Simultaneous Study of Analysis of Anti-inflammatory Potential of Dryopteris ramosa (C. Hope) C. Chr. using GC-Mass and Computational Modeling on the Xylene-induced Ear Oedema in Mouse Model

Page: [3324 - 3339] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Introduction: In the present study, we aimed to investigate the extraction and identification of the potential phytochemicals from the Methanolic Extract of Dryopteris ramosa (MEDR) using GC-MS profiling for validating the traditional uses of MEDR its efficacy in inflammations by using in-vitro, in-vivo and in silico approaches in anti-inflammatory models.

Methods: GC-MS analysis confirmed the presence of a total of 59 phytochemical compounds. The human red blood cells (HRBC) membrane stabilization assay and heat-induced hemolysis method were used as in-vitro anti-inflammatory activity of the extract. The in-vivo analysis was carried out through the Xylene-induced mice ear oedema method. It was found that MEDR at a concentration of 20 μg, 30 μg, and 40 μg showed 35.45%, 36.01%, and 36.33% protection to HRBC in a hypotonic solution, respectively. At the same time, standard Diclofenac at 30 μg showed 45.31% protection of HRBC in a hypotonic solution.

Results: The extract showed inhibition of 25.32%, 26.53%, and 33.31% cell membrane lysis at heating at 20 μg, 30 μg, and 40 μg, respectively. In comparison, standard Diclofenac at 30 μg showed 50.49% inhibition of denaturation to heat. Methanolic extract of the plant exhibited momentous inhibition in xylene-induced ear oedema in mice treated with 30 μg extract were 47.2%, 63.4%, and 78.8%, while inhibition in mice ear oedema treated with 60 μg extract was 34.7%, 43.05%, 63.21% and reduction in ear thickness of standard drug were 57.3%, 59.54%, 60.42% recorded at the duration of 1, 4 and 24 hours of inflammation. Molecular docking and simulations were performed to validate the anti-inflammatory role of the phytochemicals that revealed five potential phytochemicals i.e. Stigmasterol,22,23dihydro, Heptadecane,8methyl, Pimaricacid, Germacrene and 1,3Cyclohexadiene,_5(1,5dimethyl4hexenyl)-2methyl which revealed potential or significant inhibitory effects on cyclooxygenase-2 (COX-2), tumour necrosis factor (TNF-α), and interleukin (IL-6) in the docking analysis.

Conclusion: The outcome of the study signifies that MEDR can offer a new prospect in the discovery of a harmonizing and alternative therapy for inflammatory disease conditions.

[1]
Sundur S, Shrivastava B, Sharma P, Raj SS, Jayasekhar VL. A review article of pharmacological activities and biological importance of Calophyllum inophyllum. Int J Adv Res 2014; 2(l2): 599-603.
[2]
Niño J, Narváez DM, Mosquera OM, Correa YM. Antibacterial, antifungal and cytotoxic activities of eight Asteraceae and two Rubiaceae plants from colombian biodiversity. Braz J Microbiol 2006; 37(4): 566-70.
[http://dx.doi.org/10.1590/S1517-83822006000400030]
[3]
Khan I, Rahman H, El-Salam NMA, et al. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria. BMC Complement Altern Med 2017; 7(l): 247.
[http://dx.doi.org/10.1186/s12906-017-1766-4]
[4]
Bashir S, Memon R, Gilani AH. Antispasmodic and antidiarrheal activities of Valeriana hardwickii Wall. rhizome are putatively mediated through calcium channel blockade. BMC Complement Altern Med 2011; 2011: 304960.
[http://dx.doi.org/10.1155/2011/304960]
[5]
Kaur R, Ruhil S, Balhara M, Dhankhar S, Chhillar AK. A review on Justicia adhatoda: A potential source of natural medicine. African J Plant Sci 2013; 5(11): 620-7.
[6]
Atal CK. Chemistry and Pharmacology of vasicine: A new oxytocin and abortifacient. Indian Drugs 1980; 15: 15-8.
[7]
Latha D, Prabu P, Arulvasu C, Manikandan R, Sampurnam S, Narayanan V. Enhanced cytotoxic effect on human lung carcinoma cell line (A549) by gold nanoparticles synthesized from Justicia adhatoda leaf extract. Asian Pacific J Trop Biomed 1980; 11: 540.
[http://dx.doi.org/10.4103/2221-1691.245969]
[8]
Miller AL. Antioxidant flavonoids: Structure, function and clinical usage. Altern Med Rev 1996; 996(1): 103-11.
[9]
Gulcin I. Antioxidant activity of food constituents: An overview. Arch Toxicol 2012; 86: 345-91.
[http://dx.doi.org/10.1007/s00204-011-0774-2]
[10]
Ahmad KS, Qureshi R, Hameed M, Ahmad F, Nawaz T. Conservation assessment and medicinal importance of some plants resources from Sharda, Neelum Valley, Azad Jammu and Kashmir, Pakistan. Int J Agric Biol 2012; 14: 997.
[11]
Adnan M, Begum S, Khan AL, Tareen AM, Lee IJ. Medicinal plants and their uses in selected temperate zones of Pakistani Hindukush-Himalaya. J Med Plants Res 2012; 6: 4113-27.
[http://dx.doi.org/10.5897/JMPR12.656]
[12]
Ahmed E, Arshad M, Ahmad M, Saeed M, Ishaque M. Ethnopharmacological survey of some medicinally important plants of Galliyat areas of NWFP, Pakistan. Asian J Plant Sci 2004; 3: 410-5.
[http://dx.doi.org/10.3923/ajps.2004.410.415]
[13]
Alam F, Khan SHA. Phytochemical, antimicrobial, antioxidant and enzyme inhibitory potential of medicinal plant Dryopteris ramosa (Hope) C. Chr. BMC Complement Med Ther 2021; 21(1): 197.
[http://dx.doi.org/10.1186/s12906-021-03370-7]
[14]
Zia-ur-Rehman Rasheed HM Bashir K UHPLC-MS/MSGNPS based phytochemical investigation of Dryopteris ramosa (Hope) C. Chr. and evaluation of cytotoxicity against liver and prostate cancer cell lines. Heliyon 2022; 8(11): e11286.
[http://dx.doi.org/10.1016/j.heliyon.2022.e11286] [PMID: 36387559]
[15]
Ishaque M, Bibi Y, Qayyum A, Iriti M. Isolation and structural confirmation of xanthone isomers from Dryopteris ramosa (Hope) C. Chr. and their in vitro antioxidant mechanism. Arab J Sci Eng 2021; 46(6): 5327-37.
[http://dx.doi.org/10.1007/s13369-020-05097-y]
[16]
Ishaque M, Bibi Y, Masood S, et al. Xanthone C-glycosides isomers purified from Dryopteris ramosa (Hope) C. Chr. with bactericidal and cytotoxic prospects. Saudi J Biol Sci 2022; 29(2): 1191-6.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.047] [PMID: 35197786]
[17]
Wani MH, Shah MY, Naqshi AR. Medicinal ferns of Kashmir, India. India Int J Bioassays 2016; 5(7): 4677.
[http://dx.doi.org/10.21746/ijbio.2016.07.003]
[18]
Paul S, Modak D, Chattaraj S, Nandi D, Sarkar A, Roy J. Aloe vera gel homogenate shows anti-inflammatory activity through lysosomal membrane stabilization and downregulation of TNF-α and Cox-2 gene expressions in inflammatory arthritic animals. Future J Pharm Sci 2021; 7(1): 8.
[http://dx.doi.org/10.1186/s43094-020-00163-6]
[19]
Salt E, Frazier S. Adherence to disease modifying anti-rheumatic drugs in rheumatoid arthritis patients: A narrative review of the literature. Orthop Nurs 2010; 29: 260-75.
[http://dx.doi.org/10.1097/NOR.0b013e3181e5c2c9]
[20]
Vivar N, Van Vollenhoven RF. Medicinal ferns of Kashmir. F1000Prime Rep 2014; 6: 31.
[http://dx.doi.org/10.12703/P6-31]
[21]
Lopez-Olivo MA, Colmegna I, Karpes Matusevich AR, et al. Systematic review of recommendations on the use of disease-modifying anti-rheumatic drugs in patients with rheumatoid arthritis and cancer. Arthritis Care Res 2020; 72(3): 309-18.
[http://dx.doi.org/10.1002/acr.23865] [PMID: 30821928]
[22]
Harirforoosh S, Asghar W, Jamali F. Adverse effects of non-steroidal anti-inflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 2013; 16: 821-47.
[http://dx.doi.org/10.18433/j3vw2f] [PMID: 24393558]
[23]
Roubille C, Richer V, Starnino T, McCourt C, McFarlane A, Fleming P. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: A systematic review and meta-analysis. Ann Rheum Dis 2015; 74(3): 480-9.
[http://dx.doi.org/10.1136/annrheumdis-2014-206624]
[24]
Markham A, Lamb HM. Infliximab. Drugs 2000; 59(6): 1341-59.
[http://dx.doi.org/10.2165/00003495-200059060-00010] [PMID: 10882166]
[25]
Sato K, Tsuchiya M, Saldanha J, Koishihara Y, Ohsugi Y, Kishimoto T. Reshaping a human antibody to inhibit the interleukin 6-dependent tumor cell growth. Cancer Res 1993; 993(53): 85l-6.
[PMID: 8428365]
[26]
Hübschmann HJ. Handbook of GC-MS: Fundamentals and applications. Hoboken, New Jersey: John Wiley & Sons 2015.
[http://dx.doi.org/10.1002/9783527674305]
[27]
Anosike CA, Obidoa O, Ezeanyika LU. Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). DARU J Pharm Sci 2021; 20(1): 76.
[28]
Kim S, Chen J, Cheng T, et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res 2019; 47(D1): D1102-9.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[29]
Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Costanzo LD. RCSB protein data bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res 2019; 47: D464-74.
[http://dx.doi.org/10.1093/nar/gky1004] [PMID: 30357411]
[30]
Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996; 384: 644-8.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[31]
Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 2016; 11(5): 905-19.
[http://dx.doi.org/10.1038/nprot.2016.051]
[32]
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1988; 19(l4): l639-62.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[33]
Hospital A, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí JL. MDWeb and MDMoby: An integrated web-based platform for molecular dynamics simulations. Bioinformatics 2012; 28(9): l278-9.
[http://dx.doi.org/10.1093/bioinformatics/bts139]
[34]
Somers W, Stahl M, Seehra JS. 1.9 Acrystal structure of interleukin 6: Implications for a novel mode of receptor dimerization and signaling. EMBO J 1997; 16(5): 989-97.
[http://dx.doi.org/10.1093/emboj/16.5.989] [PMID: 9118960]
[35]
Kumari R, Mishra RC, Yadav A, Yadav JP. Screening of traditionally used medicinal plants for their antimicrobial efficacy against oral pathogens and GCMS analysis of Acacia nilotica extract. Indian J Tradit Knowl 2019; 18: 162-8.
[36]
Berwal R, Vasudeva N, Sharma S, Das S. Investigation on biomolecules in ethanol extract of fruits of Prosopis juliflora (Sw.) DC. using GC-MS. Int J Geogr Inf Syst 2019; 25: 172-80.
[http://dx.doi.org/10.1080/10496475.2019.1579148]
[37]
Rani A, Uzair M, Ali S, et al. Dryopteris juxtapostia root and shoot: Determination of phytochemicals; antioxidant, anti-inflammatory, and hepatoprotective effects; and toxicity assessment. Antioxidants 2022; 11(9): 1670.
[http://dx.doi.org/10.3390/antiox11091670] [PMID: 36139744]
[38]
Ju Z, Li M, Xu J, Howell DC, Li Z, Chen FE. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm Sin B 2022; 12(6): 2790-807.
[http://dx.doi.org/10.1016/j.apsb.2022.01.002] [PMID: 35755295]
[39]
Agnihotri P, Deka H, Chakraborty D, et al. Anti-inflammatory potential of selective small compounds by targeting TNF-α & NFkB signaling: A comprehensive molecular docking and simulation study. J Biomol Struct Dyn 2023; 41(23): 13815-28.
[http://dx.doi.org/10.1080/07391102.2023.2196692] [PMID: 37013999]
[40]
He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A. Small-molecule inhibition of TNF-alpha. Science 2005; 310(5750): 1022-5.
[http://dx.doi.org/10.1126/science.1116304] [PMID: 16284179]
[41]
Zhang K, Yang Y, Ge H, et al. Neurogenesis and proliferation of neural stem/progenitor cells conferred by artesunate via FOXO3a/p27Kip1 axis in mouse stroke model. Mol Neurobiol 2022; 59(8): 4718-29.
[http://dx.doi.org/10.1007/s12035-021-02710-5] [PMID: 35596896]
[42]
Hu B, Das P, Lv X, et al. Effects of ‘healthy’ fecal microbiota transplantation against the deterioration of depression in fawn-hooded rats. mSystems 2022; 7(3): e00218-22.
[http://dx.doi.org/10.1128/msystems.00218-22] [PMID: 35481347]
[43]
Li L, Xu H, Qu L, et al. Water extracts of Polygonum multiflorum Thunb. and its active component emodin relieves osteoarthritis by regulating cholesterol metabolism and suppressing chondrocyte inflammation. Acupuncture Herb Med 2023; 3(2): 96-106.
[http://dx.doi.org/10.1097/HM9.0000000000000061]
[44]
Qin Y, Huang C, Huang G, et al. Relative bioavailability of selenium in rice using a rat model and its application to human health risk assessment. Environ Pollut 2023; 338: 122675.
[http://dx.doi.org/10.1016/j.envpol.2023.122675] [PMID: 37793540]
[45]
Zhang Y, Zeng M, Li B, et al. Ephedra Herb extract ameliorates adriamycin-induced nephrotic syndrome in rats via the CAMKK2/AMPK/mTOR signaling pathway. Chin J Nat Med 2023; 21(5): 371-82.
[http://dx.doi.org/10.1016/S1875-5364(23)60454-6] [PMID: 37245875]
[46]
Zhu Y, Huang R, Wu Z, Song S, Cheng L, Zhu R. Deep learning-based predictive identification of neural stem cell differentiation. Nat Commun 2021; 12(1): 2614.
[http://dx.doi.org/10.1038/s41467-021-22758-0] [PMID: 33972525]
[47]
Tian Z, Zhang Y, Zheng Z, et al. Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host Microbe 2022; 30(10): 1450-1463.e8.
[http://dx.doi.org/10.1016/j.chom.2022.09.004] [PMID: 36228585]
[48]
Qiu H, Chen X, Luo Z, et al. Inhibition of endogenous hydrogen sulfide production exacerbates the inflammatory response during urine derived sepsis induced kidney injury. Exp Ther Med 2018; 16(4): 2851-8.
[http://dx.doi.org/10.3892/etm.2018.6520] [PMID: 30214506]
[49]
Song ZH, Xie W, Zhu SY, Pan JJ, Zhou LY, He CQ. Effects of PEMFs on Osx, Ocn, TRAP, and CTSK gene expression in postmenopausal osteoporosis model mice. Int J Clin Exp Pathol 2018; 11(3): 1784-90.
[PMID: 31938285]
[50]
Bao M, Luo H, Chen L, et al. Impact of high fat diet on long non-coding RNAs and messenger RNAs expression in the aortas of ApoE(−/−) mice. Sci Rep 2016; 6(1): 34161.
[http://dx.doi.org/10.1038/srep34161] [PMID: 27698357]
[51]
Zhang Y, Lian B, Yang S, Huang X, Zhou Y, Cao L. Metabotropic glutamate receptor 5-related autoimmune encephalitis with reversible splenial lesion syndrome following SARS-CoV-2 vaccination. Medicine 2023; 102(7): e32971.
[http://dx.doi.org/10.1097/MD.0000000000032971] [PMID: 36800591]
[52]
Liu Z, Wang M, Luo J, Tan Y, Hou M, Wang S. A bibliometric analysis of hotpots and trends for the relationship between skin inflammation and regeneration. Front Surg 2023; 10: 1180624.
[http://dx.doi.org/10.3389/fsurg.2023.1180624] [PMID: 37151861]
[53]
Feng S, Liu W, Deng S, et al. An atopic dermatitis-like mouse model by alternate epicutaneous application of dinitrofluorobenzene and an extract of Dermatophagoides farinae. Front Med 2022; 9: 843230.
[http://dx.doi.org/10.3389/fmed.2022.843230] [PMID: 35783608]
[54]
Feng S, Song G, Liu L, Liu W, Liang G, Song Z. Allergen-specific immunotherapy induces monocyte-derived dendritic cells but attenuates their maturation and cytokine production in the lesional skin of an atopic dermatitis mouse model. J Dermatol 2022; 49(12): 1310-9.
[http://dx.doi.org/10.1111/1346-8138.16582] [PMID: 36117445]
[55]
Liu L, Song G, Song Z. Intrinsic atopic dermatitis and extrinsic atopic dermatitis: Similarities and differences. Clin Cosmet Investig Dermatol 2022; 15: 2621-8.
[http://dx.doi.org/10.2147/CCID.S391360]
[56]
Luo W, Tian L, Tan B, et al. Update: Innate lymphoid cells in inflammatory bowel disease. Dig Dis Sci 2022; 67(1): 56-66.
[http://dx.doi.org/10.1007/s10620-021-06831-8] [PMID: 33609209]
[57]
Lin Q, Xiongbo G, Zhang W, et al. A novel approach of surface texture mapping for cone-beam computed tomography in imageguided surgical navigation. IEEE J Biomed Health Inform 2023; PP.1-10.
[http://dx.doi.org/10.1109/JBHI.2023.3298708] [PMID: 37490371]
[58]
Modak D, Paul S, Sarkar S, Thakur S, Bhattacharjee S. Validating potent anti-inflammatory and anti-rheumatoid properties of Drynaria quercifolia rhizome methanolic extract through in vitro, in vivo, in silico and GC-MS-based profiling. BMC Complement Med Ther 2021; 21(1): 89.
[http://dx.doi.org/10.1186/s12906-021-03265-7]
[59]
Sood D, Kumar N, Rathee G, Singh A, Tomar V, Chandra R. Mechanistic interaction study of bromo-noscapine with bovine serum albumin employing spectroscopic and chemoinformatics approaches. Sci Rep 2018; 8(1): 16964.
[http://dx.doi.org/10.1038/s41598-018-35384-6] [PMID: 30446713]
[60]
Kathirvel A, Sujatha V. Phytochemical studies, antioxidant activities and identification of active compounds using GC-MS of Dryopteris cochleata leaves. Arab J Chem 2016; 9: S1435-42.
[http://dx.doi.org/10.1016/j.arabjc.2012.03.018]