Current Nanoscience

Author(s): Ke Xu* and Xianru Li

DOI: 10.2174/0115734137276125231201113602

DownloadDownload PDF Flyer Cite As
Light Field Modulation Algorithms for Spatial Light Modulators: A Review

Page: [182 - 200] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The coding method of spatial light modulator is the core key of spatial light field modulation technology, and the needs of the modulation algorithm are different under the specified mode and application requirements. This paper first reviews the progress made in recent years in light field control algorithms for digital micromirror devices (DMDs) and liquid crystal spatial light modulators (LC-SLM). Based on existing algorithms, the impact of optimization methods is analyzed. Then, the application areas of the different algorithms are summarized, and the characteristics of the control algorithms are analyzed. In addition, this review highlights innovative breakthroughs achieved by using various coding schemes and spatial light modulators (SLM) to manipulate the light field. Finally, critical future challenges facing emerging control algorithm technologies are outlined, while prospects for developing SLM control algorithms are proposed.

Keywords: Spatial light modulator, beam coding, nanotechnology, digital micromirror device, liquid crystal spatial light modulator, light field modulation.

Graphical Abstract

[1]
Yang, Y.; Ma, Y.; Li, W.; Ma, L.; Li, Z.; Jia, B.; Xu, Z.; Yu, Z.; Liang, P. Anti-corrosion superhydrophobic surface of LPBF- NiTi alloy fabricated by nanosecond laser machining. Opt. Laser Technol., 2023, 158, 108858.
[http://dx.doi.org/10.1016/j.optlastec.2022.108858]
[2]
Liao, K.; Wang, W.; Mei, X.; Zhao, W.; Yuan, H.; Wang, M.; Wang, B. Stable and drag-reducing superhydrophobic silica glass microchannel prepared by femtosecond laser processing: Design, fabrication, and properties. Mater. Des., 2023, 225, 111501.
[http://dx.doi.org/10.1016/j.matdes.2022.111501]
[3]
Zhang, C.; Chen, J.; Gao, J.; Tan, G.; Bai, S.; Weng, K.; Chen, H.M.; Ding, X.; Cheng, H.; Yang, Y.; Wang, J. Laser processing of crumpled porous graphene/mxene nanocomposites for a standalone gas sensing system. Nano Lett., 2023, 23(8), 3435-3443.
[http://dx.doi.org/10.1021/acs.nanolett.3c00454] [PMID: 37014054]
[4]
Zhang, B.; Yang, H.; Pan, C.; Zhao, P. Joint process of laser shock polishing and imprinting for metallic nanostructure fabrication. Mater. Des., 2023, 227, 111743.
[http://dx.doi.org/10.1016/j.matdes.2023.111743]
[5]
Wang, H.; Wang, Q.; Huo, L.; Liu, J.; Bai, Z. High-efficient laser-based bionic surface structuring for enhanced surface functionalization and self-cleaning effect. Surf. Interfaces, 2023, 37, 102691.
[http://dx.doi.org/10.1016/j.surfin.2023.102691]
[6]
Kovalev, M.; Podlesnykh, I.; Nastulyavichus, A.; Stsepuro, N.; Mushkarina, I.; Platonov, P.; Terukov, E.; Abolmasov, S.; Dunaev, A.; Akhmatkhanov, A.; Shur, V.; Kudryashov, S. Efficient broadband light-trapping structures on thin-film silicon fabricated by laser, chemical and hybrid chemical/laser treatment. Materials, 2023, 16(6), 2350.
[http://dx.doi.org/10.3390/ma16062350] [PMID: 36984230]
[7]
Nyabadza, A.; Vazquez, M.; Brabazon, D. A review of bimetallic and monometallic nanoparticle synthesis via laser ablation in liquid. Crystals, 2023, 13(2), 253.
[http://dx.doi.org/10.3390/cryst13020253]
[8]
Lin, Y.; Guo, H.; Che, D.; Wang, J. Switchable plasmonic chirality for light modulation: from near-field to far-field coupling. J. Phys. Chem. Lett., 2023, 14(6), 1403-1410.
[http://dx.doi.org/10.1021/acs.jpclett.2c03659] [PMID: 36730696]
[9]
Zhou, F.; Qiao, W.; Chen, L. Fabrication technology for light field reconstruction in glasses-free 3D display. J. Inf. Disp., 2023, 24(1), 13-29.
[http://dx.doi.org/10.1080/15980316.2022.2118182]
[10]
Benea-Chelmus, I.C.; Meretska, M.L.; Elder, D.L.; Tamagnone, M.; Dalton, L.R.; Capasso, F. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun., 2021, 12(1), 5928.
[http://dx.doi.org/10.1038/s41467-021-26035-y] [PMID: 34635655]
[11]
Li, H.; Sang, X.; Chen, D.; Chen, Z.; Zhao, X.; Peng, C.; Wang, K.; Yu, X.; Wang, P.; Yan, B. Optimized dual spatial light modulators holographic display based on wavefront frequency decomposition. Opt. Laser Technol., 2022, 149, 107866.
[http://dx.doi.org/10.1016/j.optlastec.2022.107866]
[12]
Koo, Y.; Lee, H.; Ivanova, T.; Savelev, R.S.; Petrov, M.I.; Kravtsov, V.; Park, K.D. Nanocavity-integrated van der waals heterobilayers for nano-excitonic transistor. ACS Nano, 2023, 17(5), 4854-4861.
[http://dx.doi.org/10.1021/acsnano.2c11509] [PMID: 36857198]
[13]
Wang, Z.; Zhang, B.; Wang, Z.; Zhang, J.; Kazansky, P.G.; Tan, D.; Qiu, J. 3D imprinting of voxel‐level structural colors in lithium niobate crystal. Adv. Mater., 2023, 35(47), e2303256.
[http://dx.doi.org/10.1002/adma.202303256] [PMID: 37391205]
[14]
Zhang, H.; Hasegawa, S.; Toyoda, H.; Hayasaki, Y. Three-dimensional holographic parallel focusing with feedback control for femtosecond laser processing. Opt. Lasers Eng., 2022, 151, 106884.
[http://dx.doi.org/10.1016/j.optlaseng.2021.106884]
[15]
Manisha; Tiwari, V.; Bisht, N.S.; Singh, R.K. A compact and lens less digital holography setup for polarimetric analysis of spatial light modulator. Opt. Laser Technol., 2023, 167, 109748.
[http://dx.doi.org/10.1016/j.optlastec.2023.109748]
[16]
Yang, W.; Wang, Z.; Wang, X.; Yu, T.; Xie, S.; Ge, Z. 3D printing of bioinspired hydrogel microstructures with programmable and complex shape deformations based on a digital micro-mirror device. Opt. Laser Technol., 2023, 157, 108759.
[http://dx.doi.org/10.1016/j.optlastec.2022.108759]
[17]
Kunwar, P.; Andrada, B.L.; Poudel, A.; Xiong, Z.; Aryal, U.; Geffert, Z.J.; Poudel, S.; Fougnier, D.; Gitsov, I.; Soman, P. Printing double-network tough hydrogels using temperature-controlled projection stereolithography (TOPS). ACS Appl. Mater. Interfaces, 2023, 15(25), 30780-30792.
[http://dx.doi.org/10.1021/acsami.3c04661] [PMID: 37319377]
[18]
Yang, Z.; Lin, J.; Liu, L.; Zhu, Z.; Zhang, R.; Wen, S.; Yin, Y.; Lan, C.; Li, C.; Liu, Y. Genetic algorithm-based optical proximity correction for DMD maskless lithography. Opt. Express, 2023, 31(14), 23598-23607.
[http://dx.doi.org/10.1364/OE.493665] [PMID: 37475440]
[19]
Ren, M.; Lu, W.; Shao, Q.; Han, F.; Ouyang, W.; Zhang, T.; Wang, C.C.L.; Chen, S-C. Aberration-free large-area stitch-free 3D nano-printing based on binary holography. Opt. Express, 2021, 29(26), 44250-44263.
[http://dx.doi.org/10.1364/OE.446503]
[20]
Lee, S.; Choi, S.; Meleppat, R.K. High-speed adaptive optics multi-detection mode ophthalmoscope using a digital micromirror device. Invest. Ophthalmol. Vis. Sci., 2023, 64(8), 1031-1031.
[21]
Amini, A.; Guijt, R.M.; Themelis, T. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical device. J. Chromatogr. A, 2023, 463842.
[22]
Cheremkhin, P.A.; Evtikhiev, N.N.; Krasnov, V.V.; Starikov, R.S.; Zlokazov, E.Y. Iterative synthesis of binary inline Fresnel holograms for high-quality reconstruction in divergent beams with DMD. Opt. Lasers Eng., 2022, 150, 106859.
[http://dx.doi.org/10.1016/j.optlaseng.2021.106859]
[23]
Buchnev, O.; Podoliak, N.; Kaltenecker, K.; Walther, M.; Fedotov, V.A. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications. ACS Photonics, 2020, 7(11), 3199-3206.
[http://dx.doi.org/10.1021/acsphotonics.0c01263]
[24]
Shields, J.; Galarreta, De.; Penketh, C.R. A route to ultra-fast amplitude-only spatial light. Adv. Opt. Mater., 2023, 2300765.
[http://dx.doi.org/10.1002/adom.202300765]
[25]
Brouckaert, N.; Bankova, D.; Heiser, T.; D’Alessandro, G.; Kaczmarek, M. Optical and electrical properties characterisation of photovoltaic spatial-light modulators. Opt. Mater. Express, 2023, 13(6), 1808-1819.
[http://dx.doi.org/10.1364/OME.491603]
[26]
Mansha, S.; Moitra, P.; Xu, X.; Mass, T.W.W.; Veetil, R.M.; Liang, X.; Li, S.Q.; Paniagua-Domínguez, R.; Kuznetsov, A.I. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci. Appl., 2022, 11(1), 141.
[http://dx.doi.org/10.1038/s41377-022-00832-6] [PMID: 35581195]
[27]
Zhu, Z.; Wen, Y.; Li, J.; Chen, Y.; Peng, Z.; Li, J.; Zhu, L.; Wu, Y.; Zhou, L.; Liu, L.; Zong, L.; Yu, S. Metasurface-enabled polarization-independent LCoS spatial light modulator for 4K resolution and beyond. Light Sci. Appl., 2023, 12(1), 151.
[http://dx.doi.org/10.1038/s41377-023-01202-6] [PMID: 37331984]
[28]
Kwon, H.; Zheng, T.; Faraon, A. Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces. Nat. Commun., 2022, 13(1), 5811.
[http://dx.doi.org/10.1038/s41467-022-33449-9] [PMID: 36192401]
[29]
Luo, T.; Yuan, J.; Chang, J.; Dai, Y.; Gong, H.; Luo, Q.; Yang, X. Resolution and uniformity improvement of parallel confocal microscopy based on microlens arrays and a spatial light modulator. Opt. Express, 2023, 31(3), 4537-4552.
[http://dx.doi.org/10.1364/OE.478820] [PMID: 36785419]
[30]
Liu, J.; Zaouter, C.; Liu, X.; Patten, S.A.; Liang, J. Coded-aperture broadband light field imaging using digital micromirror devices. Optica, 2021, 8(2), 139-142.
[http://dx.doi.org/10.1364/OPTICA.413938]
[31]
Jiao, S.; Zhang, D.; Zhang, C.; Gao, Y.; Lei, T.; Yuan, X. Data hiding in complex-amplitude modulation using a digital micromirror device. Opt. Lasers Eng., 2021, 138, 106455.
[http://dx.doi.org/10.1016/j.optlaseng.2020.106455]
[32]
Yu, S.T.; Luo, A.; Jiang, L.; Liu, Y.F.; Gong, L.; Yuan, Z.S. Direct binary search method for high-resolution holographic image projection. Opt. Express, 2022, 30(15), 26856-26864.
[http://dx.doi.org/10.1364/OE.462954] [PMID: 36236869]
[33]
Yan, H.; Sun, Y.; Lin, Y.; Chu, F.; Wan, W. Multi-color complex spatial light modulation with a single digital micromirror device. Opt. Express, 2023, 31(14), 22649-22659.
[http://dx.doi.org/10.1364/OE.494238] [PMID: 37475370]
[34]
Yang, Z.; Fang, L.; Zhang, X.; Zuo, H. Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm. Opt. Lasers Eng., 2021, 144, 106646.
[http://dx.doi.org/10.1016/j.optlaseng.2021.106646]
[35]
Feng, B.Y.; Guo, H.; Xie, M.; Boominathan, V.; Sharma, M.K.; Veeraraghavan, A.; Metzler, C.A.; Neu, W.S. Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media. Sci. Adv., 2023, 9(26), eadg4671.
[http://dx.doi.org/10.1126/sciadv.adg4671] [PMID: 37379386]
[36]
Lv, X.; Xu, X.; Feng, Q.; Zhang, B.; Ding, Y.; Liu, Q. High-contrast imaging based on wavefront shaping to improve low signal-to-noise ratio photoacoustic signals using superpixel method. Chin. Phys. B, 2020, 29(3), 034301.
[http://dx.doi.org/10.1088/1674-1056/ab6842]
[37]
Li, J.; Yan, J.; Jiang, L.; Yu, J.; Guo, H.; Qu, L. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser. Light Sci. Appl., 2023, 12(1), 164.
[http://dx.doi.org/10.1038/s41377-023-01178-3] [PMID: 37400434]
[38]
Zou, G.; Shao, R.; Liu, L.; He, Q.; Ding, C.; Chen, C.; Yang, J.; Qu, Y. Random-access multi-focus manipulation through superpixel-encoding wavefront engineering. Appl. Phys. Express, 2022, 15(11), 112004.
[http://dx.doi.org/10.35848/1882-0786/ac99b7]
[39]
Durdevic, L.; Robert, H.M.L.; Wattellier, B.; Monneret, S.; Baffou, G. Microscale temperature shaping using spatial light modulation on gold nanoparticles. Sci. Rep., 2019, 9(1), 4644.
[http://dx.doi.org/10.1038/s41598-019-40382-3] [PMID: 30874570]
[40]
Cheng, Z.; Li, C.; Khadria, A.; Zhang, Y.; Wang, L.V. High-gain and high-speed wavefront shaping through scattering media. Nat. Photonics, 2023, 17(4), 299-305.
[http://dx.doi.org/10.1038/s41566-022-01142-4] [PMID: 37333511]
[41]
Li, Z.; Zheng, Y.; Diao, X.; Li, R.; Sun, N.; Xu, Y.; Li, X.; Duan, S.; Gong, W.; Si, K. Robust and adjustable dynamic scattering compensation for high-precision deep tissue optogenetics. Commun. Biol., 2023, 6(1), 128.
[http://dx.doi.org/10.1038/s42003-023-04487-w] [PMID: 36721006]
[42]
Guo, E.; Zhou, C.; Zhu, S.; Bai, L.; Han, J. Dynamic imaging through random perturbed fibers via physics-informed learning. Opt. Laser Technol., 2023, 158, 108923.
[http://dx.doi.org/10.1016/j.optlastec.2022.108923]
[43]
Zhang, C.; Yao, Z.; Qin, Z.; Gu, G.; Chen, Q.; Xie, Z.; Liu, G.; Sui, X. Optical refocusing through perturbed multimode fiber using Cake-Cutting Hadamard encoding algorithm to improve robustness. Opt. Lasers Eng., 2023, 164, 107487.
[http://dx.doi.org/10.1016/j.optlaseng.2023.107487]
[44]
Pellegrini, P.E.S.; Biazoli, C.R.; Panepucci, R.R.; Gabrielli, L.H. Focusing optimization in multimodal graded index fiber coupling by wavefront shaping. Opt. Laser Technol., 2023, 161, 109238.
[http://dx.doi.org/10.1016/j.optlastec.2023.109238]
[45]
Yang, J.; He, Q.; Liu, L.; Qu, Y.; Shao, R.; Song, B.; Zhao, Y. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device. Light Sci. Appl., 2021, 10(1), 149.
[http://dx.doi.org/10.1038/s41377-021-00591-w] [PMID: 34285183]
[46]
Li, X.; Han, Y.; Wang, H.; Liu, T.; Chen, S-C.; Hu, H. Polarimetric imaging through scattering media: A review. Front. Phys., 2022, 10, 815296.
[http://dx.doi.org/10.3389/fphy.2022.815296]
[47]
Woo, C.M.; Zhao, Q.; Zhong, T.; Li, H.; Yu, Z.; Lai, P. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping. APL Photonics, 2022, 7(4), 046109.
[http://dx.doi.org/10.1063/5.0085943]
[48]
Duan, M.; Yang, Z.; Zhao, Y.; Fang, L.; Zuo, H.; Li, Z.; Wang, D. Wavefront shaping using improved sparrow search algorithm to control the scattering light field. Opt. Laser Technol., 2022, 156, 108529.
[http://dx.doi.org/10.1016/j.optlastec.2022.108529]
[49]
Georgieva, A.; Belashov, A.V.; Petrov, N.V. Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront. Sci. Rep., 2022, 12(1), 7754.
[http://dx.doi.org/10.1038/s41598-022-11443-x] [PMID: 35546600]
[50]
Squires, M.; Tao, X.; Elangovan, S.; Gururajan, R.; Zhou, X.; Acharya, U.R. A novel genetic algorithm based system for the scheduling of medical treatments. Expert Syst. Appl., 2022, 195, 116464.
[http://dx.doi.org/10.1016/j.eswa.2021.116464]
[51]
Zhou, J.; Hua, Z. A correlation guided genetic algorithm and its application to feature selection. Appl. Soft Comput., 2022, 123, 108964.
[http://dx.doi.org/10.1016/j.asoc.2022.108964]
[52]
Deng, W.; Zhang, X.; Zhou, Y.; Liu, Y.; Zhou, X.; Chen, H.; Zhao, H. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Inf. Sci., 2022, 585, 441-453.
[http://dx.doi.org/10.1016/j.ins.2021.11.052]
[53]
Estran, R.; Souchaud, A.; Abitbol, D. Using a genetic algorithm to optimize an expert credit rating model. Expert Syst. Appl., 2022, 203, 117506.
[http://dx.doi.org/10.1016/j.eswa.2022.117506]
[54]
Guo, S.; Stern, R.; Zhang, H.; Pang, L. Speedy light focusing through scattering media by a cooperatively FPGA-parameterized genetic algorithm. Opt. Express, 2022, 30(20), 36414-36428.
[http://dx.doi.org/10.1364/OE.469238] [PMID: 36258570]
[55]
Zhao, T.; Pham, T.T.; Baker, C.; Ma, M.T.; Ourselin, S.; Vercauteren, T.; Zhang, E.; Beard, P.C.; Xia, W. Ultrathin, high-speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery. Biomed. Opt. Express, 2022, 13(8), 4414-4428.
[http://dx.doi.org/10.1364/BOE.463057] [PMID: 36032566]
[56]
Zhao, T.; Ourselin, S.; Vercauteren, T.; Xia, W. Focusing light through multimode fibres using a digital micromirror device: A comparison study of non-holographic approaches. Opt. Express, 2021, 29(10), 14269-14281.
[http://dx.doi.org/10.1364/OE.420718] [PMID: 33985150]
[57]
Dong, C.; Cai, Y.; Dai, S.; Wu, J.; Tong, G.; Wang, W.; Wu, Z.; Zhang, H.; Xia, J. An optimized optical diffractive deep neural network with OReLU function based on genetic algorithm. Opt. Laser Technol., 2023, 160, 109104.
[http://dx.doi.org/10.1016/j.optlastec.2022.109104]
[58]
Chen, R.; Tara, V.; Singh, A.W.; Saxena, A.; Fröch, J.E.; Reynolds, M.S.; Majumdar, A. A hybrid solution for spatial light modulators with a large space-bandwidth product: opinion. Opt. Mater. Express, 2023, 13(8), 2416-2421.
[http://dx.doi.org/10.1364/OME.500078]
[59]
Du, T.; Huang, D.; Cheng, H.; Fan, W.; Xing, Z.; Li, X.; Zhu, J. Compensation method for performance degradation of optically addressed spatial light modulator induced by CW laser. High Power Laser Sci. Eng., 2022, 10, e7.
[http://dx.doi.org/10.1017/hpl.2021.63]
[60]
Guan, S.; Cheng, J.; Chang, S. Recent progress of terahertz spatial light modulators: Materials, principles and applications. Micromachines, 2022, 13(10), 1637.
[http://dx.doi.org/10.3390/mi13101637] [PMID: 36295991]
[61]
Tao, J.; You, Q.; Li, Z.; Luo, M.; Liu, Z.; Qiu, Y.; Yang, Y.; Zeng, Y.; He, Z.; Xiao, X.; Zheng, G.; Yu, S. Mass‐manufactured beam‐steering metasurfaces for high‐speed full‐duplex optical wireless‐broadcasting communications. Adv. Mater., 2022, 34(6), 2106080.
[http://dx.doi.org/10.1002/adma.202106080] [PMID: 34825747]
[62]
Sakhare, P.A.; Dontabhaktuni, J. Ultra fast switching of DFLC based dynamic metasurfaces. Front. Phys., 2022, 10, 849470.
[http://dx.doi.org/10.3389/fphy.2022.849470]
[63]
Kumar, P.; Rao, A.S.; Omatsu, T. Generation of V-point polarization singularity using single phase encoding with a spatial light modulator. Sci. Rep., 2023, 13(1), 315.
[http://dx.doi.org/10.1038/s41598-022-27337-x] [PMID: 36609434]
[64]
Su, P.; Wang, J.; Cai, C.; Ma, J.; Tan, Q. Large field-of-view lensless holographic dynamic projection system with uniform illumination and U-net acceleration. Opt. Lasers Eng., 2022, 156, 107106.
[http://dx.doi.org/10.1016/j.optlaseng.2022.107106]
[65]
Liu, K.; He, Z.; Cao, L. Double amplitude freedom Gerchberg–Saxton algorithm for generation of phase-only hologram with speckle suppression. Appl. Phys. Lett., 2022, 120(6), 061103.
[http://dx.doi.org/10.1063/5.0080797]
[66]
Hao, Y.; Xiao, Y.; Chen, W. High-fidelity ghost diffraction through complex scattering media using a modified Gerchberg-Saxton algorithm. Opt. Express, 2023, 31(9), 14389-14402.
[http://dx.doi.org/10.1364/OE.486123] [PMID: 37157304]
[67]
Hua, M.; Chen, Y.; Zhang, T.; Zhou, M.; Zou, W.; Wu, J. A speckle noise suppression method in phase-only holographic display based on an improved Gerchberg–Saxton algorithm. Optik, 2022, 251, 168407.
[http://dx.doi.org/10.1016/j.ijleo.2021.168407]
[68]
Ackermann, L.; Roider, C.; Gehring, M.; Cvecek, K.; Schmidt, M. High-speed speckle averaging for phase-only beam shaping in laser materials processing. Opt. Lasers Eng., 2023, 165, 107537.
[http://dx.doi.org/10.1016/j.optlaseng.2023.107537]
[69]
Yu, L.; Liu, Q.; Dai, Y.; Ding, Y. Research on photoacoustic microscopy imaging based on photoacoustic transmission matrix with a digital micromirror device. Optik (Stuttg.), 2022, 264, 169397.
[http://dx.doi.org/10.1016/j.ijleo.2022.169397]
[70]
Yoon, S.; Kim, M.; Jang, M.; Choi, Y.; Choi, W.; Kang, S.; Choi, W. Deep optical imaging within complex scattering media. Nature Reviews Physics, 2020, 2(3), 141-158.
[http://dx.doi.org/10.1038/s42254-019-0143-2]
[71]
Conkey, D.B.; Caravaca-Aguirre, A.M.; Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express, 2012, 20(2), 1733-1740.
[http://dx.doi.org/10.1364/OE.20.001733] [PMID: 22274516]
[72]
Ancora, D.; Dominici, L.; Gianfrate, A.; Cazzato, P.; De Giorgi, M.; Ballarini, D.; Sanvitto, D.; Leuzzi, L. Speckle spatial correlations aiding optical transmission matrix retrieval: The smoothed gerchberg–saxton single-iteration algorithm. Photon. Res., 2022, 10(10), 2349-2358.
[http://dx.doi.org/10.1364/PRJ.462578]
[73]
Sun, P.; Chang, S.; Liu, S.; Tao, X.; Wang, C.; Zheng, Z. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm. Opt. Express, 2018, 26(8), 10140-10151.
[http://dx.doi.org/10.1364/OE.26.010140] [PMID: 29715954]
[74]
Jiang, M.; Sun, S.; Wang, J.; Zhang, F.; Wang, X.; Shao, J.; Wang, P. Axial multi-focus stealth cutting method based on the fractional Fourier transform for quartz glass. Ceram. Int., 2023, 49(11), 18296-18304.
[http://dx.doi.org/10.1016/j.ceramint.2023.02.201]
[75]
Wang, J.; Zhang, F.; Wang, X.; Wang, Y.; Shao, J.; Wang, P.; Sun, S. Zooming optimization for fractional Fourier holographic parallel laser microprocessing. Opt. Laser Technol., 2023, 159, 108995.
[http://dx.doi.org/10.1016/j.optlastec.2022.108995]
[76]
Hong, J.; Li, J.; Chu, D. Modulation approach of arbitrary linear polarization states of optical fields using single-beam coding for next-generation optical storage in glass. Opt. Laser Technol., 2023, 164, 109539.
[http://dx.doi.org/10.1016/j.optlastec.2023.109539]
[77]
Shen, C.; Qi, Y.; Sun, J.; Lv, S.; Wei, S. Optimized iterative method for generating phase-only Fourier hologram based on quadratic phase. Opt. Commun., 2021, 500, 127313.
[http://dx.doi.org/10.1016/j.optcom.2021.127313]
[78]
Garmendía-Martínez, A.; Muñoz-Pérez, F.M.; Furlan, W.D.; Giménez, F.; Castro-Palacio, J.C.; Monsoriu, J.A.; Ferrando, V. Comparative study of numerical methods for solving the fresnel integral in aperiodic diffractive lenses. Mathematics, 2023, 11(4), 946.
[http://dx.doi.org/10.3390/math11040946]
[79]
Malsaria, A.; Vyas, P.; Kaur, M. Design and implementation of optical image communication encoding grounded on optical Fourier transform. J. Opt. Commun., 2023.
[http://dx.doi.org/10.1515/joc-2023-0092]
[80]
Wang, J.; Sun, S.; Zhang, H.; Hasegawa, S.; Wang, P.; Hayasaki, Y. Holographic femtosecond laser parallel processing method based on the fractional fourier transform. Opt. Lasers Eng., 2021, 146, 106704.
[http://dx.doi.org/10.1016/j.optlaseng.2021.106704]
[81]
Wang, J.; Hayasaki, Y.; Zhang, F.; Wang, X.; Hasegawa, S.; Zhang, H.; Wang, P.; Wang, Y.; Sun, S. Three-dimensional holographic femtosecond laser parallel processing method with the fractional Fourier transform for glass substrates. Ceram. Int., 2022, 48(11), 16364-16373.
[http://dx.doi.org/10.1016/j.ceramint.2022.02.187]
[82]
Dong, K.; Jiang, W.; Cheng, M.; Shi, C.; Cao, Y.; Guo, L. Attenuation of Bessel vortex beam transmission in the rain environment. J. Quant. Spectrosc. Radiat. Transf., 2023, 304, 108620.
[http://dx.doi.org/10.1016/j.jqsrt.2023.108620]
[83]
Shi, H.; Wang, L.; Li, G.; Yi, J.; Liu, H.; Zhang, A.; Xu, Z. Guided-wave inspired metasurfaces for multifunctional vortex beam generation and manipulation. J. Lightwave Technol., 2023, 41(7), 2094-2106.
[http://dx.doi.org/10.1109/JLT.2022.3213850]
[84]
Pereiro-García, J.; García-de-Blas, M.; Geday, M.A.; Quintana, X.; Caño-García, M. Flat variable liquid crystal diffractive spiral axicon enabling perfect vortex beams generation. Sci. Rep., 2023, 13(1), 2385.
[http://dx.doi.org/10.1038/s41598-023-29164-0] [PMID: 36765189]
[85]
Xu, C.; Chen, X.; Cai, Y.; Wang, Y. High-quality tunable optical vortex arrays with multiple states of orbital angular momentum. Opt. Laser Technol., 2024, 169, 110029.
[http://dx.doi.org/10.1016/j.optlastec.2023.110029]
[86]
Guo, M.; Le, W.; Wang, C.; Rui, G.; Zhu, Z.; He, J.; Gu, B. Generation, topological charge, and orbital angular momentum of off-axis double vortex beams. Photonics, 2023, 10(4), 368.
[http://dx.doi.org/10.3390/photonics10040368]
[87]
Pan, D.; Liu, S.; Li, J.; Ni, J.; Xin, C.; Ji, S.; Lao, Z.; Zhang, C.; Xu, B.; Li, R.; Fan, S.; Li, P.; Hu, Y.; Wu, D.; Chu, J. Rapid Fabrication of 3D chiral microstructures by single exposure of interfered femtosecond vortex beams and capillary‐force‐assisted self‐assembly. Adv. Funct. Mater., 2022, 32(4), 2106917.
[http://dx.doi.org/10.1002/adfm.202106917]
[88]
Liu, S.F.; Hou, Z.W.; Lin, L.; Li, Z.; Sun, H-B. 3D Laser nanoprinting of functional materials. Adv. Funct. Mater., 2023, 33(39), 2211280.
[http://dx.doi.org/10.1002/adfm.202211280]
[89]
So, S.; Badloe, T.; Noh, J.; Bravo-Abad, J.; Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 2020, 9(5), 1041-1057.
[http://dx.doi.org/10.1515/nanoph-2019-0474]
[90]
Piccinotti, D.; MacDonald, K.F.; A. Gregory, S.; Youngs, I.; Zheludev, N.I. Artificial intelligence for photonics and photonic materials. Rep. Prog. Phys., 2021, 84(1), 012401.
[http://dx.doi.org/10.1088/1361-6633/abb4c7] [PMID: 33355315]
[91]
Park, H.S.; Nguyen, D.S.; Le-Hong, T.; Van Tran, X. Machine learning-based optimization of process parameters in selective laser melting for biomedical applications. J. Intell. Manuf., 2022, 33(6), 1843-1858. [J].
[http://dx.doi.org/10.1007/s10845-021-01773-4]
[92]
Chang, C.; Wang, D.; Zhu, D.; Li, J.; Xia, J.; Zhang, X. Deep-learning-based computer-generated hologram from a stereo image pair. Opt. Lett., 2022, 47(6), 1482-1485.
[http://dx.doi.org/10.1364/OL.453580] [PMID: 35290344]
[93]
Hegde, R.S. Deep learning: A new tool for photonic nanostructure design. Nanoscale Adv., 2020, 2(3), 1007-1023.
[http://dx.doi.org/10.1039/C9NA00656G] [PMID: 36133043]
[94]
Wiecha, P.R.; Arbouet, A.; Girard, C.; Muskens, O.L. Deep learning in nano-photonics: Inverse design and beyond. Photon. Res., 2021, 9(5), B182-B200.
[http://dx.doi.org/10.1364/PRJ.415960]
[95]
Chang, X.; Zhao, R.; Jiang, S.; Shen, C.; Zheng, G.; Yang, C.; Bian, L. Complex-domain-enhancing neural network for large-scale coherent imaging. Adv. Photonics Nexus, 2023, 2(4), 046006-046006.
[http://dx.doi.org/10.1117/1.APN.2.4.046006]
[96]
Zhou, T.; Lin, X.; Wu, J.; Chen, Y.; Xie, H.; Li, Y.; Fan, J.; Wu, H.; Fang, L.; Dai, Q. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 2021, 15(5), 367-373.
[http://dx.doi.org/10.1038/s41566-021-00796-w]
[97]
Hasegawa, S.; Hayasaki, Y. Femtosecond laser processing with adaptive optics based on convolutional neural network. Opt. Lasers Eng., 2021, 141, 106563.
[http://dx.doi.org/10.1016/j.optlaseng.2021.106563]
[98]
Lin, D.; Li, D.; Cui, Y.; Zhang, T.; Meng, F.; Zhao, X.; Ding, J.; Liang, S. Machine learning-based error compensation for high precision laser arbitrary beam splitting. Opt. Lasers Eng., 2023, 160, 107245.
[http://dx.doi.org/10.1016/j.optlaseng.2022.107245]
[99]
Sun, J.; Wu, J.; Koukourakis, N.; Cao, L.; Kuschmierz, R.; Czarske, J. Real-time complex light field generation through a multi-core fiber with deep learning. Sci. Rep., 2022, 12(1), 7732.
[http://dx.doi.org/10.1038/s41598-022-11803-7] [PMID: 35546604]