Association between Peripheral Arterial Lactate Levels and Malignant Brain Edema Following Endovascular Treatment for Ischemic Stroke

Page: [535 - 543] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aims: To investigate the factors of postoperative malignant brain edema (MBE) in patients with acute ischemic stroke (AIS) treated with endovascular treatment (EVT).

Background: MBE is a severe complication following EVT for AIS, and it is essential to identify risk factors early. Peripheral arterial lactate (PAL) levels may serve as a potential predictive marker for MBE.

Objective: To determine whether immediate postoperative PAL levels and the highest PAL level within 24 hours of EVT are independently associated with MBE development in AIS patients.

Methods: We retrospectively analyzed patients with AIS who underwent EVT from October 2019 to October 2022. Arterial blood was collected every 8 h after EVT to measure PAL, and record the immediate postoperative PAL and the highest PAL level within 24 h. Brain edema was evaluated using brain computed tomography scans within 7 days of EVT.

Results: The study included 227 patients with a median age of 71 years, of whom 59.5% were male and MBE developed in 25.6% of patients (58/227). Multivariate logistic regression analysis showed that the immediate postoperative PAL (odds ratio, 1.809 [95% confidence interval (CI), 1.215-2.693]; p = 0.004) and the highest PAL level within 24 h of EVT (odds ratio, 2.259 [95% CI, 1.407-3.629]; p = 0.001) were independently associated with MBE. The area under the curve for predicting MBE based on the highest PAL level within 24 hours of EVT was 0.780 (95% CI, 0.711-0.849).

Conclusion: Early increase in PAL levels is an independent predictor of MBE after EVT in AIS patients.

[1]
Huang X, Chen C, Wang H, Cai Q, Li Z, Xu J. The ACORNS grading scale: A novel tool for the prediction of malignant brain edema after endovascular thrombectomy. J Neurointerv Surg 2022; (Oct): jnis-2022-019404. 15(e2)
[PMID: 36207112]
[2]
Jiang Q, Yu S, Dong X, et al. Predictors and dynamic nomogram to determine the individual risk of malignant brain edema after endovascular thrombectomy in acute ischemic stroke. J Clin Neurol 2022; 18(3): 298-307.
[http://dx.doi.org/10.3988/jcn.2022.18.3.298] [PMID: 35196752]
[3]
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344-418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[4]
Wu S, Yuan R, Wang Y, et al. Early prediction of malignant brain edema after ischemic stroke. Stroke 2018; 49(12): 2918-27.
[http://dx.doi.org/10.1161/STROKEAHA.118.022001] [PMID: 30571414]
[5]
Miao J, Song X, Sun W, Qiu X, Lan Y, Zhu Z. Predictors of malignant cerebral edema in cerebral artery infarction: A meta-analysis. J Neurol Sci 2020; 409: 116607.
[http://dx.doi.org/10.1016/j.jns.2019.116607] [PMID: 31830611]
[6]
Huang X, Yang Q, Shi X, et al. Predictors of malignant brain edema after mechanical thrombectomy for acute ischemic stroke. J Neurointerv Surg 2019; 11(10): 994-8.
[http://dx.doi.org/10.1136/neurintsurg-2018-014650] [PMID: 30798266]
[7]
Taccone FS, Badenes R, Arib S, et al. Cerebrospinal fluid glucose and lactate levels after subarachnoid hemorrhage: A multicenter retrospective study. J Neurosurg Anesthesiol 2020; 32(2): 170-6.
[http://dx.doi.org/10.1097/ANA.0000000000000584] [PMID: 31116707]
[8]
Zahra K, Gopal N, Freeman WD, Turnbull MT. Using cerebral metabolites to guide precision medicine for subarachnoid hemorrhage: Lactate and pyruvate. Metabolites 2019; 9(11): 245.
[http://dx.doi.org/10.3390/metabo9110245] [PMID: 31652842]
[9]
Dohmen C, Bosche B, Graf R, et al. Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 2003; 34(9): 2152-8.
[http://dx.doi.org/10.1161/01.STR.0000083624.74929.32] [PMID: 12881606]
[10]
Schneweis S, Grond M, Staub F, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke 2001; 32(8): 1863-7.
[http://dx.doi.org/10.1161/01.STR.32.8.1863] [PMID: 11486118]
[11]
Inao S, Marmarou A, Clarke GD, Andersen BJ, Fatouros PP, Young HF. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg 1988; 69(5): 736-44.
[http://dx.doi.org/10.3171/jns.1988.69.5.0736] [PMID: 3183734]
[12]
Lozano A, Franchi F, Seastres RJ, et al. Glucose and lactate concentrations in cerebrospinal fluid after traumatic brain injury. J Neurosurg Anesthesiol 2020; 32(2): 162-9.
[http://dx.doi.org/10.1097/ANA.0000000000000582] [PMID: 30893283]
[13]
Yamada K, Toribe Y, Yanagihara K, Mano T, Akagi M, Suzuki Y. Diagnostic accuracy of blood and CSF lactate in identifying children with mitochondrial diseases affecting the central nervous system. Brain Dev 2012; 34(2): 92-7.
[http://dx.doi.org/10.1016/j.braindev.2011.08.004] [PMID: 21875773]
[14]
Souza LCS, Yoo AJ, Chaudhry ZA, et al. Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. AJNR Am J Neuroradiol 2012; 33(7): 1331-6.
[http://dx.doi.org/10.3174/ajnr.A2985] [PMID: 22383238]
[15]
Kimberly WT, Dutra BG, Boers AMM, et al. Association of reperfusion with brain edema in patients with acute ischemic stroke: A secondary analysis of the MR CLEAN trial. JAMA Neurol 2018; 75(4): 453-61.
[http://dx.doi.org/10.1001/jamaneurol.2017.5162] [PMID: 29365017]
[16]
Haas SA, Lange T, Saugel B, et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med 2016; 42(2): 202-10.
[http://dx.doi.org/10.1007/s00134-015-4127-0] [PMID: 26556617]
[17]
Woitzik J, Pinczolits A, Hecht N, et al. Excitotoxicity and metabolic changes in association with infarct progression. Stroke 2014; 45(4): 1183-5.
[http://dx.doi.org/10.1161/STROKEAHA.113.004475] [PMID: 24643407]
[18]
Woitzik J, Lassel E, Hecht N, et al. Ischemia independent lesion evolution during focal stroke in rats. Exp Neurol 2009; 218(1): 41-6.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.035] [PMID: 19348795]
[19]
Shao R, Liu L, Xu J, et al. Acidosis in arterial blood gas testing is associated with clinical outcomes after endovascular thrombectomy. Front Neurol 2022; 13: 1077043.
[http://dx.doi.org/10.3389/fneur.2022.1077043] [PMID: 36619912]
[20]
Baheerathan A, Pitceathly RDS, Curtis C, Davies NWS. CSF lactate. Pract Neurol 2020; 20(4): 320-3.
[http://dx.doi.org/10.1136/practneurol-2019-002191] [PMID: 32404406]
[21]
Dienel GA. Brain glucose metabolism: Integration of energetics with function. Physiol Rev 2019; 99(1): 949-1045.
[http://dx.doi.org/10.1152/physrev.00062.2017] [PMID: 30565508]
[22]
Rose CF. Increase brain lactate in hepatic encephalopathy: Cause or consequence? Neurochem Int 2010; 57(4): 389-94.
[http://dx.doi.org/10.1016/j.neuint.2010.06.012] [PMID: 20600436]
[23]
Guerra-Romero L, Taauber MG, Fournier MA, Tureen JH. Lactate and glucose concentrations in brain interstitial fluid, cerebrospinal fluid, and serum during experimental pneumococcal meningitis. J Infect Dis 1992; 166(3): 546-50.
[http://dx.doi.org/10.1093/infdis/166.3.546] [PMID: 1500738]
[24]
Bhatti MS, Frostig RD. Astrocyte-neuron lactate shuttle plays a pivotal role in sensory-based neuroprotection in a rat model of permanent middle cerebral artery occlusion. Sci Rep 2023; 13(1): 12799.
[25]
Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Park MK, et al. Effects of pyruvate kinase M2 (PKM2) gene deletion on astrocyte-specific glycolysis and global cerebral ischemia-induced neuronal death. Antioxidants (Basel) 2023; 12(2)
[26]
Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L. Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab 2009; 29(11): 1780-9.
[27]
Chen S, Shao L, Ma L. Cerebral edema formation after stroke: Emphasis on blood-brain barrier and the lymphatic drainage system of the brain. Front Cell Neurosci 2021; 15: 716825.
[http://dx.doi.org/10.3389/fncel.2021.716825] [PMID: 34483842]
[28]
Scholz M, Cinatl J, Schädel-Höpfner M, Windolf J. Neutrophils and the blood-brain barrier dysfunction after trauma. Med Res Rev 2007; 27(3): 401-16.
[http://dx.doi.org/10.1002/med.20064] [PMID: 16758487]
[29]
Li F, Geng X, Ilagan R, Bai S, Chen Y, Ding Y. Exercise postconditioning reduces ischemic injury via suppression of cerebral gluconeogenesis in rats. Brain Behav 2023; 13(1): e2805.
[30]
Wang XX, Mao GH, Li QQ, Tang J, Zhang H, Wang KL, et al. Neuroprotection of NAD(+) and NBP against ischemia/reperfusion brain injury is associated with restoration of sirtuin-regulated metabolic homeostasis. Front Pharmacol 2023; 14: 1096533.
[31]
Zhang W, Xu L, Yu Z, Zhang M, Liu J, Zhou J. Inhibition of the glycolysis prevents the cerebral infarction progression through decreasing the lactylation levels of LCP1. Mol Biotechnol 2023; 65(8): 1336-45.
[32]
Thoni V, Mauracher D, Ramalingam A, Fiechtner B, Sandbichler AM, Egg M. Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis. iScience 2022; 25(12): 105536.
[33]
Chen L, Xu M, Huang Q, Wen C, Ren W. Lactate dehydrogenase predicts hemorrhagic transformation in patients with acute ischemic stroke. Gerontology 2023; 69(5): 571-80.
[34]
Jin XX, Fang MD, Hu LL, Yuan Y, Xu JF, Lu GG, et al. Elevated lactate dehydrogenase predicts poor prognosis of acute ischemic stroke. PLoS One 2022; 17(10): e0275651.