Improving ADMET Prediction Accuracy for Candidate Drugs: Factors to Consider in QSPR Modeling Approaches

Page: [222 - 242] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Quantitative Structure-Property Relationship (QSPR) employs mathematical and statistical methods to reveal quantitative correlations between the pharmacokinetics of compounds and their molecular structures, as well as their physical and chemical properties. QSPR models have been widely applied in the prediction of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). However, the accuracy of QSPR models for predicting drug ADMET properties still needs improvement. Therefore, this paper comprehensively reviews the tools employed in various stages of QSPR predictions for drug ADMET. It summarizes commonly used approaches to building QSPR models, systematically analyzing the advantages and limitations of each modeling method to ensure their judicious application. We provide an overview of recent advancements in the application of QSPR models for predicting drug ADMET properties. Furthermore, this review explores the inherent challenges in QSPR modeling while also proposing a range of considerations aimed at enhancing model prediction accuracy. The objective is to enhance the predictive capabilities of QSPR models in the field of drug development and provide valuable reference and guidance for researchers in this domain.

Graphical Abstract

[1]
Idakwo, G.; Luttrell, J.; Chen, M.; Hong, H.; Zhou, Z.; Gong, P.; Zhang, C. A review on machine learning methods for in silico toxicity prediction. J. Environ. Sci. Health C, 2019, 36(2), 1-23.
[2]
Wouters, O.J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA, 2020, 323(9), 844-853.
[http://dx.doi.org/10.1001/jama.2020.1166] [PMID: 32125404]
[3]
Wasan, H.; Singh, D.; Reeta, K.H.; Gupta, P.; Gupta, Y.K. Drug development process and COVID-19 pandemic: Flourishing era of outsourcing. Indian J. Pharmacol., 2022, 54(5), 364-372.
[PMID: 36537406]
[4]
Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of clinical trial success rates and related parameters. Biostatistics, 2019, 20(2), 273-286.
[http://dx.doi.org/10.1093/biostatistics/kxx069] [PMID: 29394327]
[5]
Cheng, F.; Li, W.; Liu, G.; Tang, Y. in silico ADMET prediction: Recent advances, current challenges and future trends. Curr. Top. Med. Chem., 2013, 13(11), 1273-1289.
[http://dx.doi.org/10.2174/15680266113139990033] [PMID: 23675935]
[6]
Kar, S.; Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov., 2020, 15(12), 1473-1487.
[http://dx.doi.org/10.1080/17460441.2020.1798926] [PMID: 32735147]
[7]
Tareq Hassan Khan, M. Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Curr. Drug Metab., 2010, 11(4), 285-295.
[http://dx.doi.org/10.2174/138920010791514306] [PMID: 20450477]
[8]
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6), 1067-1069.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[9]
Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform., 2018, 10(1), 29.
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29943074]
[10]
Roy, K.; Ambure, P.; Kar, S.; Ojha, P.K. Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J. Chemometr., 2018, 32(4), e2992.
[http://dx.doi.org/10.1002/cem.2992]
[11]
Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today, 2018, 23(6), 1241-1250.
[http://dx.doi.org/10.1016/j.drudis.2018.01.039] [PMID: 29366762]
[12]
Alqahtani, S. in silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(11), 1147-1158.
[http://dx.doi.org/10.1080/17425255.2017.1389897] [PMID: 28988506]
[13]
Diukendjieva, A.; Sharif, M.A.; Alov, P.; Pencheva, T.; Tsakovska, I.; Pajeva, I. ADME/Tox properties and biochemical interactions of silybin congeners: in silico study. Nat. Prod. Commun., 2017, 12(2), 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200208] [PMID: 30428204]
[14]
Chen, B.; Zhang, T.; Bond, T.; Gan, Y. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources. J. Hazard. Mater., 2015, 299, 260-279.
[http://dx.doi.org/10.1016/j.jhazmat.2015.06.054] [PMID: 26142156]
[15]
Toropov, A.A.; Toropova, A.P. QSPR/QSAR: State-of-Art, Weirdness, the Future. Molecules, 2020, 25(6), 1292.
[http://dx.doi.org/10.3390/molecules25061292] [PMID: 32178379]
[16]
Tian, S.; Li, Y.; Wang, J.; Zhang, J.; Hou, T. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol. Pharm., 2011, 8(3), 841-851.
[http://dx.doi.org/10.1021/mp100444g] [PMID: 21548635]
[17]
Liu, R.; So, S.S. Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery. 1. Aqueous solubility. J. Chem. Inf. Comput. Sci., 2001, 41(6), 1633-1639.
[http://dx.doi.org/10.1021/ci010289j] [PMID: 11749590]
[18]
Hou, T.; Wang, J. Structure – ADME relationship: Still a long way to go? Expert Opin. Drug Metab. Toxicol., 2008, 4(6), 759-770.
[http://dx.doi.org/10.1517/17425255.4.6.759] [PMID: 18611116]
[19]
Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (quantitative structure–activity relationship) models. Front. Microbiol., 2019, 10, 829.
[http://dx.doi.org/10.3389/fmicb.2019.00829] [PMID: 31057527]
[20]
Hessler, G.; Baringhaus, K.H. Artificial intelligence in drug design. Molecules, 2018, 23(10), 2520.
[http://dx.doi.org/10.3390/molecules23102520] [PMID: 30279331]
[21]
Moriwaki, H.; Tian, Y.S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform., 2018, 10(1), 4-4.
[http://dx.doi.org/10.1186/s13321-018-0258-y] [PMID: 29411163]
[22]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[23]
Qazi, S.U.; Rahman, S.U.; Awan, A.N.; al-Rashida, M.; Alharthy, R.D.; Asari, A.; Hameed, A.; Iqbal, J. Semicarbazone derivatives as urease inhibitors: Synthesis, biological evaluation, molecular docking studies and in-silico ADME evaluation. Bioorg. Chem., 2018, 79, 19-26.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.029] [PMID: 29709568]
[24]
Wei, Y.; Li, W.; Du, T.; Hong, Z.; Lin, J. Targeting HIV/HCV coinfection using a machine learning-based multiple quantitative structure-activity relationships (multiple qsar) method. Int. J. Mol. Sci., 2019, 20(14), 3572.
[http://dx.doi.org/10.3390/ijms20143572] [PMID: 31336592]
[25]
Kharkar, P. Two-dimensional (2D) in silico models for absorption, distribution, metabolism, excretion and toxicity (ADME/T) in drug discovery. Curr. Top. Med. Chem., 2010, 10(1), 116-126.
[http://dx.doi.org/10.2174/156802610790232224] [PMID: 19929825]
[26]
Huuskonen, J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J. Chem. Inf. Comput. Sci., 2000, 40(3), 773-777.
[http://dx.doi.org/10.1021/ci9901338] [PMID: 10850781]
[27]
Huuskonen, J.; Salo, M.; Taskinen, J. Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J. Chem. Inf. Comput. Sci., 1998, 38(3), 450-456.
[http://dx.doi.org/10.1021/ci970100x] [PMID: 9611785]
[28]
Bansode, P.; Anantacharya, R.; Dhanavade, M.; Kamble, S.; Barale, S.; Sonawane, K.; Satyanarayan, N.D.; Rashinkar, G. Evaluation of drug candidature: in silico ADMET, binding interactions with CDK7 and normal cell line studies of potentially anti-breast cancer enamidines. Comput. Biol. Chem., 2019, 83, 107124.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107124] [PMID: 31563021]
[29]
Sun, J.R.; Lan, P.; Sun, P-H.; Chen, W-M. 3D-QSAR and docking studies on pyrrolopyrimidine derivatives as LIM-Kinase 2 inhibitors. Lett. Drug Des. Discov., 2011, 8(3), 229-240.
[http://dx.doi.org/10.2174/157018011794578178]
[30]
Falchi, F.; Manetti, F.; Carraro, F.; Naldini, A.; Maga, G.; Crespan, E.; Schenone, S.; Bruno, O.; Brullo, C.; Botta, M. 3D QSAR models built on structure-based alignments of Abl tyrosine kinase inhibitors. ChemMedChem, 2009, 4(6), 976-987.
[http://dx.doi.org/10.1002/cmdc.200800441] [PMID: 19326384]
[31]
Liu, P.; Long, W. Current mathematical methods used in QSAR/QSPR studies. Int. J. Mol. Sci., 2009, 10(5), 1978-1998.
[http://dx.doi.org/10.3390/ijms10051978] [PMID: 19564933]
[32]
Yap, C.; Li, H.; Ji, Z.; Chen, Y. Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties. Mini Rev. Med. Chem., 2007, 7(11), 1097-1107.
[http://dx.doi.org/10.2174/138955707782331696] [PMID: 18045213]
[33]
Asadi, L.; Gholivand, K.; Zare, K. Phosphorhydrazides as urease and acetylcholinesterase inhibitors: Biological evaluation and QSAR study. J. Indian Chem. Soc., 2016, 13(7), 1213-1223.
[34]
Roubehie Fissa, M.; Lahiouel, Y.; Khaouane, L.; Hanini, S. QSPR estimation models of normal boiling point and relative liquid density of pure hydrocarbons using MLR and MLP-ANN methods. J. Mol. Graph. Model., 2019, 87, 109-120.
[http://dx.doi.org/10.1016/j.jmgm.2018.11.013] [PMID: 30537641]
[35]
Ringnér, M. What is principal component analysis? Nat. Biotechnol., 2008, 26(3), 303-304.
[http://dx.doi.org/10.1038/nbt0308-303] [PMID: 18327243]
[36]
Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol., 2018, 72, 83-90.
[http://dx.doi.org/10.1016/j.tifs.2017.12.006]
[37]
Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J., 2021, 19, 4538-4558.
[http://dx.doi.org/10.1016/j.csbj.2021.08.011] [PMID: 34471498]
[38]
Bernardo, D.L. Carcinogenicity of polycyclic aromatic hydrocarbons. Quim. Nova, 2016, 39(7)
[39]
Hassanzadeh, Z.; Ghavami, R.; Kompany-Zareh, M. Radial basis function neural networks based on the projection pursuit and principal component analysis approaches: QSAR analysis of fullerene[C60]-based HIV-1 PR inhibitors. Med. Chem. Res., 2015, 25(1), 1-11.
[40]
Gu, W.; Li, Q.; Li, Y. Law and mechanism analysis of biodegradability of polychlorinated naphthalenes based on principal component analysis, QSAR models, molecular docking and molecular dynamics simulation. Chemosphere, 2020, 243, 125427.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125427] [PMID: 31778917]
[41]
Janković, N.; Trifunović Ristovski, J.; Vraneš, M.; Tot, A.; Petronijević, J.; Joksimović, N.; Stanojković, T.; Đorđić Crnogorac, M.; Petrović, N.; Boljević, I.; Matić, I.Z.; Bogdanović, G.A.; Mikov, M.; Bugarčić, Z. Discovery of the biginelli hybrids as novel caspase-9 activators in apoptotic machines: Lipophilicity, molecular docking study, influence on angiogenesis gene and miR-21 expression levels. Bioorg. Chem., 2019, 86, 569-582.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.026] [PMID: 30782575]
[42]
Ristovski Trifunović, J. The evaluation of the anticancer activity of the Biginelli hybrids and pharmacokinetic profiling based on their retention parameters. J. Mol. Struct., 2022, 1254, 132373.
[http://dx.doi.org/10.1016/j.molstruc.2022.132373]
[43]
Groth, D.; Hartmann, S.; Klie, S.; Selbig, J. Principal components analysis. Methods Mol. Biol., 2013, 930, 527-547.
[http://dx.doi.org/10.1007/978-1-62703-059-5_22] [PMID: 23086856]
[44]
Juan, M.; Luco ChemInform abstract: Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling Cheminform, 2010.
[45]
Liu, C.; Zhang, X.; Nguyen, T.T.; Liu, J.; Wu, T.; Lee, E.; Tu, X.M. Partial least squares regression and principal component analysis: similarity and differences between two popular variable reduction approaches. Gen. Psychiatr., 2022, 35(1), e100662.
[http://dx.doi.org/10.1136/gpsych-2021-100662] [PMID: 35146334]
[46]
Stanton, D.T. QSAR and QSPR model interpretation using partial least squares (PLS) analysis. Curr. Computeraided Drug Des., 2012, 8(2), 107-127.
[http://dx.doi.org/10.2174/157340912800492357] [PMID: 22497466]
[47]
Žuvela, P.; Liu, J.J.; Yi, M.; Pomastowski, P.P.; Sagandykova, G.; Belka, M.; David, J.; Bączek, T.; Szafrański, K.; Żołnowska, B.; Sławiński, J.; Supuran, C.T.; Wong, M.W.; Buszewski, B. Target-based drug discovery through inversion of quantitative structure-drug-property relationships and molecular simulation: CA IX-sulphonamide complexes. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1430-1443.
[http://dx.doi.org/10.1080/14756366.2018.1511551] [PMID: 30220229]
[48]
Vucicevic, J.; Popovic, M.; Nikolic, K.; Filipic, S.; Obradovic, D.; Agbaba, D. Use of biopartitioning micellar chromatography and RP-HPLC for the determination of blood–brain barrier penetration of α-adrenergic/imidazoline receptor ligands, and QSPR analysis. SAR QSAR Environ. Res., 2017, 28(3), 235-252.
[http://dx.doi.org/10.1080/1062936X.2017.1302506] [PMID: 28332439]
[49]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[50]
Vapnik, V. The support vector method of function estimation, in Nonlinear modeling: advanced black-box techniques 1999.
[51]
Noble, W.S. What is a support vector machine? Nat. Biotechnol., 2006, 24(12), 1565-1567.
[http://dx.doi.org/10.1038/nbt1206-1565] [PMID: 17160063]
[52]
Yao, X.J.; Panaye, A.; Doucet, J.P.; Zhang, R.S.; Chen, H.F.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J. Chem. Inf. Comput. Sci., 2004, 44(4), 1257-1266.
[http://dx.doi.org/10.1021/ci049965i] [PMID: 15272833]
[53]
Khosrokhavar, R.; Ghasemi, J.B.; Shiri, F. 2D Quantitative structure-property relationship study of mycotoxins by multiple linear regression and support vector machine. Int. J. Mol. Sci., 2010, 11(9), 3052-3068.
[http://dx.doi.org/10.3390/ijms11093052] [PMID: 20957079]
[54]
Samghani, K.; HosseinFatemi, M. Developing a support vector machine based QSPR model for prediction of half-life of some herbicides. Ecotoxicol. Environ. Saf., 2016, 129, 10-15.
[http://dx.doi.org/10.1016/j.ecoenv.2016.03.002] [PMID: 26970881]
[55]
Drew, P.J.; Monson, J.R.T. Artificial neural networks. Surgery, 2000, 127(1), 3-11.
[http://dx.doi.org/10.1067/msy.2000.102173] [PMID: 10660751]
[56]
Baskin, I.I.; Winkler, D.; Tetko, I.V. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov., 2016, 11(8), 785-795.
[http://dx.doi.org/10.1080/17460441.2016.1201262] [PMID: 27295548]
[57]
Montañez-Godínez, N. QSAR/QSPR as an application of artificial neural networks. In: Methods in Molecular Biology; Springer New York: New York, NY, 2015; pp. 319-333.
[58]
Bhattacharya, S.; Bennet, L.; Davidson, J.O.; Unsworth, C.P. Multi-layer perceptron classification & quantification of neuronal survival in hypoxic-ischemic brain image slices using a novel gradient direction, grey level co-occurrence matrix image training. PLoS One, 2022, 17(12), e0278874.
[http://dx.doi.org/10.1371/journal.pone.0278874] [PMID: 36512546]
[59]
Muravyev, N.V.; Luciano, G.; Ornaghi, H.L., Jr; Svoboda, R.; Vyazovkin, S. Artificial neural networks for pyrolysis, thermal analysis, and thermokinetic studies: The status quo. Molecules, 2021, 26(12), 3727.
[http://dx.doi.org/10.3390/molecules26123727] [PMID: 34207246]
[60]
Parasram, T.; Daoud, R.; Xiao, D. T2 analysis using artificial neural networks. J. Magn. Reson., 2021, 325, 106930.
[http://dx.doi.org/10.1016/j.jmr.2021.106930] [PMID: 33640586]
[61]
de Souza, A.S.; Ferreira, L.L.G.; de Oliveira, A.S.; Andricopulo, A.D. Quantitative structure–activity relationships for structurally diverse chemotypes having anti-trypanosoma cruzi activity. Int. J. Mol. Sci., 2019, 20(11), 2801.
[http://dx.doi.org/10.3390/ijms20112801] [PMID: 31181717]
[62]
Tosca, E.M.; Bartolucci, R.; Magni, P. Application of artificial neural networks to predict the intrinsic solubility of drug-like molecules. Pharmaceutics, 2021, 13(7), 1101.
[http://dx.doi.org/10.3390/pharmaceutics13071101] [PMID: 34371792]
[63]
Euldji, I.; Si-Moussa, C.; Hamadache, M.; Benkortbi, O. QSPR modelling of the solubility of drug and drug-like compounds in supercritical carbon dioxide. Mol. Inform., 2022, 41(10), 2200026.
[http://dx.doi.org/10.1002/minf.202200026] [PMID: 35373477]
[64]
Roubehie Fissa, M.; Lahiouel, Y.; Khaouane, L.; Hanini, S. Development of QSPR-ANN models for the estimation of critical properties of pure hydrocarbons. J. Mol. Graph. Model., 2023, 121, 108450.
[http://dx.doi.org/10.1016/j.jmgm.2023.108450] [PMID: 36907016]
[65]
Wilczyńska-Piliszek, A.J.; Piliszek, S.; Falandysz, J. Use of quantitative-structure property relationship (QSPR) and artificial neural network (ANN) based approaches for estimating the octanol-water partition coefficients of the 209 chlorinated trans -azobenzene congeners. J. Environ. Sci. Health B, 2012, 47(2), 111-128.
[http://dx.doi.org/10.1080/03601234.2012.616779] [PMID: 22251211]
[66]
Meftahi, N.; Walker, M.L.; Smith, B.J. Predicting aqueous solubility by QSPR modeling. J. Mol. Graph. Model., 2021, 106, 107901.
[http://dx.doi.org/10.1016/j.jmgm.2021.107901] [PMID: 33857890]
[67]
Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: past, present, and future. Multimedia Tools Appl., 2021, 80(5), 8091-8126.
[http://dx.doi.org/10.1007/s11042-020-10139-6] [PMID: 33162782]
[68]
Wang, J.; Krudy, G.; Xie, X.Q.; Wu, C.; Holland, G. Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion. J. Chem. Inf. Model., 2006, 46(6), 2674-2683.
[http://dx.doi.org/10.1021/ci060087t] [PMID: 17125207]
[69]
Joudaki, D.; Shafiei, F. QSPR models to predict thermodynamic properties of cycloalkanes using molecular descriptors and GA-MLR method. Curr. Computeraided Drug Des., 2020, 16(1), 6-16.
[http://dx.doi.org/10.2174/1573409915666190227230744] [PMID: 30827257]
[70]
Gharagheizi, F.; Mehrpooya, M. Prediction of standard chemical exergy by a three descriptors QSPR model. Energy Convers. Manage., 2007, 48(9), 2453-2460.
[http://dx.doi.org/10.1016/j.enconman.2007.04.005]
[71]
Yousefinejad, S.; Hemmateenejad, B. Chemometrics tools in QSAR/QSPR studies: A historical perspective. Chemom. Intell. Lab. Syst., 2015, 149, 177-204.
[http://dx.doi.org/10.1016/j.chemolab.2015.06.016]
[72]
Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit., 2015, 48(9), 2839-2846.
[http://dx.doi.org/10.1016/j.patcog.2015.03.009]
[73]
Zhang, J.; Wang, S. A fast leave-one-out cross-validation for SVM-like family. Neural Comput. Appl., 2016, 27(6), 1717-1730.
[http://dx.doi.org/10.1007/s00521-015-1970-4]
[74]
Wang, J.; Hou, T. Recent advances on aqueous solubility prediction. Comb. Chem. High Throughput Screen., 2011, 14(5), 328-338.
[http://dx.doi.org/10.2174/138620711795508331] [PMID: 21470182]
[75]
Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational approaches in preclinical studies on drug discovery and development. Front Chem., 2020, 8, 726.
[http://dx.doi.org/10.3389/fchem.2020.00726] [PMID: 33062633]
[76]
Murakami, T. Absorption sites of orally administered drugs in the small intestine. Expert Opin. Drug Discov., 2017, 12(12), 1219-1232.
[http://dx.doi.org/10.1080/17460441.2017.1378176] [PMID: 28920464]
[77]
Billat, P.A.; Roger, E.; Faure, S.; Lagarce, F. Models for drug absorption from the small intestine: Where are we and where are we going? Drug Discov. Today, 2017, 22(5), 761-775.
[http://dx.doi.org/10.1016/j.drudis.2017.01.007] [PMID: 28115264]
[78]
Chiang, P.C.; Liu, J.; Fan, P.; Wong, H. Exploring a kinetic model approach in biopharmaceutics: Estimating the fraction absorbed of orally administered drugs in humans. J. Pharm. Sci., 2018, 107(7), 1798-1805.
[http://dx.doi.org/10.1016/j.xphs.2018.03.015] [PMID: 29574230]
[79]
Akiyama, Y.; Kimoto, T.; Mukumoto, H.; Miyake, S.; Ito, S.; Taniguchi, T.; Nomura, Y.; Matsumura, N.; Fujita, T.; Sugano, K. Prediction accuracy of mechanism-based oral absorption model for dogs. J. Pharm. Sci., 2019, 108(8), 2728-2736.
[http://dx.doi.org/10.1016/j.xphs.2019.03.015] [PMID: 30905705]
[80]
Geerts, T.; Vander Heyden, Y. in silico predictions of ADME-Tox properties: Drug absorption. Comb. Chem. High Throughput Screen., 2011, 14(5), 339-361.
[http://dx.doi.org/10.2174/138620711795508359] [PMID: 21470183]
[81]
Panse, N.; Gerk, P.M. The Caco-2 model: Modifications and enhancements to improve efficiency and predictive performance. Int. J. Pharm., 2022, 624, 122004.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122004] [PMID: 35820514]
[82]
Hou, T.; Wang, J.; Zhang, W.; Xu, X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J. Chem. Inf. Model., 2007, 47(1), 208-218.
[http://dx.doi.org/10.1021/ci600343x] [PMID: 17238266]
[83]
Palm, K.; Luthman, K.; Ungell, A.L.; Strandlund, G.; Beigi, F.; Lundahl, P.; Artursson, P. Evaluation of dynamic polar molecular surface area as predictor of drug absorption: Comparison with other computational and experimental predictors. J. Med. Chem., 1998, 41(27), 5382-5392.
[http://dx.doi.org/10.1021/jm980313t] [PMID: 9876108]
[84]
Meinguet, C.; Bruyère, C.; Frédérick, R.; Mathieu, V.; Vancraeynest, C.; Pochet, L.; Laloy, J.; Mortier, J.; Wolber, G.; Kiss, R.; Masereel, B.; Wouters, J. 3D-QSAR, design, synthesis and characterization of trisubstituted harmine derivatives with in vitro antiproliferative properties. Eur. J. Med. Chem., 2015, 94, 45-55.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.044] [PMID: 25747498]
[85]
Soliman, M.E.; Adewumi, A.T.; Akawa, O.B.; Subair, T.I.; Okunlola, F.O.; Akinsuku, O.E.; Khan, S. Simulation models for prediction of bioavailability of medicinal drugs—the interface between experiment and computation. AAPS PharmSciTech, 2022, 23(3), 86.
[http://dx.doi.org/10.1208/s12249-022-02229-5] [PMID: 35292867]
[86]
Egan, W.J.; Lauri, G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev., 2002, 54(3), 273-289.
[http://dx.doi.org/10.1016/S0169-409X(02)00004-2] [PMID: 11922948]
[87]
Wang, N.N.; Dong, J.; Deng, Y.H.; Zhu, M.F.; Wen, M.; Yao, Z.J.; Lu, A.P.; Wang, J.B.; Cao, D.S. ADME properties evaluation in drug discovery: Prediction of caco-2 cell permeability using a combination of NSGA-II and boosting. J. Chem. Inf. Model., 2016, 56(4), 763-773.
[http://dx.doi.org/10.1021/acs.jcim.5b00642] [PMID: 27018227]
[88]
Klepsch, F.; Vasanthanathan, P.; Ecker, G.F. Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors. J. Chem. Inf. Model., 2014, 54(1), 218-229.
[http://dx.doi.org/10.1021/ci400289j] [PMID: 24050383]
[89]
Koziolek, M.; Alcaro, S.; Augustijns, P.; Basit, A.W.; Grimm, M.; Hens, B.; Hoad, C.L.; Jedamzik, P.; Madla, C.M.; Maliepaard, M.; Marciani, L.; Maruca, A.; Parrott, N.; Pávek, P.; Porter, C.J.H.; Reppas, C.; van Riet-Nales, D.; Rubbens, J.; Statelova, M.; Trevaskis, N.L.; Valentová, K.; Vertzoni, M.; Čepo, D.V.; Corsetti, M. The mechanisms of pharmacokinetic food-drug interactions – A perspective from the UNGAP group. Eur. J. Pharm. Sci., 2019, 134, 31-59.
[http://dx.doi.org/10.1016/j.ejps.2019.04.003] [PMID: 30974173]
[90]
Dressman, J.B.; Thelen, K.; Jantratid, E. Towards quantitative prediction of oral drug absorption. Clin. Pharmacokinet., 2008, 47(10), 655-667.
[http://dx.doi.org/10.2165/00003088-200847100-00003] [PMID: 18783296]
[91]
Kaur, N.; Narang, A.; Bansal, A.K. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur. J. Pharm. Biopharm., 2018, 129, 222-246.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.024] [PMID: 29879527]
[92]
Ghafourian, T.; Amin, Z. QSAR models for the prediction of plasma protein binding. Bioimpacts, 2013, 3(1), 21-27.
[PMID: 23678466]
[93]
Lombardo, F.; Obach, R.S.; Shalaeva, M.Y.; Gao, F. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J. Med. Chem., 2002, 45(13), 2867-2876.
[http://dx.doi.org/10.1021/jm0200409] [PMID: 12061889]
[94]
Lombardo, F.; Obach, R.S.; Shalaeva, M.Y.; Gao, F. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J. Med. Chem., 2004, 47(5), 1242-1250.
[http://dx.doi.org/10.1021/jm030408h] [PMID: 14971904]
[95]
Lombardo, F.; Bentzien, J.; Berellini, G.; Muegge, I. in silico models of human PK parameters. Prediction of volume of distribution using an extensive data set and a reduced number of parameters. J. Pharm. Sci., 2021, 110(1), 500-509.
[http://dx.doi.org/10.1016/j.xphs.2020.08.023] [PMID: 32891631]
[96]
Norinder, U.; Haeberlein, M. Computational approaches to the prediction of the blood–brain distribution. Adv. Drug Deliv. Rev., 2002, 54(3), 291-313.
[http://dx.doi.org/10.1016/S0169-409X(02)00005-4] [PMID: 11922949]
[97]
Liu, H.; Dong, K.; Zhang, W.; Summerfield, S.G.; Terstappen, G.C. Prediction of brain: Blood unbound concentration ratios in CNS drug discovery employing in silico and in vitro model systems. Drug Discov. Today, 2018, 23(7), 1357-1372.
[http://dx.doi.org/10.1016/j.drudis.2018.03.002] [PMID: 29548981]
[98]
Zhu, L.; Zhao, J.; Zhang, Y.; Zhou, W.; Yin, L.; Wang, Y.; Fan, Y.; Chen, Y.; Liu, H. ADME properties evaluation in drug discovery: in silico prediction of blood–brain partitioning. Mol. Divers., 2018, 22(4), 979-990.
[http://dx.doi.org/10.1007/s11030-018-9866-8] [PMID: 30083853]
[99]
Maříková, J.; Ritomská, A.; Korábečný, J.; Peřinová, R.; Al Mamun, A.; Kučera, T.; Kohelová, E.; Hulcová, D.; Kobrlová, T.; Kuneš, J.; Nováková, L.; Cahlíková, L. Aromatic esters of the crinane amaryllidaceae alkaloid ambelline as selective inhibitors of butyrylcholinesterase. J. Nat. Prod., 2020, 83(5), 1359-1367.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00561] [PMID: 32309949]
[100]
Kim, T.; You, B.H.; Han, S.; Shin, H.C.; Chung, K.C.; Park, H. Quantum artificial neural network approach to derive a highly predictive 3D-QSAR model for blood–brain barrier passage. Int. J. Mol. Sci., 2021, 22(20), 10995.
[http://dx.doi.org/10.3390/ijms222010995] [PMID: 34681653]
[101]
Radchenko, E.V.; Dyabina, A.S.; Palyulin, V.A. Towards deep neural network models for the prediction of the blood–brain barrier permeability for diverse organic compounds. Molecules, 2020, 25(24), 5901.
[http://dx.doi.org/10.3390/molecules25245901] [PMID: 33322142]
[102]
Stępnik, K.; Kukula-Koch, W. in silico studies on triterpenoid saponins permeation through the blood–brain barrier combined with postmortem research on the brain tissues of mice affected by astragaloside IV administration. Int. J. Mol. Sci., 2020, 21(7), 2534.
[http://dx.doi.org/10.3390/ijms21072534] [PMID: 32260588]
[103]
Zhang, T.; Chen, Q.; Li, L.; Angela Liu, L.; Wei, D.Q. in silico prediction of cytochrome P450-mediated drug metabolism. Comb. Chem. High Throughput Screen., 2011, 14(5), 388-395.
[http://dx.doi.org/10.2174/138620711795508412] [PMID: 21470181]
[104]
Kar, S.; Leszczynski, J. Recent advances of computational modeling for predicting drug metabolism: A perspective. Curr. Drug Metab., 2018, 18(12), 1106-1122.
[http://dx.doi.org/10.2174/1389200218666170607102104] [PMID: 28595533]
[105]
Ekins, S.; Andreyev, S.; Ryabov, A.; Kirillov, E.; Rakhmatulin, E.A.; Bugrim, A.; Nikolskaya, T. Computational prediction of human drug metabolism. Expert Opin. Drug Metab. Toxicol., 2005, 1(2), 303-324.
[http://dx.doi.org/10.1517/17425255.1.2.303] [PMID: 16922645]
[106]
Langowski, J.; Long, A. Computer systems for the prediction of xenobiotic metabolism. Adv. Drug Deliv. Rev., 2002, 54(3), 407-415.
[http://dx.doi.org/10.1016/S0169-409X(02)00011-X] [PMID: 11922955]
[107]
Idkaidek, N.M. Interplay of biopharmaceutics, biopharmaceutics drug disposition and salivary excretion classification systems. Saudi Pharm. J., 2014, 22(1), 79-81.
[http://dx.doi.org/10.1016/j.jsps.2013.02.002] [PMID: 24493977]
[108]
Tran, T.T.V.; Tayara, H.; Chong, K.T. Artificial intelligence in drug metabolism and excretion prediction: Recent advances, challenges, and future perspectives. Pharmaceutics, 2023, 15(4), 1260.
[http://dx.doi.org/10.3390/pharmaceutics15041260] [PMID: 37111744]
[109]
Demir-Kavuk, O.; Bentzien, J.; Muegge, I.; Knapp, E.W. DemQSAR: Predicting human volume of distribution and clearance of drugs. J. Comput. Aided Mol. Des., 2011, 25(12), 1121-1133.
[http://dx.doi.org/10.1007/s10822-011-9496-z] [PMID: 22101402]
[110]
Cheng, D.; Xu, W.R.; Liu, C.X. Relationship of quantitative structure and pharmacokinetics in fluoroquinolone antibacterials. World J. Gastroenterol., 2007, 13(17), 2496-2503.
[http://dx.doi.org/10.3748/wjg.v13.i17.2496] [PMID: 17552035]
[111]
Bermingham, K.M.; Brennan, L.; Segurado, R.; Barron, R.E.; Gibney, E.R.; Ryan, M.F.; Gibney, M.J.; O’Sullivan, A.M. Genetic and environmental contributions to variation in the stable urinary NMR metabolome over time: A classic twin study. J. Proteome Res., 2021, 20(8), 3992-4000.
[http://dx.doi.org/10.1021/acs.jproteome.1c00319] [PMID: 34304563]
[112]
Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics data integration, interpretation, and its application. Bioinform. Biol. Insights, 2020, 14
[http://dx.doi.org/10.1177/1177932219899051] [PMID: 32076369]
[113]
Kamgang, E.; Peyret, T.; Krishnan, K. An integrated QSPR–PBPK modelling approach for in vitroin vivo extrapolation of pharmacokinetics in rats. SAR QSAR Environ. Res., 2008, 19(7-8), 669-680.
[http://dx.doi.org/10.1080/10629360802547313] [PMID: 19061083]
[114]
Greene, N. Computer systems for the prediction of toxicity: An update. Adv. Drug Deliv. Rev., 2002, 54(3), 417-431.
[http://dx.doi.org/10.1016/S0169-409X(02)00012-1] [PMID: 11922956]
[115]
Liu, Z.; Huang, R.; Roberts, R.; Tong, W. Toxicogenomics: A 2020 vision. Trends Pharmacol. Sci., 2019, 40(2), 92-103.
[http://dx.doi.org/10.1016/j.tips.2018.12.001] [PMID: 30594306]
[116]
Ramm, S.; Todorov, P.; Chandrasekaran, V.; Dohlman, A.; Monteiro, M.B.; Pavkovic, M.; Muhlich, J.; Shankaran, H.; Chen, W.W.; Mettetal, J.T.; Vaidya, V.S. A systems toxicology approach for the prediction of kidney toxicity and its mechanisms in vitro. Toxicol. Sci., 2019, 169(1), 54-69.
[http://dx.doi.org/10.1093/toxsci/kfz021] [PMID: 30649541]
[117]
David, R. The promise of toxicogenomics for genetic toxicology: Past, present and future. Mutagenesis, 2020, 35(2), 153-159.
[http://dx.doi.org/10.1093/mutage/geaa007] [PMID: 32087008]
[118]
Singh, A.V.; Chandrasekar, V.; Paudel, N.; Laux, P.; Luch, A.; Gemmati, D.; Tisato, V.; Prabhu, K.S.; Uddin, S.; Dakua, S.P. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed. Pharmacother., 2023, 163, 114784.
[http://dx.doi.org/10.1016/j.biopha.2023.114784] [PMID: 37121152]
[119]
Idakwo, G.; Luttrell, J.; Chen, M.; Hong, H.; Zhou, Z.; Gong, P.; Zhang, C. A review on machine learning methods for in silico toxicity prediction. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2018, 36(4), 169-191.
[http://dx.doi.org/10.1080/10590501.2018.1537118] [PMID: 30628866]
[120]
Qi, M.; Qin, Z.; Gao, N.; Kong, J.; Guo, Y.; Lu, Y. Sample-expand method for predicting the specified structure of microporous aluminophosphate. Microporous Mesoporous Mater., 2014, 185, 1-6.
[http://dx.doi.org/10.1016/j.micromeso.2013.10.009]
[121]
Jerez, J.M.; Molina, I.; García-Laencina, P.J.; Alba, E.; Ribelles, N.; Martín, M.; Franco, L. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med., 2010, 50(2), 105-115.
[http://dx.doi.org/10.1016/j.artmed.2010.05.002] [PMID: 20638252]
[122]
García-Laencina, P.J.; Abreu, P.H.; Abreu, M.H.; Afonoso, N. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Comput. Biol. Med., 2015, 59, 125-133.
[http://dx.doi.org/10.1016/j.compbiomed.2015.02.006] [PMID: 25725446]
[123]
Mansouri, K.; Grulke, C.M.; Richard, A.M.; Judson, R.S.; Williams, A.J. An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling. SAR QSAR Environ. Res., 2016, 27(11), 911-937.
[http://dx.doi.org/10.1080/1062936X.2016.1253611] [PMID: 27885862]
[124]
Mansouri, K.; Grulke, C.M.; Judson, R.S.; Williams, A.J. OPERA models for predicting physicochemical properties and environmental fate endpoints. J. Cheminform., 2018, 10(1), 10.
[http://dx.doi.org/10.1186/s13321-018-0263-1] [PMID: 29520515]
[125]
Xia, L.Y.; Wang, Q.Y.; Cao, Z.; Liang, Y. Descriptor selection improvements for quantitative structure-activity relationships. Int. J. Neural Syst., 2019, 29(9), 1950016.
[http://dx.doi.org/10.1142/S0129065719500163] [PMID: 31390912]
[126]
Rácz, A.; Dunn, T.B.; Bajusz, D.; Kim, T.D.; Miranda-Quintana, R.A.; Héberger, K. Extended continuous similarity indices: Theory and application for QSAR descriptor selection. J. Comput. Aided Mol. Des., 2022, 36(3), 157-173.
[http://dx.doi.org/10.1007/s10822-022-00444-7] [PMID: 35288838]
[127]
Rácz, A.; Bajusz, D.; Héberger, K. Intercorrelation limits in molecular descriptor preselection for QSAR/QSPR. Mol. Inform., 2019, 38(8-9), 1800154.
[http://dx.doi.org/10.1002/minf.201800154] [PMID: 30945814]
[128]
Goodarzi, M.; Dejaegher, B.; Heyden, Y.V. Feature selection methods in QSAR studies. J. AOAC Int., 2012, 95(3), 636-651.
[http://dx.doi.org/10.5740/jaoacint.SGE_Goodarzi] [PMID: 22816254]
[129]
Khan, P.M.; Roy, K. Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR); Taylor & Francis: England, 2018, pp. 1075-1089.
[130]
Wongthanavasu, S.; Ponkaew, J. A cellular automata-based learning method for classification. Expert Syst. Appl., 2016, 49, 99-111.
[http://dx.doi.org/10.1016/j.eswa.2015.12.003]
[131]
Jalali-Heravi, M.; Asadollahi-Baboli, M. Quantitative structure–activity relationship study of serotonin (5-HT7) receptor inhibitors using modified ant colony algorithm and adaptive neuro-fuzzy interference system (ANFIS). Eur. J. Med. Chem., 2009, 44(4), 1463-1470.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.050] [PMID: 19013691]
[132]
Wilson, C.G.; Aarons, L.; Augustijns, P.; Brouwers, J.; Darwich, A.S.; De Waal, T.; Garbacz, G.; Hansmann, S.; Hoc, D.; Ivanova, A.; Koziolek, M.; Reppas, C.; Schick, P.; Vertzoni, M.; García-Horsman, J.A. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur. J. Pharm. Sci., 2022, 172, 106100.
[http://dx.doi.org/10.1016/j.ejps.2021.106100] [PMID: 34936937]
[133]
Majumdar, S.; Basak, S.C. Beware of external validation! - A comparative study of several validation techniques used in QSAR modelling. Curr. Computeraided Drug Des., 2018, 14(4), 284-291.
[http://dx.doi.org/10.2174/1573409914666180426144304] [PMID: 29701159]
[134]
Tsaioun, K.; Blaauboer, B.J.; Hartung, T. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. Altern. Anim. Exp., 2016, 33(4), 343-358.
[http://dx.doi.org/10.14573/altex.1610101] [PMID: 27806179]
[135]
Wajima, T.; Fukumura, K.; Yano, Y.; Oguma, T. Prediction of human pharmacokinetics from animal data and molecular structural parameters using multivariate regression analysis: Volume of distribution at steady state. J. Pharm. Pharmacol., 2010, 55(7), 939-949.
[http://dx.doi.org/10.1211/0022357021477] [PMID: 12906751]
[136]
Filipe, H.A.L.; Loura, L.M.S. Molecular dynamics simulations: Advances and applications. Molecules, 2022, 27(7), 2105.
[http://dx.doi.org/10.3390/molecules27072105] [PMID: 35408504]
[137]
Hildebrand, P.W.; Rose, A.S.; Tiemann, J.K.S. Bringing molecular dynamics simulation data into view. Trends Biochem. Sci., 2019, 44(11), 902-913.
[http://dx.doi.org/10.1016/j.tibs.2019.06.004] [PMID: 31301982]
[138]
Li, K.; Du, Y.; Li, L.; Wei, D-Q. Bioinformatics approaches for anti-cancer drug discovery. Curr. Drug Targets, 2019, 21(1), 3-17.
[http://dx.doi.org/10.2174/1389450120666190923162203] [PMID: 31549592]
[139]
Collier, T.A.; Piggot, T.J.; Allison, J.R. Molecular dynamics simulation of proteins. Methods Mol. Biol., 2020, 2073, 311-327.
[http://dx.doi.org/10.1007/978-1-4939-9869-2_17] [PMID: 31612449]
[140]
Ahmed Juvale, I.I.; Abdul Hamid, A.A.; Abd Halim, K.B.; Che Has, A.T. P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon, 2022, 8(6), e09777.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09777] [PMID: 35789865]
[141]
Adenot, M.; Perriere, N.; Scherrmann, J.M.; Lahana, R. Applications of a blood-brain barrier technology platform to predict CNS penetration of various chemotherapeutic agents. 1. Anti-infective drugs. Chemotherapy, 2007, 53(1), 70-72.
[http://dx.doi.org/10.1159/000098421] [PMID: 17202814]
[142]
Schlessinger, A.; Welch, M.A.; van Vlijmen, H.; Korzekwa, K.; Swaan, P.W.; Matsson, P. Molecular modeling of drug–transporter interactions—an international transporter consortium perspective. Clin. Pharmacol. Ther., 2018, 104(5), 818-835.
[http://dx.doi.org/10.1002/cpt.1174] [PMID: 29981151]
[143]
Mora Lagares, L.; Novič, M. Recent advances on P-glycoprotein (ABCB1) transporter modelling with in silico methods. Int. J. Mol. Sci., 2022, 23(23), 14804.
[http://dx.doi.org/10.3390/ijms232314804] [PMID: 36499131]
[144]
Yalcin-Ozkat, G. Molecular modeling strategies of cancer multidrug resistance. Drug Resist. Updat., 2021, 59, 100789.
[http://dx.doi.org/10.1016/j.drup.2021.100789] [PMID: 34973929]
[145]
Laverdière, C.; Chiasson, S.; Costea, I.; Moghrabi, A.; Krajinovic, M. Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood, 2002, 100(10), 3832-3834.
[http://dx.doi.org/10.1182/blood.V100.10.3832] [PMID: 12411325]
[146]
Pea, F. Intracellular Pharmacokinetics of Antibacterials and Their Clinical Implications. Clin. Pharmacokinet., 2018, 57(2), 177-189.
[http://dx.doi.org/10.1007/s40262-017-0572-y] [PMID: 28639230]
[147]
Gherbi, K.; Briddon, S.J.; Charlton, S.J. Micro-pharmacokinetics: Quantifying local drug concentration at live cell membranes. Sci. Rep., 2018, 8(1), 3479.
[http://dx.doi.org/10.1038/s41598-018-21100-x] [PMID: 29472588]
[148]
Deb, S.; Reeves, A.A. Simulation of remdesivir pharmacokinetics and its drug interactions. J. Pharm. Pharm. Sci., 2021, 24, 277-291.
[http://dx.doi.org/10.18433/jpps32011] [PMID: 34107241]
[149]
Moss, G.P.; Gullick, D.R.; Cox, P.A.; Alexander, C.; Ingram, M.J.; Smart, J.D.; Pugh, W.J. Design, synthesis and characterization of captopril prodrugs for enhanced percutaneous absorption. J. Pharm. Pharmacol., 2010, 58(2), 167-177.
[http://dx.doi.org/10.1211/jpp.58.2.0003] [PMID: 16451744]
[150]
Fernandes, J.P.S.; Pasqualoto, K.F.M.; Felli, V.M.A.; Ferreira, E.I.; Brandt, C.A. QSAR modeling of a set of pyrazinoate esters as antituberculosis prodrugs. Arch. Pharm., 2010, 343(2), 91-97.
[http://dx.doi.org/10.1002/ardp.200900216] [PMID: 20099263]
[151]
Chen, Q.; Riviere, J.E.; Lin, Z. Toxicokinetics, dose–response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(6), e1808.
[http://dx.doi.org/10.1002/wnan.1808] [PMID: 36416026]
[152]
Valic, M.S.; Zheng, G. Research tools for extrapolating the disposition and pharmacokinetics of nanomaterials from preclinical animals to humans. Theranostics, 2019, 9(11), 3365-3387.
[http://dx.doi.org/10.7150/thno.34509] [PMID: 31244958]
[153]
Bourquin, J.; Milosevic, A.; Hauser, D.; Lehner, R.; Blank, F.; Petri-Fink, A.; Rothen-Rutishauser, B. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater., 2018, 30(19), 1704307.
[http://dx.doi.org/10.1002/adma.201704307] [PMID: 29389049]
[154]
Feliu, N.; Docter, D.; Heine, M.; del Pino, P.; Ashraf, S.; Kolosnjaj-Tabi, J.; Macchiarini, P.; Nielsen, P.; Alloyeau, D.; Gazeau, F.; Stauber, R.H.; Parak, W.J. in vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev., 2016, 45(9), 2440-2457.
[http://dx.doi.org/10.1039/C5CS00699F] [PMID: 26862602]
[155]
Li, M.; Zou, P.; Tyner, K.; Lee, S. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. AAPS J., 2017, 19(1), 26-42.
[http://dx.doi.org/10.1208/s12248-016-0010-3] [PMID: 27834047]
[156]
Jayasinghe, M.K.; Lee, C.Y.; Tran, T.T.T.; Tan, R.; Chew, S.M.; Yeo, B.Z.J.; Loh, W.X.; Pirisinu, M.; Le, M.T.N. The role of in silico research in developing nanoparticle-based therapeutics. Front. digit. health., 2022, 4, 838590.
[http://dx.doi.org/10.3389/fdgth.2022.838590] [PMID: 35373184]
[157]
Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci. Total Environ., 2018, 634, 1530-1539.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.033] [PMID: 29710651]