Colorimetric and Electrochemical Sensors for the Detection of Sarcosine, A Potential Biomarker for Prostate Cancer: A Review

Page: [2 - 13] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Sarcosine is currently identified as a potential biomarker for prostate cancer. It is n-methyl derivative of glycine, which is naturally present in muscle and body tissues. Studies indicate that a delay in the treatment of prostate cancer is often due to its diagnosis not being possible at earlier stages. Also, plasma and urine samples with increased sarcosine concentration exhibit a higher probability of this cancer development, therefore; it is safe to proceed with them as biomarkers. Correspondingly, a sarcosine biosensor can be used for early detection of this cancer. Driven by this, in this review, we have discussed various types of biosensors for the detection of sarcosine. The review includes an overview of biosensors with their working principle, and discussion of the methodologies used, starting from conventional chromatographic methods to exclusive nanotechnology-based biosensors. This imbibes various techniques involved in the detection of sarcosine from urine and blood samples. We also critically evaluated the different reports for sarcosine detection based on materials used, techniques employed, limit of detection (LOD), linear range, sensitivity, and cost. We believe that this review retains its novelty in providing a vision of existing advancements with intricate details of their features, thus enabling the further development of biosensors for prostate cancer.

Graphical Abstract

[1]
Pundir, C.S.; Kumar, P.; Jaiwal, R. Biosensing methods for determination of creatinine: A review. Biosens. Bioelectron., 2019, 126, 707-724.
[http://dx.doi.org/10.1016/j.bios.2018.11.031] [PMID: 30551062]
[2]
Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev., 2000, 80(3), 1107-1213.
[http://dx.doi.org/10.1152/physrev.2000.80.3.1107] [PMID: 10893433]
[3]
Heger, Z.; Merlos Rodrigo, M.A.; Michalek, P.; Polanska, H.; Masarik, M.; Vit, V.; Plevova, M.; Pacik, D.; Eckschlager, T.; Stiborova, M.; Adam, V. Sarcosine up-regulates expression of genes involved in cell cycle progression of metastatic models of prostate cancer. PLoS One, 2016, 11(11), e0165830.
[http://dx.doi.org/10.1371/journal.pone.0165830] [PMID: 27824899]
[4]
Lima, A.R.; Bastos, M.L.; Carvalho, M.; Guedes de Pinho, P. Biomarker discovery in human prostate cancer: An update in metabolomics studies. Transl. Oncol., 2016, 9(4), 357-370.
[http://dx.doi.org/10.1016/j.tranon.2016.05.004] [PMID: 27567960]
[5]
Singh, B.; Ma, S.; Hara, T.O.; Singh, S. Nanomaterials‐based biosensors for the detection of prostate cancer biomarkers: recent trends and future perspective. Adv. Mater. Technol., 2023, 8(13), 2201860.
[http://dx.doi.org/10.1002/admt.202201860]
[6]
Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[7]
Issaq, H.J.; Waybright, T.J.; Veenstra, T.D. Cancer biomarker discovery: Opportunities and pitfalls in analytical methods. Electrophoresis, 2011, 32(9), 967-975.
[http://dx.doi.org/10.1002/elps.201000588] [PMID: 21449066]
[8]
Naji, L.; Randhawa, H.; Sohani, Z.; Dennis, B.; Lautenbach, D.; Kavanagh, O.; Bawor, M.; Banfield, L.; Profetto, J. Digital rectal examination for prostate cancer screening in primary care: A systematic review and meta-analysis. Ann. Fam. Med., 2018, 16(2), 149-154.
[http://dx.doi.org/10.1370/afm.2205] [PMID: 29531107]
[9]
Rigau, M.; Olivan, M.; Garcia, M.; Sequeiros, T.; Montes, M.; Colás, E.; Llauradó, M.; Planas, J.; de Torres, I.; Morote, J.; Cooper, C.; Reventós, J.; Clark, J.; Doll, A. The present and future of prostate cancer urine biomarkers. Int. J. Mol. Sci., 2013, 14(6), 12620-12649.
[http://dx.doi.org/10.3390/ijms140612620] [PMID: 23774836]
[10]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 2006, 128(6), 2115-2120.
[http://dx.doi.org/10.1021/ja057254a] [PMID: 16464114]
[11]
David, M.K.; Leslie, S.W. Prostate Specific Antigen; StatPearls Publishing: Treasure Island, 2022.
[12]
Strope, S.A.; Andriole, G.L. Prostate cancer screening: Current status and future perspectives. Nat. Rev. Urol., 2010, 7(9), 487-493.
[http://dx.doi.org/10.1038/nrurol.2010.120] [PMID: 20818326]
[13]
Gill, N.; Zouwail, S.; Joshi, H. Prostate-specific antigen: A review of assay techniques, variability and their clinical implications. Bionanoscience, 2018, 8(2), 707-712.
[http://dx.doi.org/10.1007/s12668-017-0465-4]
[14]
Ilic, D.; Djulbegovic, M.; Jung, J.H.; Hwang, E.C.; Zhou, Q.; Cleves, A.; Agoritsas, T.; Dahm, P. Prostate cancer screening with prostate-specific antigen (PSA) test: A systematic review and meta-analysis. BMJ, 2018, 362, k3519.
[http://dx.doi.org/10.1136/bmj.k3519] [PMID: 30185521]
[15]
Pezaro, C.; Woo, H.H.; Davis, I.D. Prostate cancer: Measuring PSA. Intern. Med. J., 2014, 44(5), 433-440.
[http://dx.doi.org/10.1111/imj.12407] [PMID: 24816306]
[16]
Grossman, D.C.; Curry, S.J.; Owens, D.K.; Bibbins-Domingo, K.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Ebell, M.; Epling, J.W., Jr; Kemper, A.R.; Krist, A.H.; Kubik, M.; Landefeld, C.S.; Mangione, C.M.; Silverstein, M.; Simon, M.A.; Siu, A.L.; Tseng, C.W. Screening for prostate cancer. JAMA, 2018, 319(18), 1901-1913.
[http://dx.doi.org/10.1001/jama.2018.3710] [PMID: 29801017]
[17]
Fleshner, K.; Carlsson, S.V.; Roobol, M.J. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat. Rev. Urol., 2017, 14(1), 26-37.
[http://dx.doi.org/10.1038/nrurol.2016.251] [PMID: 27995937]
[18]
Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; Nyati, M.K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G.S.; Ghosh, D.; Pennathur, S.; Alexander, D.C.; Berger, A.; Shuster, J.R.; Wei, J.T.; Varambally, S.; Beecher, C.; Chinnaiyan, A.M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457(7231), 910-914.
[http://dx.doi.org/10.1038/nature07762] [PMID: 19212411]
[19]
Cernei, N.; Heger, Z.; Gumulec, J.; Zitka, O.; Masarik, M.; Babula, P.; Eckschlager, T.; Stiborova, M.; Kizek, R.; Adam, V. Sarcosine as a potential prostate cancer biomarker--a review. Int. J. Mol. Sci., 2013, 14(7), 13893-13908.
[http://dx.doi.org/10.3390/ijms140713893] [PMID: 23880848]
[20]
Pundir, C.S.; Deswal, R.; Kumar, P. Quantitative analysis of sarcosine with special emphasis on biosensors: A review. Biomarkers, 2019, 24(5), 415-422.
[http://dx.doi.org/10.1080/1354750X.2019.1615124] [PMID: 31050554]
[21]
Cernei, N.; Zitka, O.; Ryvolova, M.; Adam, V.; Masarik, M.; Hubalek, J.; Kizek, R. Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker. Int. J. Electrochem. Sci., 2012, 7(5), 4286-4301.
[http://dx.doi.org/10.1016/S1452-3981(23)19538-1]
[22]
Markin, P.A.; Brito, A.; Moskaleva, N.; Fodor, M.; Lartsova, E.V.; Shpot, Y.V.; Lerner, Y.V.; Mikhajlov, V.Y.; Potoldykova, N.V.; Enikeev, D.V.; Lyundup, A.V.; Appolonova, S.A. Plasma sarcosine measured by gas chromatography-mass spectrometry distinguishes prostatic intraepithelial neoplasia and prostate cancer from benign prostate hyperplasia. Lab. Med., 2020, 51(6), 566-573.
[http://dx.doi.org/10.1093/labmed/lmaa008] [PMID: 32161964]
[23]
Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.Y.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[24]
Alhammadi, M.; Aliya, S.; Umapathi, R.; Oh, M.H.; Huh, Y.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine. Microchem. J., 2023, 195, 109427.
[http://dx.doi.org/10.1016/j.microc.2023.109427]
[25]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[26]
Umapathi, R.; Venkateswara Raju, C.; Majid Ghoreishian, S.; Mohana Rani, G.; Kumar, K.; Oh, M.H.; Pil Park, J.; Suk Huh, Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[27]
Turner, A.P.F. Biosensors: Fundamentals and applications - Historic book now open access. Biosens. Bioelectron., 2015, 65, A1.
[http://dx.doi.org/10.1016/j.bios.2014.10.027] [PMID: 25459061]
[28]
Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sen. Int., 2021, 2, 100100.
[http://dx.doi.org/10.1016/j.sintl.2021.100100]
[29]
Akbari Nakhjavani, S.; Tokyay, B.K.; Soylemez, C.; Sarabi, M.R.; Yetisen, A.K.; Tasoglu, S. Biosensors for prostate cancer detection. Trends Biotechnol., 2023, 41(10), 1248-1267.
[http://dx.doi.org/10.1016/j.tibtech.2023.04.001] [PMID: 37147246]
[30]
Hora, C.S.; Tavares, A.P.M.; Carneiro, L.P.T.; Ivanou, D.; Mendes, A.M.; Sales, M.G.F. New autonomous and self-signaling biosensing device for sarcosine detection. Talanta, 2023, 257, 124340.
[http://dx.doi.org/10.1016/j.talanta.2023.124340] [PMID: 36809692]
[31]
Song, P.; Shen, J.; Ye, D.; Dong, B.; Wang, F.; Pei, H.; Wang, J.; Shi, J.; Wang, L.; Xue, W.; Huang, Y.; Huang, G.; Zuo, X.; Fan, C. Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. Nat. Commun., 2020, 11(1), 838.
[http://dx.doi.org/10.1038/s41467-020-14664-8] [PMID: 32047166]
[32]
Uhlirova, D.; Stankova, M.; Docekalova, M.; Hosnedlova, B.; Kepinska, M.; Ruttkay-Nedecky, B.; Ruzicka, J.; Fernandez, C.; Milnerowicz, H.; Kizek, R. A rapid method for the detection of sarcosine using SPIONs/Au/CS/SOX/NPs for prostate cancer sensing. Int. J. Mol. Sci., 2018, 19(12), 3722.
[http://dx.doi.org/10.3390/ijms19123722] [PMID: 30467297]
[33]
Deswal, R.; Narwal, V.; Kumar, P.; Verma, V.; Dang, A.S.; Pundir, C.S. An improved amperometric sarcosine biosensor based on graphene nanoribbon/chitosan nanocomposite for detection of prostate cancer. Sen. Int., 2022, 3, 100174.
[http://dx.doi.org/10.1016/j.sintl.2022.100174]
[34]
Rebelo, T.S.C.R.; Pereira, C.M.; Sales, M.G.F.; Noronha, J.P.; Costa-Rodrigues, J.; Silva, F.; Fernandes, M.H. Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples. Anal. Chim. Acta, 2014, 850, 26-32.
[http://dx.doi.org/10.1016/j.aca.2014.08.005] [PMID: 25441156]
[35]
Usman, A. Nanoparticle enhanced optical biosensing technologies for prostate specific antigen biomarker detection. IEEE Rev. Biomed. Eng., 2022, 15, 122-137.
[http://dx.doi.org/10.1109/RBME.2020.3035273] [PMID: 33136544]
[36]
Heger, Z.; Cernei, N.; Krizkova, S.; Masarik, M.; Kopel, P.; Hodek, P.; Zitka, O.; Adam, V.; Kizek, R. Paramagnetic nanoparticles as a platform for FRET-based sarcosine picomolar detection. Sci. Rep., 2015, 5(1), 8868.
[http://dx.doi.org/10.1038/srep08868] [PMID: 25746688]
[37]
Veloso, A.J.; Cheng, X.R.; Kerman, K. Electrochemical biosensors for medical applications. In: Biosensors for Medical Applications; Elsevier, 2012; pp. 3-40.
[http://dx.doi.org/10.1533/9780857097187.1.3]
[38]
Liu, T.; Fu, B.; Chen, J.; Li, K. An electrochemical sarcosine sensor based on biomimetic recognition. Mikrochim. Acta, 2019, 186(3), 136.
[http://dx.doi.org/10.1007/s00604-019-3240-0] [PMID: 30707309]
[39]
Tang, P.; Wang, Y.; He, F. Electrochemical sensor based on super-magnetic metal-organic framework@molecularly imprinted polymer for Sarcosine detection in urine. J. Saudi Chem. Soc., 2020, 24(8), 620-630.
[http://dx.doi.org/10.1016/j.jscs.2020.06.004]
[40]
Udayakumar, J.; Selvaraj, S. One-step nonenzymatic electrochemical sensor for the detection of sarcosine using nanozyme glutathione copper complex. Curr. Anal. Chem., 2024, 19(8), 577-584.
[http://dx.doi.org/10.2174/1573411019666230125120314]
[41]
Zhang, X.; Chen, J.; Wang, Q.; Du, B.; Fan, G.; Zheng, W.; Yang, H.; Xu, T. Amperometric sarcosine biosensors based on electrodeposited conductive films contain indole‐6‐carboxylic acid. Electroanalysis, 2022, 34(2), 345-351.
[http://dx.doi.org/10.1002/elan.202100225]
[42]
Rashedi, M.; Alizadeh, T. A novel non-enzymatic sensor for prostate cancer biomarker sensing based on electrocatalytic oxidation of sarcosine at nanostructured NiMn2O4 impregnated carbon paste electrode. Anal. Chim. Acta, 2021, 1186, 339121.
[http://dx.doi.org/10.1016/j.aca.2021.339121] [PMID: 34756269]
[43]
Yang, H.; Wang, J.; Yang, C.; Zhao, X.; Xie, S.; Ge, Z. Nano Pt@ZIF8 modified electrode and its application to detect sarcosine. J. Electrochem. Soc., 2018, 165(5), H247-H250.
[http://dx.doi.org/10.1149/2.1231805jes]
[44]
Koncki, R. Recent developments in potentiometric biosensors for biomedical analysis. Anal. Chim. Acta, 2007, 599(1), 7-15.
[http://dx.doi.org/10.1016/j.aca.2007.08.003] [PMID: 17765058]
[45]
Ünlüer, Ö.B.; Altunkök, N.; Özkütük, E.B.; Ersöz, A. Graphenoxide cross-linker based potentiometric biosensor design for sarcosine determination. Protein Pept. Lett., 2021, 28(11), 1303-1311.
[http://dx.doi.org/10.2174/0929866528666211008160111] [PMID: 34629039]
[46]
de Cássia Mendonça, J.; da Rocha, L.R.; Capelari, T.B.; Prete, M.C.; Angelis, P.N.; Segatelli, M.G.; Tarley, C.R.T. Design and performance of novel molecularly imprinted biomimetic adsorbent for preconcentration of prostate cancer biomarker coupled to electrochemical determination by using multi-walled carbon nanotubes/Nafion®/Ni(OH)2-modified screen-printed electrode. J. Electroanal. Chem., 2020, 878, 114582.
[http://dx.doi.org/10.1016/j.jelechem.2020.114582]
[47]
Zarezadeh, A.; Rajabi, H.R.; Sheydaei, O.; Khajehsharifi, H. Application of a nano-structured molecularly imprinted polymer as an efficient modifier for the design of captopril drug selective sensor: Mechanism study and quantitative determination. Mater. Sci. Eng. C, 2019, 94, 879-885.
[http://dx.doi.org/10.1016/j.msec.2018.10.042] [PMID: 30423775]
[48]
Lad, U.; Kale, G.M.; Bryaskova, R. Sarcosine oxidase encapsulated polyvinyl alcohol-silica-aunp hybrid films for sarcosine sensing electrochemical bioelectrode. J. Electrochem. Soc., 2014, 161(5), B98-B101.
[http://dx.doi.org/10.1149/2.018405jes]
[49]
Wang, H.; Qi, Y.; Wu, D.; Wei, Q. A photoelectrochemical self-powered sensor for the detection of sarcosine based on NiO NSs/PbS/Au NPs as photocathodic material. J. Hazard. Mater., 2021, 416, 126201.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126201] [PMID: 34492964]
[50]
Sun, J.; He, Y.; He, S.; Liu, D.; Lu, K.; Yao, W.; Jia, N. A self-powered photoelectrochemical cathodic molecular imprinting sensor based on Au@TiO2 nanorods photoanode and Cu2O photocathode for sensitive detection of sarcosine. Biosens. Bioelectron., 2022, 204, 114056.
[http://dx.doi.org/10.1016/j.bios.2022.114056] [PMID: 35172245]
[51]
Riedel, M.; Göbel, G.; Abdelmonem, A.M.; Parak, W.J.; Lisdat, F. Photoelectrochemical sensor based on quantum dots and sarcosine oxidase. ChemPhysChem, 2013, 14(10), 2338-2342.
[http://dx.doi.org/10.1002/cphc.201201036] [PMID: 23589424]
[52]
Liu, Q.; Cao, S.; Sun, Q.; Xing, C.; Gao, W.; Lu, X.; Li, X.; Yang, G.; Yu, S.; Chen, Y. A perylenediimide modified SiO2@TiO2 yolk-shell light-responsive nanozyme: Improved peroxidase-like activity for H2O2 and sarcosine sensing. J. Hazard. Mater., 2022, 436, 129321.
[http://dx.doi.org/10.1016/j.jhazmat.2022.129321] [PMID: 35739809]
[53]
Damborský, P.; Švitel, J. Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[54]
Jiang, Y.; Cheng, X.; Wang, C.; Ma, Y. Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry. Anal. Chem., 2010, 82(21), 9022-9027.
[http://dx.doi.org/10.1021/ac1019914] [PMID: 20939533]
[55]
Sun, N.N.; Yan, B. A fluorescent probe based on a Tb 3+/Cu 2+ co-functionalized MOF for urinary sarcosine detection. Analyst, 2018, 143(10), 2349-2355.
[http://dx.doi.org/10.1039/C8AN00425K] [PMID: 29671424]
[56]
Zhong, Q.; Qin, X.; Yuan, C.; Shi, R.; Wang, Y. Colorimetric determination of sarcosine in human urine with enzyme-like reaction mediated Au nanorods etching. Microchem. J., 2021, 165, 106120.
[http://dx.doi.org/10.1016/j.microc.2021.106120]
[57]
Masumoto, M.; Ohta, S.; Nakagawa, M.; Hiruta, Y.; Citterio, D. Colorimetric paper-based sarcosine assay with improved sensitivity. Anal. Bioanal. Chem., 2022, 414(1), 691-701.
[http://dx.doi.org/10.1007/s00216-021-03682-0] [PMID: 34657964]
[58]
Yamkamon, V.; Phakdee, B.; Yainoy, S.; Suksrichawalit, T.; Tatanandana, T.; Sangkum, P.; Eiamphungporn, W. Development of sarcosine quantification in urine based on enzyme-coupled colorimetric method for prostate cancer diagnosis. EXCLI J., 2018, 17, 467-478.
[http://dx.doi.org/10.17179/excli2018-145] [PMID: 30034310]
[59]
Luo, Y.; Wang, J.; Yang, L.; Gao, T.; Pei, R. In vitro selection of DNA aptamers for the development of fluorescent aptasensor for sarcosine detection. Sens. Actuators B Chem., 2018, 276, 128-135.
[http://dx.doi.org/10.1016/j.snb.2018.08.105]
[60]
Valenti, G.; Rampazzo, E.; Biavardi, E.; Villani, E.; Fracasso, G.; Marcaccio, M.; Bertani, F.; Ramarli, D.; Dalcanale, E.; Paolucci, F.; Prodi, L. An electrochemiluminescence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer. Faraday Discuss., 2015, 185, 299-309.
[http://dx.doi.org/10.1039/C5FD00096C] [PMID: 26394608]
[61]
Chung, T.C.; Li, C.T.; Kou, H.S.; Wu, H.L. High-performance liquid chromatographic analysis of sarcosine as a fluorescent levofloxacin derivative. J. Chromatogr. Sci., 2015, 53(8), 1310-1315.
[http://dx.doi.org/10.1093/chromsci/bmv010] [PMID: 25688037]
[62]
Pirzada, M.; Altintas, Z. Nanomaterials for healthcare biosensing applications. Sensors, 2019, 19(23), 5311.
[http://dx.doi.org/10.3390/s19235311] [PMID: 31810313]
[63]
Wang, H.; Zhao, X.; Han, X.; Tang, Z.; Song, F.; Zhang, S.; Zhu, Y.; Guo, W.; He, Z.; Guo, Q.; Wu, F.; Meng, X.; Giesy, J.P. Colloidal stability of Fe3O4 magnetic nanoparticles differentially impacted by dissolved organic matter and cations in synthetic and naturally-occurred environmental waters. Environ. Pollut., 2018, 241, 912-921.
[http://dx.doi.org/10.1016/j.envpol.2018.06.029] [PMID: 29920469]
[64]
Nakhaei, A.; Ramezani, S.; Shams-Najafi, S.J.; Farsinejad, S. Nano-Fe3O4@ZrO2-SO3H as highly efficient recyclable catalyst for the green synthesis of fluoroquinolones. Lett. Org. Chem., 2018, 15(9), 739-746.
[http://dx.doi.org/10.2174/1570178615666171226162735]
[65]
Dutta Chowdhury, A.; Ganganboina, A.B.; Tsai, Y.; Chiu, H.; Doong, R. Multifunctional GQDs-Concanavalin A@Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery. Anal. Chim. Acta, 2018, 1027, 109-120.
[http://dx.doi.org/10.1016/j.aca.2018.04.029] [PMID: 29866260]
[66]
Cavaliere, B.; Macchione, B.; Monteleone, M.; Naccarato, A.; Sindona, G.; Tagarelli, A. Sarcosine as a marker in prostate cancer progression: a rapid and simple method for its quantification in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal. Bioanal. Chem., 2011, 400(9), 2903-2912.
[http://dx.doi.org/10.1007/s00216-011-4960-0] [PMID: 21491110]
[67]
Wang, Y.; Liu, X.; Deng, G.; Wang, Q.; Zhang, L.; Wang, Q.; Lu, J. Multifunctional PS@CS@Au-Fe3O4-FA nanocomposites for CT, MR and fluorescence imaging guided targeted-photothermal therapy of cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(22), 4221-4232.
[http://dx.doi.org/10.1039/C7TB00642J] [PMID: 32264152]
[68]
Feng, J.; Chen, X.; Shi, X.; Zheng, W.; Zhang, X.; Yang, H. Sarcosine biosensor based on Pt/g-C3N4 nanocomposites with high electrocatalytic activity. ECS J. Solid State Sci. Technol., 2022, 11, 047001.
[69]
Selvaraj, S.; Varshini, K.S.; Sonia, T.; Jeyaprakash, B.G.; Balamurugan, D. Spray deposited ZnO nanograins for enzyme-free detection of sarcosine. Sens. Imaging, 2021, 22(1), 46.
[http://dx.doi.org/10.1007/s11220-021-00369-9]
[70]
Diltemiz, S.E.; Uslu, O. A reflectometric interferometric nanosensor for sarcosine. Biotechnol. Prog., 2015, 31(1), 55-61.
[http://dx.doi.org/10.1002/btpr.1955] [PMID: 25079110]
[71]
Goldenberg, D.M. Monoclonal antibodies in cancer detection and therapy. Am. J. Med., 1993, 94(3), 297-312.
[http://dx.doi.org/10.1016/0002-9343(93)90062-T] [PMID: 8452154]
[72]
Ye, L.; Haupt, K. Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal. Bioanal. Chem., 2004, 378(8), 1887-1897.
[http://dx.doi.org/10.1007/s00216-003-2450-8] [PMID: 15064898]
[73]
Nguy, T.P.; Van Phi, T.; Tram, D.T.N.; Eersels, K.; Wagner, P.; Lien, T.T.N. Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sens. Actuators B Chem., 2017, 246, 461-470.
[http://dx.doi.org/10.1016/j.snb.2017.02.101]