past and future perspectives. Cancers 2011; 3(2): 2478-500.
[http://dx.doi.org/10.3390/cancers3022478] [PMID: 24212820]
[55]
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2019; 10: 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[56]
Magden J, Kääriäinen L, Ahola T. Inhibitors of virus replication: Recent developments and prospects. Appl Microbiol Biotechnol 2005; 66(6): 612-21.
[http://dx.doi.org/10.1007/s00253-004-1783-3] [PMID: 15592828]
[57]
Lv Z, Chu Y, Wang Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV AIDS 2015; 7: 95-104.
[PMID: 25897264]
[58]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[59]
Okafor SN, Meyer A, Gadsden J, et al. Drug reprofiling to identify potential HIV-1 protease inhibitors. Molecules 2023; 28(17): 6330.
[http://dx.doi.org/10.3390/molecules28176330] [PMID: 37687159]
[60]
Deeks SG, Overbaugh J, Phillips A, Buchbinder S. HIV infection. Nat Rev Dis Primers 2015; 1(1): 15035.
[http://dx.doi.org/10.1038/nrdp.2015.35] [PMID: 27188527]
[61]
Omrani M, Keshavarz M, Nejad Ebrahimi S, et al. Potential natural products against respiratory viruses: A perspective to develop anti-COVID-19 medicines. Front Pharmacol 2021; 11: 586993.
[http://dx.doi.org/10.3389/fphar.2020.586993] [PMID: 33679384]
[62]
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021; 10(10): 1310.
[http://dx.doi.org/10.3390/pathogens10101310] [PMID: 34684258]
[63]
Bush K, Bradford PA. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb Perspect Med 2016; 6(8): a025247.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[64]
Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 2014; 159(6): 1300-11.
[http://dx.doi.org/10.1016/j.cell.2014.11.017] [PMID: 25480295]
[65]
Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MedChemComm 2017; 8(3): 516-33.
[http://dx.doi.org/10.1039/C6MD00585C] [PMID: 30108769]
[66]
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules 2020; 25(23): 5662.
[http://dx.doi.org/10.3390/molecules25235662] [PMID: 33271787]
[67]
Rajendram M, Hurley KA, Foss MH, et al. Gyramides prevent bacterial growth by inhibiting DNA gyrase and altering chromosome topology. ACS Chem Biol 2014; 9(6): 1312-9.
[http://dx.doi.org/10.1021/cb500154m] [PMID: 24712739]
[68]
Protease Inhibitors (HIV). LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.: Bethesda (MD) 2017.
[69]
Sur M, Lopez MJ, Baker MB. Kucers’ The Use of Antibiotics A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs. CRC Press 2022.
[70]
Hastings MD, Sibley CH. Pyrimethamine and WR99210 exert opposing selection on dihydrofolate reductase from Plasmodium vivax. Proc Natl Acad Sci 2002; 99(20): 13137-41.
[http://dx.doi.org/10.1073/pnas.182295999] [PMID: 12198181]
[71]
Vilchèze C. Mycobacterial cell wall: A source of successful targets for old and new drugs. Appl Sci 2020; 10(7): 2278.
[http://dx.doi.org/10.3390/app10072278]
[72]
Srivastava RAK, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS. AMP-activated protein kinase: An emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res 2012; 53(12): 2490-514.
[http://dx.doi.org/10.1194/jlr.R025882] [PMID: 22798688]
[73]
Willey JZ, Elkind MSV. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in the treatment of central nervous system diseases. Arch Neurol 2010; 67(9): 1062-7.
[http://dx.doi.org/10.1001/archneurol.2010.199] [PMID: 20837848]
[74]
Feingold KR. Cholesterol Lowering Drugs. NCBI Bookshelf 2021.
[75]
DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: Sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 2008; 18(6): 609-21.
[http://dx.doi.org/10.1038/cr.2008.61]
[76]
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: From mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7(1): 265.
[http://dx.doi.org/10.1038/s41392-022-01125-5] [PMID: 35918332]
[77]
Morofuji Y, Nakagawa S, Ujifuku K, et al. Beyond lipid-lowering: Effects of statins on cardiovascular and cerebrovascular diseases and cancer. Pharmaceuticals 2022; 15(2): 151.
[http://dx.doi.org/10.3390/ph15020151] [PMID: 35215263]
[78]
Akmal M, Wadhwa R. Alpha Glucosidase Inhibitors. NCBI Bookshelf 2022.
[79]
Ćorković I, Gašo-Sokač D, Pichler A, Šimunović J, Kopjar M. Dietary polyphenols as natural inhibitors of α-amylase and α- glucosidase Life 1692; 12(11): 1692.
[http://dx.doi.org/10.3390/life12111692] [PMID: 36362847]
[80]
McIver LA, Preuss CV, Tripp J. Acarbose. StatPearls 2022.
[81]
Schonewille M, Freark de Boer J, Mele L, et al. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J Lipid Res 2016; 57(8): 1455-64.
[http://dx.doi.org/10.1194/jlr.M067488] [PMID: 27313057]
[82]
Fields M, Lewis CG, Lure MD. Allopurinol an inhibitor of xanthine oxidase reduces uric acid levels and modifies the signs associated with copper deficiency in rats fed fructose. Free Radic Biol Med 1996; 20(4): 595-600.
[http://dx.doi.org/10.1016/0891-5849(95)02056-X] [PMID: 8904301]
[83]
Heck AM, Yanovski JA, Calis KA. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 2000; 20(3): 270-9.
[http://dx.doi.org/10.1592/phco.20.4.270.34882] [PMID: 10730683]
[84]
Hanif K, Bid HK, Konwar R. Reinventing the ACE inhibitors: Some old and new implications of ACE inhibition. Hypertens Res 2010; 33(1): 11-21.
[http://dx.doi.org/10.1038/hr.2009.184] [PMID: 19911001]
[85]
Forman HJ, Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021; 209: 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1]
[86]
Nimgampalle M, Chakravarthy H, Sharma S, et al. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89: 101994.
[http://dx.doi.org/10.1016/j.arr.2023.101994] [PMID: 37385351]
[87]
Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer’s Disease. Molecules 2022; 27(6): 1816.
[http://dx.doi.org/10.3390/molecules27061816] [PMID: 35335180]
[88]
Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: The relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21(7): 453-78.
[http://dx.doi.org/10.2165/00002512-200421070-00004] [PMID: 15132713]
[89]
Olivares D, Deshpande VK, Shi Y, et al. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res 2012; 9(6): 746-58.
[http://dx.doi.org/10.2174/156720512801322564] [PMID: 21875407]
[90]
Laban TS, Saadabadi A. Monoamine Oxidase Inhibitors (MAOI). Treasure Island, FL: StatPearls 2022.
[91]
Zahoor I, Shafi A, Haq E. Pharmacological treatment of parkinson’s disease. Park Dis Pathog Clin Asp 2018; pp. 129-44.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch7]
[92]
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[93]
Tan YY, Jenner P, Chen SD. Monoamine oxidase-B inhibitors for the treatment of parkinson’s disease: Past, present, and future. J Parkinsons Dis 2022; 12(2): 477-93.
[http://dx.doi.org/10.3233/JPD-212976] [PMID: 34957948]
[94]
Waters C. Catechol-O-methyltransferase (COMT) inhibitors in Parkinson’s disease. J Am Geriatr Soc 2000; 48(6): 692-8.
[http://dx.doi.org/10.1111/j.1532-5415.2000.tb04732.x] [PMID: 10855610]
[95]
Han BH, Vellimana AK, Zhou ML, Milner E, Zipfel GJ. Phosphodiesterase 5 inhibition attenuates cerebral vasospasm and improves functional recovery after experimental subarachnoid hemorrhage. Neurosurgery 2012; 70(1): 178-87.
[http://dx.doi.org/10.1227/NEU.0b013e31822ec2b0] [PMID: 21796010]
[96]
Ayola-Serrano NC, Roy N, Fathah Z, et al. The role of 5-lipoxygenase in the pathophysiology of COVID-19 and its therapeutic implications. Inflamm Res 2021; 70(8): 877-89.
[http://dx.doi.org/10.1007/s00011-021-01473-y] [PMID: 34086061]
[97]
Jiang F, Yang J, Zhang Y, et al. Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets. Nat Rev Cardiol 2014; 11(7): 413-26.
[http://dx.doi.org/10.1038/nrcardio.2014.59] [PMID: 24776703]
[98]
Fountain JH, Lappin SL. Physiology, Renin Angiotensin System. StatPearls 2021.
[99]
Ahmed WS, Geethakumari AM, Biswas KH. Phosphodiesterase 5 (PDE5): Structure-function regulation and therapeutic applications of inhibitors. Biomed Pharmacother 2021; 134: 111128.
[http://dx.doi.org/10.1016/j.biopha.2020.111128] [PMID: 33348311]
[100]
Saikia Q, Hazarika A, Mishra R. A review on the pharmacological importance of PDE5 and its inhibition to manage biomedical conditions. J Pharmacol Pharmacother 2022; 13(3): 246-57.
[http://dx.doi.org/10.1177/0976500X221129008]
[101]
Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther 2015; 147: 12-21.
[http://dx.doi.org/10.1016/j.pharmthera.2014.10.003] [PMID: 25444755]
[102]
O’Keefe JH, Wetzel M, Moe RR, Brosnahan K, Lavie CJ. Should an angiotensin-converting enzyme inhibitor be standard therapy for patients with atherosclerotic disease? J Am Coll Cardiol 2001; 37(1): 1-8.
[http://dx.doi.org/10.1016/S0735-1097(00)01044-5] [PMID: 11153722]
[103]
Istvan E. Statin inhibition of HMG-CoA reductase: A 3-dimensional view. Atheroscler Suppl 2003; 4(1): 3-8.
[http://dx.doi.org/10.1016/S1567-5688(03)00003-5] [PMID: 12714031]
[104]
Oliver JJ, Melville VP, Webb DJ. Effect of regular phosphodiesterase type 5 inhibition in hypertension. Hypertension 2006; 48(4): 622-7.
[http://dx.doi.org/10.1161/01.HYP.0000239816.13007.c9] [PMID: 16940217]
[105]
Ladage D, Schwinger RHG, Brixius K. Cardio-selective beta-blocker: Pharmacological evidence and their influence on exercise capacity. Cardiovasc Ther 2013; 31(2): 76-83.
[http://dx.doi.org/10.1111/j.1755-5922.2011.00306.x] [PMID: 22279967]
[106]
Musini VM, Lawrence KA, Fortin PM, Bassett K, Wright JM. Blood pressure lowering efficacy of renin inhibitors for primary hypertension. Cochrane Database Syst Rev 2017; 2017(4)
[http://dx.doi.org/10.1002/14651858.CD007066.pub3]
[107]
Shantsila E, Lip GY. Direct Thrombin Inhibitors. Non-Vitamin K Antagon Oral Anticoagulants 2016; pp. 7-24.
[108]
Nguyen TH, Wang SL, Nguyen VB. Microorganism-derived molecules as enzyme inhibitors to target alzheimer’s diseases pathways. Pharmaceuticals 2023; 16(4): 580.
[http://dx.doi.org/10.3390/ph16040580] [PMID: 37111337]
[109]
Egorov AM, Ulyashova MM, Rubtsova MY. Bacterial enzymes and antibiotic resistance. Acta Nat 2018; 10(4): 33-48.
[http://dx.doi.org/10.32607/20758251-2018-10-4-33-48] [PMID: 30713760]
[110]
Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J 2015; 17(6): 1327-40.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[111]
Price G, Patel DA. Drug Bioavailability. StatPearls 2023.
[112]
Goetz LH, Schork NJ. Personalized medicine: Motivation, challenges, and progress. Fertil Steril 2018; 109(6): 952-63.
[http://dx.doi.org/10.1016/j.fertnstert.2018.05.006] [PMID: 29935653]
[113]
Makhoba XH, Viegas C Jr, Mosa RA, Viegas FPD, Pooe OJ. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther 2020; 14: 3235-49.
[http://dx.doi.org/10.2147/DDDT.S257494] [PMID: 32884235]
[114]
Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[115]
Batool M, Ahmad B, Choi S. A structure-based drug discovery paradigm. Int J Mol Sci 2019; 20(11): 2783.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[116]
Duan C, Jiang Q, Jiang X, et al. Discovery of a novel inhibitor structure of mycobacterium tuberculosis isocitrate lyase. Molecules 2022; 27(8): 2447.
[http://dx.doi.org/10.3390/molecules27082447] [PMID: 35458645]