International Journal of Sensors, Wireless Communications and Control

Author(s): Zahia Bensalah Azizou*, Abdelmalek Boudries and Mourad Amad

DOI: 10.2174/0122103279252457231018060854

Grey Wolf Optimizer-based Decentralized Service Discovery in the Internet of Things Applications

Page: [418 - 426] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: The Internet of Things (IoT) has emerged as a significant technology in recent years, wherein each object is equipped with sensors and applications that provide functionality through services. Due to the increasing benefits of heterogeneous objects with constrained resources in high environments, traditional service discovery approaches become impractical for dynamic IoT networks. Therefore, service discovery poses a considerable challenge for the Internet of Things.

Methods: This paper introduces a novel decentralized discovery algorithm based on the Grey Wolf Optimizer (GWO) for IoT services. GWO is a recent metaheuristic in swarm intelligence designed to solve combinatorial optimization problems.

Results: simulation results indicate that GWO achieves high discovery success with minimal steps required for service discovery.

Conclusion: Our approach maintains its performance and exhibits good scalability as the number of objects increases in the decentralized approach for IoT.

Graphical Abstract

[1]
Lee I, Lee K. The internet of things (IoT): Applications, investments, and challenges for enterprises. Bus Horiz 2015; 58(4): 431-40.
[http://dx.doi.org/10.1016/j.bushor.2015.03.008]
[2]
Zaslavsky A, Jayaraman PP. Discovery in the internet of things: The internet of things (ubiquity symposium). Ubiquity 2015; 2015(October): 1-10.
[http://dx.doi.org/10.1145/2822529]
[3]
Kumar KS, Sukumar R. Achieving energy efficiency using novel scalar multiplication based ECC for android devices in internet of things environments. Cluster Comput 2019; 22(S5): 12021-8.
[http://dx.doi.org/10.1007/s10586-017-1542-8]
[4]
Vieira LFM, Lee U, Gerla M. Phero-trail: A bio-inspired location service for mobile underwater sensor networks. IEEE J Sel Areas Comm 2010; 28(4): 553-63.
[http://dx.doi.org/10.1109/JSAC.2010.100505]
[5]
Chao SL, Lee HY, Chou CC, Wei HY. Bio-inspired proximity discovery and synchronization for d2d communications. IEEE Commun Lett 2013; 17(12): 2300-3.
[http://dx.doi.org/10.1109/LCOMM.2013.101713.131839]
[6]
Premkumar M, Ibrahim AM, Kumar RM, Sowmya R. Analysis and simulation of bio-inspired intelligent salp swarm mppt method for the pv systems under partial shaded conditions. Inter J Compu Digit Sys 2019; 8(5): 490-6.
[7]
Bensalah Azizou Z, Boudries A, Amad M. Decentralized service discovery and localization in internet of things applications based on ant colony algorithm. Inter J Compu Digit Sys 2020; 9(5): 941-50.
[http://dx.doi.org/10.12785/ijcds/090514]
[8]
Atzori L, Iera A, Morabito G. Siot: Giving a social structure to the internet of things. IEEE communications letters 2011; 15(11): 1193-5.
[9]
del Val E, Rebollo M, Botti V. Enhancing decentralized service discovery in open service-oriented multi-agent systems. Auton Agent Multi Agent Syst 2014; 28(1): 1-30.
[http://dx.doi.org/10.1007/s10458-012-9210-0]
[10]
Wei Q, Jin Z. Service discovery for internet of things: A context awareness perspective. Proceedings of the Fourth Asia-Pacific Symposium on Internetware. 1-6.2012
[http://dx.doi.org/10.1145/2430475.2430500]
[11]
Achir M, Abdelli A, Mokdad L, Benothman J. Service discovery and selection in IoT: A survey and a taxonomy. J Netw Comput Appl 2022; 200: 103331.
[http://dx.doi.org/10.1016/j.jnca.2021.103331]
[12]
Carballido Villaverde B, Alberola RDP, Jara AJ, Fedor S, Das SK, Pesch D. Service discovery protocols for constrained machine-to-machine communications. IEEE Commun Surv Tutor 2014; 16(1): 41-60.
[http://dx.doi.org/10.1109/SURV.2013.102213.00229]
[13]
Cassar G, Barnaghi P, Wang W, Moessner K. A hybrid semantic matchmaker for iot services. 2012 IEEE International Conference on Green Computing and Communications. year 2012; 210-6.
[http://dx.doi.org/10.1109/GreenCom.2012.40]
[14]
Wang W, De S, Cassar G, Moessner K. Knowledge representation in the internet of things: Semantic modelling and its applications. Automatika: časopis za automatiku, mjerenje, elektroniku, račcunarstvo Ikomunikacije 2013; 54(4): 388-400.
[http://dx.doi.org/10.7305/automatika.54-4.414]
[15]
He Q, Yan J, Yang Y, Kowalczyk R, Jin H. A decentralized service discovery approach on peer-to-peer networks. IEEE Transactions onServices Computing 2011; 6(1): 64-75.
[16]
AbdelFadeel KQ, Elsayed K. 6lowdis: A lightweight service discovery protocol for 6lowpan. 2016 IEEE International Conference on Communications Workshops (ICC) year. 2016, pp. 284-289.
[http://dx.doi.org/10.1109/ICCW.2016.7503801]
[17]
Tanganelli G, Vallati C, Mingozzi E. Edge-centric distributed discovery and access in the internet of things. IEEE Internet Things J 2018; 5(1): 425-38.
[http://dx.doi.org/10.1109/JIOT.2017.2767381]
[18]
Quevedo J, Guimarães C, Ferreira R, Corujo D, Aguiar RL. Icn as network infrastructure for multi-sensory devices: Local domain service discovery for icn-based iot environments. Wirel Pers Commun 2017; 95(1): 7-26.
[http://dx.doi.org/10.1007/s11277-017-4425-7]
[19]
Cirani S, Davoli L, Ferrari G, et al. A scalable and self-configuring architecture for service discovery in the internet of things. IEEE Internet Things J 2014; 1(5): 508-21.
[http://dx.doi.org/10.1109/JIOT.2014.2358296]
[20]
Rapti E, Karageorgos A, Houstis C, Houstis E. Decentralized service discovery and selection in Internet of Things applications based on artificial potential fields. Serv Oriented Comput Appl 2017; 11(1): 75-86.
[http://dx.doi.org/10.1007/s11761-016-0198-1]
[21]
Al-Masri E, Mahmoud QH. A context-aware mobile service discovery and selection mechanism using artificial neural networks. Proceedings of the 8th International Conference on Electronic Commerce: The New E-commerce: Innovations for Conquering Current Barriers, Obstacles and Limitations to Conducting Successful Business on the Internet 594-8.2006;
[http://dx.doi.org/10.1145/1151454.1151467]
[22]
Stauffer AO, Barbosa VC. Probabilistic heuristics for disseminating information in networks. IEEE/ACM Trans Netw 2007; 15(2): 425-35.
[http://dx.doi.org/10.1109/TNET.2007.892877]
[23]
Chang NB, Liu M. Controlled flooding search in a large network. IEEE/ACM Trans Netw 2007; 15(2): 436-49.
[http://dx.doi.org/10.1109/TNET.2007.892880]
[24]
Gaeta R, Sereno M. Generalized probabilistic flooding in unstructured peer-to-peer networks. IEEE Trans Parallel Distrib Syst 2011; 22(12): 2055-62.
[http://dx.doi.org/10.1109/TPDS.2011.82]
[25]
Dorrigiv R, Lopez-Ortiz A, Pralat P. Search algorithms for unstructured peer-to-peer networks. 32nd IEEE Conference on Local Computer Networks (LCN 2007). 15-18 October 2007, Dublin, Ireland. 343-52.
[http://dx.doi.org/10.1109/LCN.2007.65]
[26]
Barjini H, Othman M, Ibrahim H, Udzir NI. Shortcoming, problems and analytical comparison for flooding-based search techniques in unstructured P2P networks. Peer-to-Peer Netw Appl 2012; 5(1): 1-13.
[http://dx.doi.org/10.1007/s12083-011-0101-y]
[27]
Microsystems S. Jini architecture specification. Version 20 2003.
[28]
Goland YY, Cai T, Leach P, Gu Y, Albright S. Simple service discovery protocol. IETF Draft draft-cai-ssdp-v1-03 txt 1999.
[29]
Guttman E, Perkins C, Veizades J, Day M. Service location protocol, version 1999.
[30]
Consortium S. Salutation architecture specification version 20 c salutation specification. Salutation Consortium 1999.
[31]
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014; 69: 46-61.
[http://dx.doi.org/10.1016/j.advengsoft.2013.12.007]