[4]
Konecnˇ y J., H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, "Federated learning: Strategies for improving communication efficiency", arXiv preprint arXiv: 1610.05492, 2016.
[8]
Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, "A survey on federated learning systems: Vision, hype and reality for data privacy and protection", IEEE Trans. Knowl. Data Eng., 2021.
[13]
C. Briggs, Z. Fan, and P. Andras, "A review of privacy preserving federated learning for private iot analytics", arXiv preprint arXiv: 2004.11794, 2020.
[15]
J. Le Ny, A. Touati, and G.J. Pappas, "Real-time privacy-preserving model-based estimation of traffic flows", In 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2014, pp. 92-102
[17]
R.H. Jhaveri, A. Revathi, K. Ramana, R. Raut, and R.K. Dhanaraj, A review on machine learning strategies for real-world engineering applications., vol. 2022. Mobile Information Systems, 2022.
[19]
S.D. Patil, R. Raut, R.H. Jhaveri, T.A. Ahanger, P.V. Dhade, A.B. Kathole, and K.N. Vhatkar, Robust authentication system with privacy preservation of biometrics., vol. 2022. Security and Communication Networks, 2022.
[20]
Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, "Federated learning with non-iid data", arXiv preprint arXiv:1806.00582, 2018.
[21]
R.C. Geyer, T. Klein, and M. Nabi, "Differentially private federated learning: A client level perspective",
[22]
V. Smith, C-K. Chiang, M. Sanjabi, and A.S. Talwalkar, "Federated multi-task learning", In: Advances in neural information processing systems, vol. 30. 2017.
[26]
A. Moradipari, N. Tucker, T. Zhang, G. Cezar, and M. Alizadeh, "Mobility-aware smart charging of electric bus fleets", In: 2020 IEEE Power & Energy Society General Meeting, (PESGM). ., 2020, pp. 1-5.
[31]
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-efficient learning of deep networks from decentralized data", In: Artificial intelligence and statistics.. PMLR, 2017, pp. 1273-1282.
[33]
S. Yang, B. Ren, X. Zhou, and L. Liu, "Parallel distributed logistic regression for vertical federated learning without a third-party coordinator", arXiv preprint arXiv:1911.09824, 2019.
[36]
B.B. Gupta, A. Gaurav, E.C. Marín, and W. Alhalabi, "Novel graph-based machine learning technique to secure smart vehicles in intelligent transportation systems", IEEE Trans. Intell. Transp. Syst., 2022.
[38]
Z. Bartlett, L. Han, T.T. Nguyen, and P. Johnson, “Prediction of road traffic flow based on deep recurrent neural networks,” in 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/ IOP/SCI)., IEEE, 2019, pp. 102-109.
[39]
A. Koesdwiady, R. Soua, and F. Karray, "Improving traffic flow prediction with weather information in connected cars: A deep learning approach", IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9508-9517, 2016.
[41]
X. Yuan, J. Chen, J. Yang, N. Zhang, T. Yang, T. Han, and A. Taherkordi, "Fedstn: Graph representation driven federated learning for edge computing enabled urban traffic flow prediction", IEEE Trans. Intell. Transp. Syst., 2022.
[44]
J. Zhao, X. Chang, Y. Feng, C.H. Liu, and N. Liu, "Participant selection for federated learning with heterogeneous data in intelligent transport system", IEEE Transactions on Intelligent Transportation Systems, 2020.
[45]
L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. Nguyen, and C. S. Hong, "Federated learning for edge networks: Resource optimization and incentive mechanism", IEEE Commun. Mag., vol. 58, no. 10, pp. 88-93, 2020.
[46]
J. Van Lint, and C. Van Hinsbergen, "Short-term traffic and travel time prediction models", Artif. Intell. Appl. Crit. Transp. Iss., vol. 22, no. 1, pp. 22-41, 2012.
[48]
B.M. Williams, and L.A. Hoel, "Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results", J. Transp. Eng., vol. 129, no. 6, pp. 664-672, 2003.
[49]
S. R. Chandra, and H. Al-Deek, "Predictions of freeway traffic speeds and volumes using vector autoregressive models", J. Intell. Transp. Syst., vol. 13, no. 2, pp. 53-72, 2009.
[59]
J. Pei, K. Zhong, M.A. Jan, and J. Li, "Personalized federated learning framework for network traffic anomaly detection", Comput. Net., vol. 209, p. 108906, 2022.
[60]
Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, "Privacy-preserving traffic flow prediction: A federated learning approach", IEEE Internet Things J., vol. 7, no. 8, pp. 7751-7763, 2020.
[72]
Y.M. Saputra, D.T. Hoang, D.N. Nguyen, E. Dutkiewicz, M.D. Mueck, and S. Srikanteswara, "Energy demand prediction with federated learning for electric vehicle networks", In: 2019 IEEE global communications conference., (GLOBECOM).., 2019, pp. 1-6.
[75]
N. Aussel, S. Chabridon, and Y. Petetin, "Combining federated and active learning for communicationefficient distributed failure prediction in aeronautics", arXiv preprint arXiv:2001.07504.
[81]
T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and J. Passerat-Palmbach, "A generic framework for privacy preserving deep learning", arXiv preprint arXiv:1811.04017, 2018.
[82]
L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, "Exploiting unintended feature leakage in collaborative learning", In: 2019 IEEE symposium on security and privacy., IEEE: SP, 2019, pp. 691-706.
[89]
N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, "Semi-supervised knowledge transfer for deep learning from private training data", arXiv preprint arXiv:1610.05755, 2016.
[92]
K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, and C. Kiddon, "Towards federated learning at scale: System design", Proc. Mach. Learn. Sys., vol. 1, pp. 374-388, 2019.
[100]
Z. Xu, Z. Yang, J. Xiong, J. Yang, and X. Chen, "Elfish: Resource-aware federated learning on heterogeneous edge devices", Ratio, vol. 2, no. r1, p. r2, 2019.