Nano Strategies for Artemisinin Derivatives to Enhance Reverse Efficiency of Multidrug Resistance in Breast Cancer

Page: [3458 - 3466] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Artemisinin (ART) has been found to exert anti-tumor activity by regulating the cell cycle, inducing apoptosis, inhibiting angiogenesis and tumor invasion and metastasis. Its derivatives (ARTs) can regulate the expression of drug-resistant proteins and reverse the multidrug resistance (MDR) of tumor cells by inhibiting intracellular drug efflux, inducing apoptosis and autophagy of tumor cells, thus enhancing the sensitivity of tumor cells to chemotherapy and radiotherapy. Recent studies have shown that nanodrugs play an important role in the diagnosis and treatment of cancer, which can effectively solve the shortcomings of poor hydrophilicity and low bioavailability of ARTs in the human body, prolong the in vivo circulation time, improve the targeting of drugs (including tumor tissues or specific organelles), and control the release of drugs in target tissues, thereby reducing the side effect. This review systematically summarized the latest research progress of nano-strategies of ARTs to enhance the efficiency of MDR reversal in breast cancer (BC) from the following two aspects: (1) Chemicals encapsulated in nanomaterials based on innovative anti-proliferation mechanism: non-ABC transporter receptor candidate related to ferroptosis (dihydroartemisinin/DHA analogs). (2) Combination therapy strategy of nanomedicine (drug-drug combination therapy, drug-gene combination, and chemical-physical therapy). Self-assembled nano-delivery systems enhance therapeutic efficacy through increased drug loading, rapid reactive release, optimized delivery sequence, and realization of cascade-increasing effects. New nanotechnology methods must be designed for specific delivery routines to achieve targeting administration and overcome MDR without affecting normal cells. The significance of this review is to expect that ART and ARTs can be widely used in clinical practice. In the future, nanotechnology can help people to treat multidrug resistance of breast cancer more accurately and efficiently.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Diet N. Physical Activity and Cancer: A Global Perspective Available from: https://www.wcrf.org/dietandcancer/breast-cancer
[3]
National Comprehensive Cancer Network. Available from: https://www.nccn.org/professionals/physician_gls/default.aspx
[4]
Afzal M, Ameeduzzafar , Alharbi KS, et al. Nanomedicine in treatment of breast cancer – A challenge to conventional therapy. Semin Cancer Biol 2021; 69: 279-92.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.016] [PMID: 31870940]
[5]
Li W, Zhang H, Assaraf YG, et al. Overcoming ABC transporter- mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27: 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[6]
Kathawala RJ, Gupta P, Ashby CR Jr, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist Updat 2015; 18: 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[7]
Moscow JA, Fairchild CR, Madden MJ, et al. Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res 1989; 49(6): 1422-8.
[PMID: 2466554]
[8]
Dewanjee S, Dua T, Bhattacharjee N, et al. Natural products as alternative choices for P-glycoprotein (P-gp) inhibition. Molecules 2017; 22(6): 871.
[http://dx.doi.org/10.3390/molecules22060871] [PMID: 28587082]
[9]
Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, et al. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life 2020; 72(5): 855-71.
[http://dx.doi.org/10.1002/iub.2215] [PMID: 31913572]
[10]
Meng T, Qiu G, Hong Y, et al. Effect of chitosan based glycolipid-like nanocarrier in prevention of developing acquired drug resistance in tri-cycle treatment of breast cancer. Int J Pharm 2019; 555: 303-13.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.056] [PMID: 30471372]
[11]
Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[12]
Duncan R. Polymer therapeutics as nanomedicines: New perspectives. Curr Opin Biotechnol 2011; 22(4): 492-501.
[http://dx.doi.org/10.1016/j.copbio.2011.05.507] [PMID: 21676609]
[13]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[14]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[15]
Huang Y, Cole SPC, Cai T, Cai Y. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol Lett 2016; 12(1): 11-5.
[http://dx.doi.org/10.3892/ol.2016.4596] [PMID: 27347092]
[16]
Khashkhashi-Moghadam S, Soleimani S, Bazanjani A, et al. Fabrication of versatile and sustainable cellulose nanocrystals from lettuce stalks as potential tamoxifen delivery vehicles for breast cancer treatment: Biophysical, cellular and theoretical studies. New J Chem 2023; 47(31): 14768-91.
[http://dx.doi.org/10.1039/D3NJ02388E]
[17]
Maheri H, Hashemzadeh F, Shakibapour N, et al. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J Mol Struct 2022; 1269: 133803.
[http://dx.doi.org/10.1016/j.molstruc.2022.133803]
[18]
Kalhori F, Yazdyani H, Khademorezaeian F, et al. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence 2022; 37(11): 1836-45.
[http://dx.doi.org/10.1002/bio.4360] [PMID: 35946171]
[19]
Sharifi-Rad A, Mehrzad J, Darroudi M, Saberi MR, Chamani J. Oil-in-water nanoemulsions comprising Berberine in olive oil: biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J Biomol Struct Dyn 2021; 39(3): 1029-43.
[http://dx.doi.org/10.1080/07391102.2020.1724568] [PMID: 32000592]
[20]
Lo YC, Lin WJ. Improve BBB penetration and cytotoxicity of palbociclib in U87-MG glioblastoma cells delivered by dual peptide functionalized nanoparticles. Pharmaceutics 2023; 15(10): 2429.
[http://dx.doi.org/10.3390/pharmaceutics15102429] [PMID: 37896189]
[21]
Meng H, Liong M, Xia T, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010; 4(8): 4539-50.
[http://dx.doi.org/10.1021/nn100690m] [PMID: 20731437]
[22]
Tao C, Rouhi J. A biosensor based on graphene oxide nanocomposite for determination of carcinoembryonic antigen in colorectal cancer biomarker. Environ Res 2023; 238(Pt 1): 117113.
[http://dx.doi.org/10.1016/j.envres.2023.117113] [PMID: 37696325]
[23]
Karimi F, Karimi-Maleh H, Rouhi J, et al. Revolutionizing cancer monitoring with carbon-based electrochemical biosensors. Environ Res 2023; 239(Pt 2): 117368.
[http://dx.doi.org/10.1016/j.envres.2023.117368] [PMID: 37827366]
[24]
Shen R, Jiang Q, Li P, et al. “Targeted plus controlled” – Composite nano delivery system opens the tumor vascular and microenvironment normalization window for anti-tumor therapy. Int J Pharm 2023; 647: 123512.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123512] [PMID: 37839496]
[25]
Hosseinzadeh M, Nikjoo S, Zare N, Delavar D, Beigoli S, Chamani J. Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches. Res Chem Intermed 2019; 45(2): 401-23.
[http://dx.doi.org/10.1007/s11164-018-3608-5]
[26]
Zhang X, Liu H, Li N, Li J, Wang M, Ren X. A (Traditional Chinese Medicine) TCM-inspired doxorubicin resistance reversing strategy: Preparation, characterization, and application of a co-loaded ph-sensitive liposome. AAPS PharmSciTech 2023; 24(7): 181.
[http://dx.doi.org/10.1208/s12249-023-02630-8] [PMID: 37697172]
[27]
Farjadian F, Faghih Z, Fakhimi M, Iranpour P, Mohammadi-Samani S, Doroudian M. Glucosamine-modified mesoporous silica- coated magnetic nanoparticles: A “Raisin-Cake”-like structure as an efficient theranostic platform for targeted methotrexate delivery. Pharmaceutics 2023; 15(10): 2491.
[http://dx.doi.org/10.3390/pharmaceutics15102491] [PMID: 37896251]
[28]
Taheri R, Hamzkanlu N, Rezvani Y, et al. Exploring the HSA/DNA/lung cancer cells binding behavior of p-synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022; 368: 120826.
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[29]
Ezine E, Lebbe C, Dumaz N. Unmasking the tumourigenic role of SIN1/MAPKAP1 in the mTOR complex 2. Clin Transl Med 2023; 13(10): e1464.
[http://dx.doi.org/10.1002/ctm2.1464] [PMID: 37877351]
[30]
You M, Xie Z, Zhang N, et al. Signaling pathways in cancer metabolism: Mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8(1): 196.
[http://dx.doi.org/10.1038/s41392-023-01442-3] [PMID: 37164974]
[31]
Mu X, Zhao T, Xu C, et al. Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 2017; 8(8): 13174-85.
[http://dx.doi.org/10.18632/oncotarget.14485] [PMID: 28061458]
[32]
Nastasi C, Willerlev-Olsen A, Dalhoff K, et al. Inhibition of succinate dehydrogenase activity impairs human T cell activation and function. Sci Rep 2021; 11(1): 1458.
[http://dx.doi.org/10.1038/s41598-020-80933-7] [PMID: 33446766]
[33]
Klayman DL. Qinghaosu (artemisinin): An antimalarial drug from China. Science 1985; 228(4703): 1049-55.
[http://dx.doi.org/10.1126/science.3887571] [PMID: 3887571]
[34]
Balint GA. Artemisinin and its derivatives: An important new class of antimalarial agents. Pharmacol Ther 2001; 90(2-3): 261-5.
[http://dx.doi.org/10.1016/S0163-7258(01)00140-1] [PMID: 11578659]
[35]
O’Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin-the debate continues. Molecules 2010; 15(3): 1705-21.
[http://dx.doi.org/10.3390/molecules15031705] [PMID: 20336009]
[36]
Cui L, Su X. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther 2009; 7(8): 999-1013.
[http://dx.doi.org/10.1586/eri.09.68] [PMID: 19803708]
[37]
Di TN, Cao HJ, Ge CL. Research status of artemisinin and its derivatives in reversing anti-tumor drug resistance. Anti-tumor Pharmacy 2020; 10(06): 649-653+663.
[38]
Zhang YX, Hu CL, Zhang CL. Research progress on inhibitory effect of dihydroartemisinin on lung cancer. Contemp Med 2008; 2008(11): 35-6.
[39]
Tong Y, Liu Y, Zheng H, et al. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget 2016; 7(21): 31413-28.
[http://dx.doi.org/10.18632/oncotarget.8920] [PMID: 27119499]
[40]
Shen R, Li J, Ye D, Wang Q, Fei J. Combination of onconase and dihydroartemisinin synergistically suppresses growth and angiogenesis of non–small-cell lung carcinoma and malignant mesothelioma. Acta Biochim Biophys Sin 2016; 48(10): 894-901.
[http://dx.doi.org/10.1093/abbs/gmw082] [PMID: 27590062]
[41]
Liao K, Li J, Wang Z. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells. Int J Clin Exp Pathol 2014; 7(12): 8684-91.
[PMID: 25674233]
[42]
Jiang J, Geng G, Yu X, et al. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis. Oncotarget 2016; 7(52): 87271-83.
[http://dx.doi.org/10.18632/oncotarget.13536] [PMID: 27895313]
[43]
Zuo ZJ, Wang JD, Wang ST, et al. The sensitizing effects of combined treatment with dihydroartemisinin and irradiation on human lung cancer in nude mice. J Mod Oncol 2013; 21(12): 2687-91.
[44]
Slezakova S, Ruda-Kucerova J. Anticancer activity of artemisinin and its derivatives. Anticancer Res 2017; 37(11): 5995-6003.
[PMID: 29061778]
[45]
Wang L, Liu L, Chen Y, Du Y, Wang J, Liu J. Correlation between adenosine triphosphate (ATP)-binding cassette transporter G2 (ABCG2) and drug resistance of esophageal cancer and reversal of drug resistance by artesunate. Pathol Res Pract 2018; 214(9): 1467-73.
[http://dx.doi.org/10.1016/j.prp.2018.08.001] [PMID: 30104076]
[46]
Gruber L, Abdelfatah S, Fröhlich T, et al. Treatment of multidrug-resistant leukemia cells by novel artemisinin-, egonol-, and thymoquinone-derived hybrid compounds. Molecules 2018; 23(4): 841.
[http://dx.doi.org/10.3390/molecules23040841] [PMID: 29642419]
[47]
Ma H, Yao Q, Zhang AM, et al. The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model. Molecules 2011; 16(12): 10556-69.
[http://dx.doi.org/10.3390/molecules161210556] [PMID: 22183882]
[48]
Smith AD. Big moment for nanotech: Oncology therapeutics poised for a leap. OncLive 2013.
[49]
Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 2009; 4: 99-105.
[PMID: 19516888]
[50]
Fujiwara Y, Mukai H, Saeki T, et al. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br J Cancer 2019; 120(5): 475-80.
[http://dx.doi.org/10.1038/s41416-019-0391-z] [PMID: 30745582]
[51]
Awada A, Bondarenko IN, Bonneterre J, et al. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 2014; 25(4): 824-31.
[http://dx.doi.org/10.1093/annonc/mdu025] [PMID: 24667715]
[52]
Ignatiadis M, Zardavas D, Lemort M, et al. Feasibility study of EndoTAG-1, a tumor endothelial targeting agent, in combination with paclitaxel followed by FEC as induction therapy in HER2-negative breast cancer. PLoS One 2016; 11(7): e0154009.
[http://dx.doi.org/10.1371/journal.pone.0154009] [PMID: 27454930]
[53]
Miller K, Cortes J, Hurvitz SA, et al. HERMIONE: A randomized Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer 2016; 16(1): 352.
[http://dx.doi.org/10.1186/s12885-016-2385-z] [PMID: 27259714]
[54]
Hamilton E, Blackwell K, Hobeika AC, et al. Phase I clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibtion. J Transl Med 2012; 10(1): 28.
[http://dx.doi.org/10.1186/1479-5876-10-28] [PMID: 22325452]
[55]
Berinstein NL, Karkada M, Morse MA, et al. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med 2012; 10(1): 156.
[http://dx.doi.org/10.1186/1479-5876-10-156] [PMID: 22862954]
[56]
Niazi M, Zakeri-Milani P, Najafi HS, et al. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opin Drug Metab Toxicol 2016; 12(9): 1021-33.
[http://dx.doi.org/10.1080/17425255.2016.1196186] [PMID: 27267126]
[57]
Rice AJ, Park A, Pinkett HW. Diversity in ABC transporters: Type I, II and III importers. Crit Rev Biochem Mol Biol 2014; 49(5): 426-37.
[http://dx.doi.org/10.3109/10409238.2014.953626] [PMID: 25155087]
[58]
Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett 2016; 370(1): 153-64.
[http://dx.doi.org/10.1016/j.canlet.2015.10.010] [PMID: 26499806]
[59]
Wu CP, Hsieh CH, Wu YS. The emergence of drug transporter- mediated multidrug resistance to cancer chemotherapy. Mol Pharm 2011; 8(6): 1996-2011.
[http://dx.doi.org/10.1021/mp200261n] [PMID: 21770407]
[60]
Huang Y, Sadée W. Membrane transporters and channels in chemoresistance and sensitivity of tumor cells. Cancer Lett 2006; 239(2): 168-82.
[http://dx.doi.org/10.1016/j.canlet.2005.07.032] [PMID: 16169662]
[61]
Kosztyu P, Bukvova R, Dolezel P, Mlejnek P. Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact 2014; 219: 203-10.
[http://dx.doi.org/10.1016/j.cbi.2014.06.009] [PMID: 24954033]
[62]
Chauvier D, Kegelaer G, Morjani H, Manfait M. Reversal of multidrug resistance-associated protein-mediated daunorubicin resistance by camptothecin. J Pharm Sci 2002; 91(8): 1765-75.
[http://dx.doi.org/10.1002/jps.10162] [PMID: 12115804]
[63]
Singhal S, Singhal J, Nair M, Lacko A, Awasthi Y, Awasthi S. Doxorubicin transport by RALBP1 and ABCG2 in lung and breast cancer. Int J Oncol 2007; 30(3): 717-25.
[http://dx.doi.org/10.3892/ijo.30.3.717] [PMID: 17273774]
[64]
Cole S, Bhardwaj G, Gerlach J, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258(5088): 1650-4.
[http://dx.doi.org/10.1126/science.1360704] [PMID: 1360704]
[65]
Shen F, Chu S, Bence AK, et al. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J Pharmacol Exp Ther 2008; 324(1): 95-102.
[http://dx.doi.org/10.1124/jpet.107.127704] [PMID: 17947497]
[66]
Xia CQ, Yang JJ, Gan LS. Breast cancer resistance protein in pharmacokinetics and drug–drug interactions. Expert Opin Drug Metab Toxicol 2005; 1(4): 595-611.
[http://dx.doi.org/10.1517/17425255.1.4.595] [PMID: 16863427]
[67]
Iwakiri T, Okumura M, Hidaka M, et al. Inhibition of carrier-mediated uptake of epirubicin reduces cytotoxicity in primary culture of rat hepatocytes. J Appl Toxicol 2008; 28(3): 329-36.
[http://dx.doi.org/10.1002/jat.1283] [PMID: 17604344]
[68]
Jang SH, Wientjes MG, Au JL. Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J Pharmacol Exp Ther 2001; 298(3): 1236-42.
[PMID: 11504826]
[69]
Miettinen S, Grènman S, Ylikomi T. Inhibition of P-glycoprotein- mediated docetaxel efflux sensitizes ovarian cancer cells to concomitant docetaxel and SN-38 exposure. Anticancer Drugs 2009; 20(4): 267-76.
[http://dx.doi.org/10.1097/CAD.0b013e328329977f] [PMID: 19262372]
[70]
Tseng E, Kamath A, Morris ME. Effect of organic isothiocyanates on the P-glycoprotein- and MRP1-mediated transport of daunomycin and vinblastine. Pharm Res 2002; 19(10): 1509-15.
[http://dx.doi.org/10.1023/A:1020460700877] [PMID: 12425469]
[71]
Ushigome F, Takanaga H, Matsuo H, et al. Human placental transport of vinblastine, vincristine, digoxin and progesterone: Contribution of P-glycoprotein. Eur J Pharmacol 2000; 408(1): 1-10.
[http://dx.doi.org/10.1016/S0014-2999(00)00743-3] [PMID: 11070177]
[72]
Benyahia B, Huguet S, Declèves X, et al. Multidrug resistance-associated protein MRP1 expression in human gliomas: Chemosensitization to vincristine and etoposide by indomethacin in human glioma cell lines overexpressing MRP1. J Neurooncol 2004; 66(1/2): 65-70.
[http://dx.doi.org/10.1023/B:NEON.0000013484.73208.a4] [PMID: 15015771]
[73]
Lin MH, Hung CF, Hsu CY, Lin ZC, Fang JY. Prodrugs in combination with nanocarriers as a strategy for promoting antitumoral efficiency. Future Med Chem 2019; 11(16): 2131-50.
[http://dx.doi.org/10.4155/fmc-2018-0388] [PMID: 31538520]
[74]
Zhong H, Zhao X, Zuo Z, et al. Combating P-glycoprotein-mediated multidrug resistance with 10-O-phenyl dihydroartemisinin ethers in MCF-7 cells. Eur J Med Chem 2016; 108: 720-9.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.040] [PMID: 26741854]
[75]
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX, Jiang X. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ 2020; 27(1): 242-54.
[http://dx.doi.org/10.1038/s41418-019-0352-3] [PMID: 31114026]
[76]
Zhu S, Yu Q, Huo C, et al. Ferroptosis: A novel mechanism of artemisinin and its derivatives in cancer therapy. Curr Med Chem 2021; 28(2): 329-45.
[http://dx.doi.org/10.2174/1875533XMTAzlNzkj1] [PMID: 31965935]
[77]
Li Y, Zhou X, Liu J, et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life Sci 2020; 248: 117454.
[http://dx.doi.org/10.1016/j.lfs.2020.117454] [PMID: 32088211]
[78]
Guo S, Yao X, Jiang Q, et al. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced chemodynamic therapy. Front Pharmacol 2020; 11: 226.
[http://dx.doi.org/10.3389/fphar.2020.00226] [PMID: 32210814]
[79]
Liu L, Zuo LF, Guo JW. Reversal of multidrug resistance by the anti-malaria drug artesunate in the esophageal cancer Eca109/ABCG2 cell line. Oncol Lett 2013; 6(5): 1475-81.
[http://dx.doi.org/10.3892/ol.2013.1545] [PMID: 24179544]
[80]
Liu X, Wu J, Fan M, et al. Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells. Cell Death Dis 2018; 9(11): 1048.
[http://dx.doi.org/10.1038/s41419-018-1006-y] [PMID: 30323180]
[81]
Sun H, Chen XJ, Liu L, et al. Molecular mechanism of dihydroartemisinin reversing cisplatin resistance of human lung cancer cell line A549/DDP through PI3K/Akt pathway. China Pharmacist 2021; 24(06): 1013-7.
[82]
Hu YJ, Zhang JY, Luo Q, et al. Nanostructured dihydroartemisinin plus epirubicin liposomes enhance treatment efficacy of breast cancer by inducing autophagy and apoptosis. Nanomaterials 2018; 8(10): 804.
[http://dx.doi.org/10.3390/nano8100804] [PMID: 30304783]
[83]
Wang Y, Ding Y, Zhao J, et al. Dihydroartemisinin and doxorubicin co-loaded Soluplus® -TPGS mixed micelles: Formulation characterization, cellular uptake, and pharmacodynamic studies. Pharm Dev Technol 2019; 24(9): 1125-32.
[http://dx.doi.org/10.1080/10837450.2019.1641726] [PMID: 31305197]
[84]
Du Y, Giannangelo C, He W, et al. Dimeric artesunate glycerophosphocholine conjugate nano-assemblies as slow-release antimalarials to overcome kelch 13 mutant artemisinin resistance. Antimicrob Agents Chemother 2022; 66(5): e02065-21.
[http://dx.doi.org/10.1128/aac.02065-21] [PMID: 35416709]
[85]
Zhang X, Ai Z, Zhang Z, et al. Dihydroartemisinin triggers ferroptosis in multidrug-resistant leukemia cells. DNA Cell Biol 2022; 41(8): 705-15.
[http://dx.doi.org/10.1089/dna.2021.1145] [PMID: 35687364]
[86]
Ma Z, Chen W, Liu Y, et al. Artesunate sensitizes human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC- FUNDC1 axis-dependent mitophagy. Autophagy 2023; 1-16.
[http://dx.doi.org/10.1080/15548627.2023.2261758] [PMID: 37733919]
[87]
Du YW. Construction of drug carriers based on redox sensitive phospholipids and artesunate-phospholipid conjugate against artemisinin-resistant malaria 2021.
[88]
Lim C, Hwang D, Yazdimamaghani M, et al. High-dose paclitaxel and its combination with CSF1R inhibitor in polymeric micelles for chemoimmunotherapy of triple negative breast cancer. Nano Today 2023; 51: 101884.
[http://dx.doi.org/10.1016/j.nantod.2023.101884] [PMID: 37484164]
[89]
Jaiswal J, Srivastav AK, Rajput PK, Yadav UCS, Kumar U. Integrating synthesis, physicochemical characterization, and in silico studies of cordycepin-loaded bovine serum albumin nanoparticles. J Agric Food Chem 2023; 71(32): 12225-36.
[http://dx.doi.org/10.1021/acs.jafc.3c03608] [PMID: 37526599]
[90]
Hassani N, Jafari-Gharabaghlou D, Dadashpour M, Zarghami N. The effect of dual bioactive compounds artemisinin and metformin co-loaded in PLGA-PEG nano-particles on breast cancer cell lines: Potential apoptotic and anti-proliferative action. Appl Biochem Biotechnol 2022; 194(10): 4930-45.
[http://dx.doi.org/10.1007/s12010-022-04000-9] [PMID: 35674922]
[91]
Zoghi M, Pourmadadi M, Yazdian F, Nigjeh MN, Rashedi H, Sahraeian R. Synthesis and characterization of chitosan/carbon quantum dots/Fe2O3 nanocomposite comprising curcumin for targeted drug delivery in breast cancer therapy. Int J Biol Macromol 2023; 249: 125788.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125788] [PMID: 37437675]
[92]
Wang KX. Preparation of Artemisinin Solid Dispersion and Chrysosplenetin, influences the Resistant of Artemisinin. Harbin University of Commerce 2020.
[93]
Kang X, Wang H, Peng H, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin 2017; 38(6): 885-96.
[http://dx.doi.org/10.1038/aps.2017.10] [PMID: 28479604]
[94]
Sun G, Zhao S, Fan Z, et al. CHSY1 promotes CD8+ T cell exhaustion through activation of succinate metabolism pathway leading to colorectal cancer liver metastasis based on CRISPR/Cas9 screening. J Exp Clin Cancer Res 2023; 42(1): 248.
[http://dx.doi.org/10.1186/s13046-023-02803-0] [PMID: 37749638]
[95]
Prasad P, Cheng J, Shuhendler A, Rauth AM, Wu XY. A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells. Drug Deliv Transl Res 2012; 2(2): 95-105.
[http://dx.doi.org/10.1007/s13346-011-0051-1] [PMID: 25786718]
[96]
Hao RY, Geng X, Xu SY. Effect of As2O3-PLA-NPs and As2O3-mPEG-PLA-NPs on proliferation and apoptosis of tumor cell MCF-7/ADR. Infor Tradit Chin Med 2021; 38(03): 8-15.
[97]
Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer 2022; 21(1): 47.
[http://dx.doi.org/10.1186/s12943-022-01530-y] [PMID: 35151318]
[98]
Gao M, Deng J, Liu F, et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019; 223: 119486.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119486] [PMID: 31520887]
[99]
Qu C, Ma J, Liu X, et al. Dihydroartemisinin exerts anti-tumor activity by inducing mitochondrion and endoplasmic reticulum apoptosis and autophagic cell death in human glioblastoma cells. Front Cell Neurosci 2017; 11: 310.
[http://dx.doi.org/10.3389/fncel.2017.00310] [PMID: 29033794]
[100]
Wu X, Liu Y, Zhang E, et al. Dihydroartemisinin modulates apoptosis and autophagy in multiple myeloma through the P38/MAPK and Wnt/β-catenin signaling pathways. Oxid Med Cell Longev 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/6096391] [PMID: 32879652]
[101]
Chen Y, Mi Y, Zhang X, et al. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res 2019; 38(1): 402.
[http://dx.doi.org/10.1186/s13046-019-1413-7] [PMID: 31519193]