Interactions of Polyphenolic Gallotannins with Amyloidogenic Polypeptides Associated with Alzheimer’s Disease: From Molecular Insights to Physiological Significance

Page: [603 - 617] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Polyphenols are natural compounds abundantly found in plants. They are known for their numerous benefits to human health, including antioxidant properties and anti-inflammatory activities. Interestingly, many studies have revealed that polyphenols can also modulate the formation of amyloid fibrils associated with disease states and can prevent the formation of cytotoxic oligomer species. In this review, we underline the numerous effects of four hydrolysable gallotannins (HGTs) with high conformational flexibility, low toxicity, and multi-targeticity, e.g., tannic acid, pentagalloyl glucose, corilagin, and 1,3,6-tri-O-galloyl-β-D-glucose, on the aggregation of amyloidogenic proteins associated with the Alzheimer’s Disease (AD). These HGTs have demonstrated interesting abilities to reduce, at different levels, the formation of amyloid fibrils involved in AD, including those assembled from the amyloid β-peptide, the tubulin-associated unit, and the islet amyloid polypeptide. HGTs were also shown to disassemble pre-formed fibrils and to diminish cognitive decline in mice. Finally, this manuscript highlights the importance of further investigating these naturally occurring HGTs as promising scaffolds to design molecules that can interfere with the formation of proteotoxic oligomers and aggregates associated with AD pathogenesis.

[1]
Gauthier, S.; Webster, C.; Servaes, S.; Morais, J.; Rosa-Neto, P. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support; Alzheimer’s disease international: London, England, 2022.
[2]
Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther., 2023, 8(1), 248.
[PMID: 37386015]
[3]
van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; Froelich, L.; Katayama, S.; Sabbagh, M.; Vellas, B.; Watson, D.; Dhadda, S.; Irizarry, M.; Kramer, L.D.; Iwatsubo, T. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med., 2023, 388(1), 9-21.
[PMID: 36449413]
[4]
Ly, H.; Verma, N.; Sharma, S.; Kotiya, D.; Despa, S.; Abner, E.L.; Nelson, P.T.; Jicha, G.A.; Wilcock, D.M.; Goldstein, L.B.; Guerreiro, R.; Brás, J.; Hanson, A.J.; Craft, S.; Murray, A.J.; Biessels, G.J.; Troakes, C.; Zetterberg, H.; Hardy, J.; Lashley, T.; Aesg; Despa, F. The association of circulating amylin with β-amyloid in familial Alzheimer’s disease. Alzheimers Dement., 2021, 7(1), e12130.
[PMID: 33521236]
[5]
Kotiya, D.; Leibold, N.; Verma, N.; Jicha, G.A.; Goldstein, L.B.; Despa, F. Rapid, scalable assay of amylin-β amyloid co-aggregation in brain tissue and blood. J. Biol. Chem., 2023, 299(5), 104682.
[PMID: 37030503]
[6]
Knowles, T.P.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 384-396.
[PMID: 24854788]
[7]
Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem., 2017, 86, 27-68.
[PMID: 28498720]
[8]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[PMID: 32162523]
[9]
Lecour, S.; Lamont, K.T. Natural polyphenols and cardioprotection. Mini Rev. Med. Chem., 2011, 11(14), 1191-1199.
[PMID: 22070680]
[10]
Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 2019, 24(13), 2452.
[PMID: 31277395]
[11]
Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem., 2013, 72, 1-20.
[PMID: 23774057]
[12]
Saini, N; Gahlawat, S; Lather, V. Flavonoids: A nutraceutical and its role as anti-inflammatory and anticancer agent. Plant Biotechnol, 2017, 255, 270.
[13]
Jucá, M.M.; Cysne Filho, F.M.S.; de Almeida, J.C.; Mesquita, D.D.S.; Barriga, J.R.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; Vasconcelos, S.M.M. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res., 2020, 34(5), 692-705.
[PMID: 30445839]
[14]
Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528.
[PMID: 30746536]
[15]
Mutabaruka, R.; Hairiah, K.; Cadisch, G. Microbial degradation of hydrolysable and condensed tannin polyphenol–protein complexes in soils from different land-use histories. Soil Biol. Biochem., 2007, 39(7), 1479-1492.
[16]
Cunningham, D.F.; O’Connor, B. Proline specific peptidases. Biochim Biophys Acta, 1997, 1343(2), 160-186.
[17]
Chung, S-K.; Nam, J-A.; Jeon, S-Y.; Kim, S-I.; Lee, H-J.; Chung, T.H.; Song, K.S. A prolyl endopeptidase-inhibiting antioxidant from Phyllanthus ussurensis. Arch. Pharm. Res., 2003, 26(12), 1024-1028.
[PMID: 14723335]
[18]
Fujiwara, H.; Tabuchi, M.; Yamaguchi, T.; Iwasaki, K.; Furukawa, K.; Sekiguchi, K.; Ikarashi, Y.; Kudo, Y.; Higuchi, M.; Saido, T.C.; Maeda, S.; Takashima, A.; Hara, M.; Yaegashi, N.; Kase, Y.; Arai, H. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo. J. Neurochem., 2009, 109(6), 1648-1657.
[PMID: 19457098]
[19]
Freyssin, A.; Page, G.; Fauconneau, B.; Rioux Bilan, A. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regen. Res., 2018, 13(6), 955-961.
[PMID: 29926816]
[20]
Gaudreault, R.; Mousseau, N. Mitigating Alzheimer’s disease with natural polyphenols: A review. Curr. Alzheimer Res., 2019, 16(6), 529-543.
[PMID: 30873922]
[21]
Gaudreault, R.; Hervé, V.; van de Ven, T.G.M.; Mousseau, N.; Ramassamy, C. Polyphenol-peptide interactions in mitigation of alzheimer’s disease: Role of biosurface-induced aggregation. J. Alzheimers Dis., 2021, 81(1), 33-55.
[PMID: 33749653]
[22]
Li, Q.; Tu, Y.; Zhu, C.; Luo, W.; Huang, W.; Liu, W. Cholinesterase, β-amyloid aggregation inhibitory and antioxidant capacities of Chinese medicinal plants. Ind. Crops Prod., 2017, 108, 512-519.
[23]
Chen, S-Y.; Gao, Y.; Sun, J-Y.; Meng, X-L.; Yang, D.; Fan, L-H.; Xiang, L.; Wang, P. Traditional Chinese medicine: Role in reducing β-amyloid, apoptosis, autophagy, neuroinflammation, oxidative stress, and mitochondrial dysfunction of Alzheimer’s disease. Front. Pharmacol., 2020, 11, 497.
[PMID: 32390843]
[24]
Wang, Z-Y.; Liu, J.; Zhu, Z.; Su, C-F.; Sreenivasmurthy, S.G.; Iyaswamy, A.; Lu, J.H.; Chen, G.; Song, J.X.; Li, M. Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Biomed. Pharmacother., 2021, 133, 110968.
[PMID: 33189067]
[25]
Wu, T-Y.; Chen, C-P.; Jinn, T-R. Traditional Chinese medicines and Alzheimer’s disease. Taiwan. J. Obstet. Gynecol., 2011, 50(2), 131-135.
[PMID: 21791295]
[26]
Gea-González, A.; Hernández-García, S.; Henarejos-Escudero, P.; Martínez-Rodríguez, P.; García-Carmona, F.; Gandía-Herrero, F. Polyphenols from traditional Chinese medicine and Mediterranean diet are effective against Aβ toxicity in vitro and in vivo in Caenorhabditis elegans. Food Funct., 2022, 13(3), 1206-1217.
[PMID: 35018947]
[27]
Fernández, M.; Gobartt, A.L.; Balañá, M. Behavioural symptoms in patients with Alzheimer’s disease and their association with cognitive impairment. BMC Neurol., 2010, 10(1), 87.
[PMID: 20920205]
[28]
Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(10), a006296.
[PMID: 23028126]
[29]
Gómez-Isla, T.; Frosch, M.P. Lesions without symptoms: Understanding resilience to Alzheimer disease neuropathological changes. Nat. Rev. Neurol., 2022, 18(6), 323-332.
[PMID: 35332316]
[30]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[PMID: 9343467]
[31]
Langella, S.; Barksdale, N.G.; Vasquez, D.; Aguillon, D.; Chen, Y.; Su, Y.; Acosta-Baena, N.; Acosta-Uribe, J.; Baena, A.Y.; Garcia-Ospina, G.; Giraldo-Chica, M.; Tirado, V.; Muñoz, C.; Ríos-Romenets, S.; Guzman-Martínez, C.; Oliveira, G.; Yang, H.S.; Vila-Castelar, C.; Pruzin, J.J.; Ghisays, V.; Arboleda-Velasquez, J.F.; Kosik, K.S.; Reiman, E.M.; Lopera, F.; Quiroz, Y.T. Effect of apolipoprotein genotype and educational attainment on cognitive function in autosomal dominant Alzheimer’s disease. Nat. Commun., 2023, 14(1), 5120.
[PMID: 37612284]
[32]
Crean, S.; Ward, A.; Mercaldi, C.J.; Collins, J.M.; Cook, M.N.; Baker, N.L.; Arrighi, H.M. Apolipoprotein E ε4 prevalence in Alzheimer’s disease patients varies across global populations: A systematic literature review and meta-analysis. Dement. Geriatr. Cogn. Disord., 2011, 31(1), 20-30.
[PMID: 21124030]
[33]
Liu, C-C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[PMID: 23296339]
[34]
Maniv, I.; Sarji, M.; Bdarneh, A.; Feldman, A.; Ankawa, R.; Koren, E.; Magid-Gold, I.; Reis, N.; Soteriou, D.; Salomon-Zimri, S.; Lavy, T.; Kesselman, E.; Koifman, N.; Kurz, T.; Kleifeld, O.; Michaelson, D.; van Leeuwen, F.W.; Verheijen, B.M.; Fuchs, Y.; Glickman, M.H. Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model. Nat. Commun., 2023, 14(1), 5922.
[PMID: 37739965]
[35]
Wang, C.; Najm, R.; Xu, Q.; Jeong, D.E.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.A.; Miller, B.L.; Malloy, M.J.; Huang, Y. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med., 2018, 24(5), 647-657.
[PMID: 29632371]
[36]
Ju, Y-E.S.; McLeland, J.S.; Toedebusch, C.D.; Xiong, C.; Fagan, A.M.; Duntley, S.P.; Morris, J.C.; Holtzman, D.M. Sleep quality and preclinical Alzheimer disease. JAMA Neurol., 2013, 70(5), 587-593.
[PMID: 23479184]
[37]
Steele, M.; Stuchbury, G.; Münch, G. The molecular basis of the prevention of Alzheimer’s disease through healthy nutrition. Exp. Gerontol., 2007, 42(1-2), 28-36.
[PMID: 16839733]
[38]
Physical activity and Alzheimer disease: A protective association. Mayo Clinic Proceedings; Santos-Lozano, A.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Quindós-Rubial, M.; Fiuza-Luces, C.; Cristi-Montero, C., Eds.; Elsevier, 2016.
[39]
Buchanan, L.E.; Carr, J.K.; Fluitt, A.M.; Hoganson, A.J.; Moran, S.D.; de Pablo, J.J.; Skinner, J.L.; Zanni, M.T. Structural motif of polyglutamine amyloid fibrils discerned with mixed-isotope infrared spectroscopy. Proc. Natl. Acad. Sci., 2014, 111(16), 5796-5801.
[PMID: 24550484]
[40]
Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis., 2023, 14(3), 176.
[PMID: 36859484]
[41]
Roberts, G.W.; Lofthouse, R.; Allsop, D.; Landon, M.; Kidd, M.; Prusiner, S.B.; Crow, T.J. CNS amyloid proteins in neurodegenerative diseases. Neurology, 1988, 38(10), 1534-1540.
[PMID: 2901696]
[42]
Sun, X.; Chen, W-D.; Wang, Y-D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol., 2015, 6, 221.
[PMID: 26483691]
[43]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[PMID: 27025652]
[44]
Brothers, H.M.; Gosztyla, M.L.; Robinson, S.R. The physiological roles of amyloid-β peptide hint at new ways to treat alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 118.
[PMID: 29922148]
[45]
Tamagno, E.; Guglielmotto, M.; Monteleone, D.; Tabaton, M. Amyloid-β production: Major link between oxidative stress and BACE1. Neurotox. Res., 2012, 22(3), 208-219.
[PMID: 22002808]
[46]
Jarrett, J.T.; Lansbury, P.T., Jr Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 1993, 73(6), 1055-1058.
[PMID: 8513491]
[47]
Sengupta, U.; Nilson, A.N.; Kayed, R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine, 2016, 6, 42-49.
[PMID: 27211547]
[48]
Kumar, D.K.; Choi, S.H.; Washicosky, K.J.; Eimer, W.A.; Tucker, S.; Ghofrani, J.; Lefkowitz, A.; McColl, G.; Goldstein, L.E.; Tanzi, R.E.; Moir, R.D. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med., 2016, 8(340), 340ra72.
[PMID: 27225182]
[49]
Morley, J.E.; Farr, S.; Nguyen, A.; Xu, F. what is the physiological function of amyloid-Beta protein?; Springer, 2019.
[50]
Koppensteiner, P.; Trinchese, F.; Fà, M.; Puzzo, D.; Gulisano, W.; Yan, S.; Poussin, A.; Liu, S.; Orozco, I.; Dale, E.; Teich, A.F.; Palmeri, A.; Ninan, I.; Boehm, S.; Arancio, O. Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: An early index of Alzheimer’s disease. Sci. Rep., 2016, 6, 32553.
[PMID: 27581852]
[51]
Xiang, Y.; Bu, X.L.; Liu, Y.H.; Zhu, C.; Shen, L.L.; Jiao, S.S.; Zhu, X.Y.; Giunta, B.; Tan, J.; Song, W.H.; Zhou, H.D.; Zhou, X.F.; Wang, Y.J. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol., 2015, 130(4), 487-499.
[PMID: 26363791]
[52]
Ovod, V.; Ramsey, K.N.; Mawuenyega, K.G.; Bollinger, J.G.; Hicks, T.; Schneider, T.; Sullivan, M.; Paumier, K.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.; Fagan, A.M.; Patterson, B.W.; Bateman, R.J. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement., 2017, 13(8), 841-849.
[PMID: 28734653]
[53]
Cirrito, J.R.; May, P.C.; O’Dell, M.A.; Taylor, J.W.; Parsadanian, M.; Cramer, J.W.; Audia, J.E.; Nissen, J.S.; Bales, K.R.; Paul, S.M.; DeMattos, R.B.; Holtzman, D.M. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J. Neurosci., 2003, 23(26), 8844-8853.
[PMID: 14523085]
[54]
Patterson, B.; Elbert, D.; Mawuenyega, K. Age and amyloid effects on human CNS amyloid-beta kinetics HHS public access author manuscript. Ann. Neurol., 2015, 78(3), 439-453.
[PMID: 26040676]
[55]
Hellstrand, E.; Boland, B.; Walsh, D.M.; Linse, S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem. Neurosci., 2010, 1(1), 13-18.
[PMID: 22778803]
[56]
Iljina, M.; Garcia, G.A.; Dear, A.J.; Flint, J.; Narayan, P.; Michaels, T.C.; Dobson, C.M.; Frenkel, D.; Knowles, T.P.; Klenerman, D. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Sci. Rep., 2016, 6, 28658.
[PMID: 27346247]
[57]
Novo, M.; Freire, S.; Al-Soufi, W. Critical aggregation concentration for the formation of early Amyloid-β (1-42) oligomers. Sci. Rep., 2018, 8(1), 1783.
[PMID: 29379133]
[58]
Glabe, C.G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging, 2006, 27(4), 570-575.
[PMID: 16481071]
[59]
Zhang, X.; Fu, Z.; Meng, L.; He, M.; Zhang, Z. The early events that initiate β-amyloid aggregation in alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 359.
[PMID: 30542277]
[60]
Curk, S.; Krausser, J.; Meisl, G.; Frenkel, D.; Linse, S.; Michaels, T.C. Self-replication of Abeta42 aggregates occurs on small and isolated fibril sites. bioRxiv, 2023, 2023.07.
[61]
Scheidt, T.; Łapińska, U.; Kumita, J.R.; Whiten, D.R.; Klenerman, D.; Wilson, M.R.; Cohen, S.I.A.; Linse, S.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J.; Arosio, P. Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci. Adv., 2019, 5(4), eaau3112.
[PMID: 31001578]
[62]
Aprile, F.A.; Sormanni, P.; Perni, M.; Arosio, P.; Linse, S.; Knowles, T.P.J.; Dobson, C.M.; Vendruscolo, M. Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. Sci. Adv., 2017, 3(6), e1700488.
[PMID: 28691099]
[63]
Habchi, J.; Arosio, P.; Perni, M.; Costa, A.R.; Yagi-Utsumi, M.; Joshi, P.; Chia, S.; Cohen, S.I.; Müller, M.B.; Linse, S.; Nollen, E.A.; Dobson, C.M.; Knowles, T.P.; Vendruscolo, M. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer’s disease. Sci. Adv., 2016, 2(2), e1501244.
[PMID: 26933687]
[64]
Krafft, G.A.; Jerecic, J.; Siemers, E.; Cline, E.N. ACU193: An immunotherapeutic poised to test the amyloid β oligomer hypothesis of Alzheimer’s disease. Front. Neurosci., 2022, 16, 848215.
[PMID: 35557606]
[65]
Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol., 2007, 8(2), 101-112.
[PMID: 17245412]
[66]
Yang, T.; Li, S.; Xu, H.; Walsh, D.M.; Selkoe, D.J. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J. Neurosci., 2017, 37(1), 152-163.
[PMID: 28053038]
[67]
Tomic, J.L.; Pensalfini, A.; Head, E.; Glabe, C.G. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol. Dis., 2009, 35(3), 352-358.
[PMID: 19523517]
[68]
Gandy, S.; Simon, A.J.; Steele, J.W.; Lublin, A.L.; Lah, J.J.; Walker, L.C.; Levey, A.I.; Krafft, G.A.; Levy, E.; Checler, F.; Glabe, C.; Bilker, W.B.; Abel, T.; Schmeidler, J.; Ehrlich, M.E. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann. Neurol., 2010, 68(2), 220-230.
[PMID: 20641005]
[69]
Paranjape, G.S.; Gouwens, L.K.; Osborn, D.C.; Nichols, M.R. Isolated amyloid-β(1-42) protofibrils, but not isolated fibrils, are robust stimulators of microglia. ACS Chem. Neurosci., 2012, 3(4), 302-311.
[PMID: 22860196]
[70]
Zhao, L.N.; Long, H.W.; Mu, Y.; Chew, L.Y. The toxicity of amyloid β oligomers. Int. J. Mol. Sci., 2012, 13(6), 7303-7327.
[PMID: 22837695]
[71]
Bi, T.M.; Daggett, V. Focus: Medical technology: The role of α-sheet in amyloid oligomer aggregation and toxicity. Yale J. Biol. Med., 2018, 91(3), 247-255.
[PMID: 30258312]
[72]
Shea, D.; Hsu, C-C.; Bi, T.M.; Paranjapye, N.; Childers, M.C.; Cochran, J.; Tomberlin, C.P.; Wang, L.; Paris, D.; Zonderman, J.; Varani, G.; Link, C.D.; Mullan, M.; Daggett, V. α-Sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer’s disease. Proc. Natl. Acad. Sci., 2019, 116(18), 8895-8900.
[PMID: 31004062]
[73]
Pauling, L.; Corey, R.B. Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets. Proc. Natl. Acad. Sci, 1951, 37(11), 729-740.
[PMID: 16578412]
[74]
Balupuri, A.; Choi, K-E.; Kang, N.S. Aggregation mechanism of Alzheimer’s amyloid β-peptide mediated by α-strand/α-sheet structure. Int. J. Mol. Sci., 2020, 21(3), 1094.
[PMID: 32046006]
[75]
Du, X.; Wang, X.; Geng, M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener., 2018, 7(1), 2.
[PMID: 29423193]
[76]
Michalska, P.; León, R. When it comes to an end: Oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants, 2020, 9(8), 740.
[PMID: 32806679]
[77]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[PMID: 29080524]
[78]
Somin, S.; Kulasiri, D.; Samarasinghe, S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: A review of related concepts and strategies for the development of computational modelling. Transl. Neurodegener., 2023, 12(1), 11.
[PMID: 36907887]
[79]
Lesné, S.E.; Sherman, M.A.; Grant, M.; Kuskowski, M.; Schneider, J.A.; Bennett, D.A.; Ashe, K.H. Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain, 2013, 136(Pt 5), 1383-1398.
[PMID: 23576130]
[80]
Esparza, T.J.; Zhao, H.; Cirrito, J.R.; Cairns, N.J.; Bateman, R.J.; Holtzman, D.M.; Brody, D.L. Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann. Neurol., 2013, 73(1), 104-119.
[PMID: 23225543]
[81]
Liu, F.; Sun, J.; Wang, X.; Jin, S.; Sun, F.; Wang, T.; Yuan, B.; Qiu, W.; Ma, C. Focal-type, but not diffuse-type, amyloid beta plaques are correlated with alzheimer’s neuropathology, cognitive dysfunction, and neuroinflammation in the human hippocampus. Neurosci. Bull., 2022, 38(10), 1125-1138.
[PMID: 36028642]
[82]
Mandelkow, E-M.; Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med., 2012, 2(7), a006247.
[PMID: 22762014]
[83]
Mukrasch, M.D.; Bibow, S.; Korukottu, J.; Jeganathan, S.; Biernat, J.; Griesinger, C.; Mandelkow, E.; Zweckstetter, M. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol., 2009, 7(2), e34.
[PMID: 19226187]
[84]
Avila, J.; Jiménez, J.S.; Sayas, C.L.; Bolós, M.; Zabala, J.C.; Rivas, G.; Hernández, F. Tau Structures. Front. Aging Neurosci., 2016, 8, 262.
[PMID: 27877124]
[85]
Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 5-21.
[PMID: 26631930]
[86]
Kovacs, G.G. Tauopathies. Handb. Clin. Neurol., 2017, 145, 355-368.
[PMID: 28987182]
[87]
Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol., 2021, 69, 131-138.
[PMID: 33892381]
[88]
Alquezar, C.; Arya, S.; Kao, A.W. Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Front. Neurol., 2021, 11, 595532.
[PMID: 33488497]
[89]
Ganguly, P.; Do, T.D.; Larini, L.; LaPointe, N.E.; Sercel, A.J.; Shade, M.F.; Feinstein, S.C.; Bowers, M.T.; Shea, J.E. Tau assembly: The dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J. Phys. Chem. B, 2015, 119(13), 4582-4593.
[PMID: 25775228]
[90]
Derreumaux, P.; Man, V.H.; Wang, J.; Nguyen, P.H. Tau R3–R4 domain dimer of the wild type and phosphorylated ser356 sequences. I. In solution by atomistic simulations. J. Phys. Chem. B, 2020, 124(15), 2975-2983.
[PMID: 32216358]
[91]
Morris, M.; Maeda, S.; Vossel, K.; Mucke, L. The many faces of tau. Neuron, 2011, 70(3), 410-426.
[PMID: 21555069]
[92]
What Happens to the Brain in Alzheimer’s Disease? 2017; National Insitute on Aging (NIA), 2017.
[93]
Hu, Y.; Hu, X.; Lu, Y.; Shi, S.; Yang, D.; Yao, T. New strategy for reducing tau aggregation cytologically by a hairpinlike molecular inhibitor, tannic acid encapsulated in liposome. ACS Chem. Neurosci., 2020, 11(21), 3623-3634.
[PMID: 33048528]
[94]
Muralidar, S.; Ambi, S.V.; Sekaran, S.; Thirumalai, D.; Palaniappan, B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol., 2020, 163, 1599-1617.
[PMID: 32784025]
[95]
Busche, M.A.; Hyman, B.T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci., 2020, 23(10), 1183-1193.
[PMID: 32778792]
[96]
Bright, J.; Hussain, S.; Dang, V.; Wright, S.; Cooper, B.; Byun, T.; Ramos, C.; Singh, A.; Parry, G.; Stagliano, N.; Griswold-Prenner, I. Human secreted tau increases amyloid-beta production. Neurobiol. Aging, 2015, 36(2), 693-709.
[PMID: 25442111]
[97]
Westermark, P.; Andersson, A.; Westermark, G.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev., 2011, 91(3), 795-826.
[PMID: 21742788]
[98]
Kiriyama, Y.; Nochi, H. Role and cytotoxicity of amylin and protection of pancreatic islet β-cells from amylin cytotoxicity. Cells, 2018, 7(8), 95.
[PMID: 30082607]
[99]
Marzban, L.; Trigo-Gonzalez, G.; Verchere, C.B. Processing of pro-islet amyloid polypeptide in the constitutive and regulated secretory pathways of β cells. Mol. Endocrinol., 2005, 19(8), 2154-2163.
[PMID: 15802374]
[100]
Mollet, A.; Gilg, S.; Riediger, T.; Lutz, T.A. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol. Behav., 2004, 81(1), 149-155.
[PMID: 15059694]
[101]
Sexton, P.M.; Paxinos, G.; Kenney, M.A.; Wookey, P.J.; Beaumont, K. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience, 1994, 62(2), 553-567.
[PMID: 7830897]
[102]
Clementi, G.; Caruso, A.; Cutuli, V.M.; de Bernardis, E.; Prato, A.; Amico-Roxas, M. Amylin given by central or peripheral routes decreases gastric emptying and intestinal transit in the rat. Experientia, 1996, 52(7), 677-679.
[PMID: 8698109]
[103]
Chapman, I.; Parker, B.; Doran, S.; Feinle-Bisset, C.; Wishart, J.; Strobel, S.; Wang, Y.; Burns, C.; Lush, C.; Weyer, C.; Horowitz, M. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia, 2005, 48(5), 838-848.
[PMID: 15843914]
[104]
Hollander, P.; Maggs, D.G.; Ruggles, J.A.; Fineman, M.; Shen, L.; Kolterman, O.G.; Weyer, C. Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes. Res., 2004, 12(4), 661-668.
[PMID: 15090634]
[105]
Scherbaum, W.A. The role of amylin in the physiology of glycemic control. Exp. Clin. Endocrinol. Diabetes, 1998, 106(2), 97-102.
[PMID: 9628238]
[106]
Nguyen, P.T.; Andraka, N.; De Carufel, C.A.; Bourgault, S. Mechanistic contributions of biological cofactors in islet amyloid polypeptide amyloidogenesis. J. Diabetes Res., 2015, 2015, 515307.
[PMID: 26576436]
[107]
Nguyen, P.T.; Zottig, X.; Sebastiao, M.; Arnold, A.A.; Marcotte, I.; Bourgault, S. Identification of transmissible proteotoxic oligomer-like fibrils that expand conformational diversity of amyloid assemblies. Commun. Biol., 2021, 4(1), 939.
[PMID: 34354242]
[108]
Bonner-Weir, S.; O’Brien, T.D. Islets in type 2 diabetes: In honor of Dr. Robert C. Turner. Diabetes, 2008, 57(11), 2899-2904.
[PMID: 18971437]
[109]
Tu, L.H.; Raleigh, D.P. Role of aromatic interactions in amyloid formation by islet amyloid polypeptide. Biochemistry, 2013, 52(2), 333-342.
[PMID: 23256729]
[110]
Godin, E.; Nguyen, P.T.; Zottig, X.; Bourgault, S. Identification of a hinge residue controlling islet amyloid polypeptide self-assembly and cytotoxicity. J. Biol. Chem., 2019, 294(21), 8452-8463.
[PMID: 30975901]
[111]
Nguyen, P.T.; Zottig, X.; Sebastiao, M.; Bourgault, S. Role of site-specific asparagine deamidation in islet amyloid polypeptide amyloidogenesis: Key contributions of residues 14 and 21. Biochemistry, 2017, 56(29), 3808-3817.
[PMID: 28665109]
[112]
Doran, T.M.; Kamens, A.J.; Byrnes, N.K.; Nilsson, B.L. Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20-29) amyloid self-assembly. Proteins, 2012, 80(4), 1053-1065.
[PMID: 22253015]
[113]
Westermark, P.; Engström, U.; Johnson, K.H.; Westermark, G.T.; Betsholtz, C. Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl. Acad. Sci., 1990, 87(13), 5036-5040.
[PMID: 2195544]
[114]
Fortier, M.; Côté-Cyr, M.; Nguyen, V.; Babych, M.; Nguyen, P.T.; Gaudreault, R.; Bourgault, S. Contribution of the 12-17 hydrophobic region of islet amyloid polypeptide in self-assembly and cytotoxicity. Front. Mol. Biosci., 2022, 9, 1017336.
[PMID: 36262476]
[115]
Royall, D.R.; Palmer, R.F. Blood-based protein mediators of senility with replications across biofluids and cohorts. Brain Commun., 2019, 2(1), fcz036.
[PMID: 32954311]
[116]
Ge, X.; Yang, Y.; Sun, Y.; Cao, W.; Ding, F. Islet amyloid polypeptide promotes amyloid-beta aggregation by binding-induced helix-unfolding of the amyloidogenic core. ACS Chem. Neurosci., 2018, 9(5), 967-975.
[PMID: 29378116]
[117]
Srodulski, S.; Sharma, S.; Bachstetter, A.B.; Brelsfoard, J.M.; Pascual, C.; Xie, X.S.; Saatman, K.E.; Van Eldik, L.J.; Despa, F. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol. Neurodegener., 2014, 9(1), 30.
[PMID: 25149184]
[118]
Phan, H.T.T.; Samarat, K.; Takamura, Y.; Azo-Oussou, A.F.; Nakazono, Y.; Vestergaard, M.C. Polyphenols modulate Alzheimer’s amyloid beta aggregation in a structure-dependent manner. Nutrients, 2019, 11(4), 756.
[PMID: 30935135]
[119]
Gaudreault, R.; Safari, S.; van de Ven, T.; Junghanns, M. Control of deposition risks in high-silica boiler waters: A novel approach using purified tannin chemistry. AWT Annual Convention and Exposition, San Diego, CA2016.
[120]
Torres-León, C.; Ventura-Sobrevilla, J.; Serna-Cock, L.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.; Aguilar, C.N. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. J. Funct. Foods, 2017, 37, 176-189.
[121]
Cho, J-Y.; Sohn, M-J.; Lee, J.; Kim, W-G. Isolation and identification of pentagalloylglucose with broad-spectrum antibacterial activity from Rhus trichocarpa Miquel. Food Chem., 2010, 123(2), 501-506.
[122]
Al-Sayed, E.; Singab, A-N.; Ayoub, N.; Martiskainen, O.; Sinkkonen, J.; Pihlaja, K. HPLC–PDA–ESI–MS/MS profiling and chemopreventive potential of Eucalyptus gomphocephala DC. Food Chem., 2012, 133(3), 1017-1024.
[123]
Wen, C.; Dechsupa, N.; Yu, Z.; Zhang, X.; Liang, S.; Lei, X.; Xu, T.; Gao, X.; Hu, Q.; Innuan, P.; Kantapan, J.; Lü, M. Pentagalloyl glucose: A review of anticancer properties, molecular targets, mechanisms of action, pharmacokinetics, and safety profile. Molecules, 2023, 28(12), 4856.
[PMID: 37375411]
[124]
Rosas, E.C.; Correa, L.B.; Pádua, Tde.A.; Costa, T.E.M.M.; Mazzei, J.L.; Heringer, A.P.; Bizarro, C.A.; Kaplan, M.A.; Figueiredo, M.R.; Henriques, M.G. Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J. Ethnopharmacol., 2015, 175, 490-498.
[PMID: 26453933]
[125]
Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Chomnawang, M.T. The inhibitory potential of Thai mango seed kernel extract against methicillin-resistant Staphylococcus aureus. Molecules, 2011, 16(8), 6255-6270.
[PMID: 21788933]
[126]
Hu, H.; Lee, H-J.; Jiang, C.; Zhang, J.; Wang, L.; Zhao, Y.; Xiang, Q.; Lee, E.O.; Kim, S.H.; Lü, J. Penta-1,2,3,4,6-O-galloyl-β-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol. Cancer Ther., 2008, 7(9), 2681-2691.
[PMID: 18790750]
[127]
Huh, J-E.; Lee, E-O.; Kim, M-S.; Kang, K-S.; Kim, C-H.; Cha, B-C.; Surh, Y.J.; Kim, S.H. Penta-O-galloyl-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis, 2005, 26(8), 1436-1445.
[PMID: 15845650]
[128]
Bi, J.H.; Jiang, Y.H.; Ye, S.J.; Wu, M.R.; Yi, Y.; Wang, H.X.; Wang, L.M. Investigation of the inhibition effect of 1,2,3,4,6-pentagalloyl-β-D-glucose on gastric cancer cells based on a network pharmacology approach and experimental validation. Front. Oncol., 2022, 12, 934958.
[PMID: 35992839]
[129]
Lee, S-J.; Lee, H.M.; Ji, S-T.; Lee, S-R.; Mar, W.; Gho, Y.S. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose blocks endothelial cell growth and tube formation through inhibition of VEGF binding to VEGF receptor. Cancer Lett., 2004, 208(1), 89-94.
[PMID: 15105050]
[130]
Li, Y.; Kim, J.; Li, J.; Liu, F.; Liu, X.; Himmeldirk, K.; Ren, Y.; Wagner, T.E.; Chen, X. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem. Biophys. Res. Commun., 2005, 336(2), 430-437.
[PMID: 16137651]
[131]
de Almeida, N.E.C.; Do, T.D.; LaPointe, N.E.; Tro, M.; Feinstein, S.C.; Shea, J-E.; Bowers, M.T. 1, 2, 3, 4, 6-penta-O-galloyl-β-d-glucopyranose binds to the N-terminal metal binding region to inhibit amyloid β-protein oligomer and fibril formation. Int. J. Mass Spectrom., 2017, 420, 24-34.
[PMID: 29056865]
[132]
Hu, Y.; Yang, D.; Tu, Y.; Chai, K.; Chu, L.; Shi, S.; Yao, T. Dynamic-inspired perspective on the molecular inhibitor of Tau aggregation by glucose gallates based on human neurons. ACS Chem. Neurosci., 2021, 12(21), 4162-4174.
[PMID: 34649422]
[133]
Bruno, E.; Pereira, C.; Roman, K.P.; Takiguchi, M.; Kao, P-Y.; Nogaj, L.A.; Moffet, D.A. IAPP aggregation and cellular toxicity are inhibited by 1,2,3,4,6-penta-O-galloyl-β-D-glucose. Amyloid, 2013, 20(1), 34-38.
[PMID: 23339420]
[134]
Reinke, A.A.; Gestwicki, J.E. Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: Influence of linker length and flexibility. Chem. Biol. Drug Des., 2007, 70(3), 206-215.
[PMID: 17718715]
[135]
Wiebe, H.; Nguyen, P.T.; Bourgault, S.; van de Ven, T.G.M.; Gaudreault, R. Adsorption of Tannic Acid onto Gold Surfaces. Langmuir, 2023, 39(16), 5851-5860.
[PMID: 37036269]
[136]
Wang, S-C.; Chen, Y.; Wang, Y-C.; Wang, W-J.; Yang, C-S.; Tsai, C-L.; Hou, M.H.; Chen, H.F.; Shen, Y.C.; Hung, M.C. Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease. Am. J. Cancer Res., 2020, 10(12), 4538-4546.
[PMID: 33415017]
[137]
Haddad, M.; Gaudreault, R.; Sasseville, G.; Nguyen, P.T.; Wiebe, H.; Van De Ven, T.; Bourgault, S.; Mousseau, N.; Ramassamy, C. Molecular interactions of tannic acid with proteins associated with SARS-CoV-2 infectivity. Int. J. Mol. Sci., 2022, 23(5), 2643.
[PMID: 35269785]
[138]
Rahim, M.A.; Ejima, H.; Cho, K.L.; Kempe, K.; Müllner, M.; Best, J.P. Coordination-driven multistep assembly of metal–polyphenol films and capsules. Chem. Mater., 2014, 26(4), 1645-1653.
[139]
Mori, T.; Rezai-Zadeh, K.; Koyama, N.; Arendash, G.W.; Yamaguchi, H.; Kakuda, N.; Horikoshi-Sakuraba, Y.; Tan, J.; Town, T. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J. Biol. Chem., 2012, 287(9), 6912-6927.
[PMID: 22219198]
[140]
Ono, K; Hasegawa, K; Naiki, H; Yamada, M Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer's β-amyloid fibrils in vitro. Biochim Biophys Acta Mol Basis Dis BBA-MOL BASIS DIS, 2004, 1690(3), 193-202.
[141]
Yao, J.; Gao, X.; Sun, W.; Yao, T.; Shi, S.; Ji, L. Molecular hairpin: A possible model for inhibition of tau aggregation by tannic acid. Biochemistry, 2013, 52(11), 1893-1902.
[PMID: 23442089]
[142]
Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother., 2018, 99, 43-50.
[PMID: 29324311]
[143]
Schmidt, O.T.; Lademann, R. Corilagin, ein weiterer kristallisierter Gerbstoff aus Dividivi. X. Mitteilung über natürliche Gerbstoffe. Justus Liebigs Ann. Chem., 1951, 571(3), 232-237.
[144]
Yamada, H.; Nagao, K.; Dokei, K.; Kasai, Y.; Michihata, N. Total synthesis of (-)-corilagin. J. Am. Chem. Soc., 2008, 130(24), 7566-7567.
[PMID: 18505255]
[145]
Wu, N.; Zu, Y.; Fu, Y.; Kong, Y.; Zhao, J.; Li, X.; Li, J.; Wink, M.; Efferth, T. Antioxidant activities and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds obtained from Geranium sibiricum L. J. Agric. Food Chem., 2010, 58(8), 4737-4743.
[PMID: 20205393]
[146]
Reddy, B.U.; Mullick, R.; Kumar, A.; Sharma, G.; Bag, P.; Roy, C.L.; Sudha, G.; Tandon, H.; Dave, P.; Shukla, A.; Srinivasan, P.; Nandhitha, M.; Srinivasan, N.; Das, S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res., 2018, 150, 47-59.
[PMID: 29224736]
[147]
Zhao, L.; Zhang, S.L.; Tao, J.Y.; Pang, R.; Jin, F.; Guo, Y.J.; Dong, J.H.; Ye, P.; Zhao, H.Y.; Zheng, G.H. Preliminary exploration on anti-inflammatory mechanism of Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-D-glucose) in vitro. Int. Immunopharmacol., 2008, 8(7), 1059-1064.
[PMID: 18486919]
[148]
Guo, Y.J.; Zhao, L.; Li, X.F.; Mei, Y.W.; Zhang, S.L.; Tao, J.Y.; Zhou, Y.; Dong, J.H. Effect of Corilagin on anti-inflammation in HSV-1 encephalitis and HSV-1 infected microglias. Eur. J. Pharmacol., 2010, 635(1-3), 79-86.
[PMID: 20338162]
[149]
Youn, K.; Lee, S.; Jeong, W.S.; Ho, C.T.; Jun, M. Protective role of corilagin on Aβ25-35-induced neurotoxicity: Suppression of NF-κB signaling pathway. J. Med. Food, 2016, 19(10), 901-911.
[PMID: 27654707]
[150]
Huang, J.; Lei, Y.; Lei, S.; Gong, X. Cardioprotective effects of corilagin on doxorubicin induced cardiotoxicity via P13K/Akt and NF-κB signaling pathways in a rat model. Toxicol. Mech. Methods, 2022, 32(2), 79-86.
[PMID: 34369273]
[151]
Cheng, J-T.; Lin, T-C.; Hsu, F-L. Antihypertensive effect of corilagin in the rat. Can. J. Physiol. Pharmacol., 1995, 73(10), 1425-1429.
[PMID: 8748933]
[152]
Lin, T-c.; Cheng, J-T Antihypertensive activity of corilagin and chebulinic acid, tannins from lumnitzera, racemosa. J. Nat. Prod., 1993, 56(4), 629-632.
[153]
Jia, L.; Jin, H.; Zhou, J.; Chen, L.; Lu, Y.; Ming, Y.; Yu, Y. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement. Altern. Med., 2013, 13, 33.
[PMID: 23410205]
[154]
Gupta, A.; Singh, A.K.; Kumar, R.; Ganguly, R.; Rana, H.K.; Pandey, P.K.; Sethi, G.; Bishayee, A.; Pandey, A.K. Corilagin in cancer: A critical evaluation of anticancer activities and molecular mechanisms. Molecules, 2019, 24(18), 3399.
[PMID: 31546767]
[155]
Yeo, S.G.; Song, J.H.; Hong, E.H.; Lee, B.R.; Kwon, Y.S.; Chang, S.Y.; Kim, S.H.; Lee, S.W.; Park, J.H.; Ko, H.J. Antiviral effects of Phyllanthus urinaria containing corilagin against human enterovirus 71 and Coxsackievirus A16 in vitro. Arch. Pharm. Res., 2015, 38(2), 193-202.
[PMID: 24752860]
[156]
Tan, S.; Su, Y.; Huang, L.; Deng, S.; Yan, G.; Yang, X.; Chen, R.; Xian, Y.; Liang, J.; Liu, Q.; Cheng, J. Corilagin attenuates osteoclastic osteolysis by enhancing HO-1 and inhibiting ROS. J. Biochem. Mol. Toxicol., 2022, 36(7), e23049.
[PMID: 35307913]
[157]
Binette, V.; Côté, S.; Haddad, M.; Nguyen, P.T.; Bélanger, S.; Bourgault, S.; Ramassamy, C.; Gaudreault, R.; Mousseau, N. Corilagin and 1,3,6-Tri-O-galloy-β-D-glucose: potential inhibitors of SARS-CoV-2 variants. Phys. Chem. Chem. Phys., 2021, 23(27), 14873-14888.
[PMID: 34223589]
[158]
Gaudreault, R.; van de Ven, T.G.; Whitehead, M. Mechanisms of flocculation with poly (ethylene oxide) and novel cofactors. Colloids Surf. A Physicochem. Eng. Asp., 2005, 268(1-3), 131-146.
[159]
Lee, S-H.; Jun, M.; Choi, J-Y.; Yang, E-J.; Hur, J-M.; Bae, K.; Seong, Y.H.; Huh, T.L.; Song, K.S. Plant phenolics as prolyl endopeptidase inhibitors. Arch. Pharm. Res., 2007, 30(7), 827-833.
[PMID: 17703733]
[160]
Youn, K.; Jun, M. In vitro BACE1 inhibitory activity of geraniin and corilagin from Geranium thunbergii. Planta Med., 2013, 79(12), 1038-1042.
[PMID: 23877922]
[161]
Lakey-Beitia, J.; Berrocal, R.; Rao, K.S.; Durant, A.A. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol. Neurobiol., 2015, 51(2), 466-479.
[PMID: 24826916]
[162]
Matsuo, Y; Iki, M; Okubo, C; Saito, Y; Tanaka, T. Conformationally flexible ellagitannins: Conformational analysis of davidiin and punicafolin via DFT calculation of 1H NMR coupling constants. ChemRxiv, 2023.
[163]
Gaudreault, R.; van de ven, T.G.; Whitehead, M.A. Molecular modeling of poly(ethylene oxide) model cofactors; 1,3,6-tri-O-galloyl-beta- d-glucose and corilagin. J. Mol. Model., 2002, 8(3), 73-80.
[PMID: 12111394]
[164]
Pauvert, Y.; Gaudreault, R.; Charette, A.B. Improved total synthesis of 1, 3, 6-Trigalloyl-β-d-glucose from glucose. Synthesis, 2023, 55(15), 2325-2332.
[165]
Li, X.; Liu, J.; Chen, B.; Chen, Y.; Dai, W.; Li, Y.; Zhu, M. Covalent bridging of corilagin improves antiferroptosis activity: Comparison with 1, 3, 6-Tri-O-galloyl-β-d-glucopyranose. ACS Med. Chem. Lett., 2020, 11(11), 2232-2237.
[PMID: 33214834]
[166]
Meier, D.T.; Entrup, L.; Templin, A.T.; Hogan, M.F.; Mellati, M.; Zraika, S.; Hull, R.L.; Kahn, S.E. The S20G substitution in hIAPP is more amyloidogenic and cytotoxic than wild-type hIAPP in mouse islets. Diabetologia, 2016, 59(10), 2166-2171.
[PMID: 27393137]