The Pragmatism of Polyphenols and Flavonoids Application as Drugs, from an Academic Lab to a Pharmacy Shelf

Page: [3421 - 3427] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Polyphenols and flavonoids, naturally occurring compounds found abundantly in plants, have gained considerable attention in recent years due to their potential health benefits. Research exploring their bioactive properties has revealed promising therapeutic applications in various diseases. This article aims to provide a comprehensive overview of the intricate journey from academic laboratory discoveries to the availability of polyphenols and flavonoids as drugs on pharmacy shelves. It was shown that the transformation of these natural compounds into effective therapies is a promising avenue for enhancing human health. Yet, fully realizing this potential necessitates sustained scientific exploration, cross-disciplinary collaboration, and continued investment in research and development. This article underscores the importance of sustained collaboration and investment as key pillars of progress towards innovative and effective therapies

[1]
WHO. Noncommunicable diseases, Progress monitor. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (Accessed on 2023 Oct 21).
[2]
Al-Mawali A. Non-communicable diseases: Shining a light on cardiovascular disease, oman’s biggest killer. Oman Med J 2015; 30(4): 227-8.
[http://dx.doi.org/10.5001/omj.2015.47] [PMID: 26366254]
[3]
Scheffer DL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165823.
[http://dx.doi.org/10.1016/j.bbadis.2020.165823] [PMID: 32360589]
[4]
Xiong S, Lu H, Peoples N, et al. Digital health interventions for non-communicable disease management in primary health care in low-and middle-income countries. npj. Digit Med 2023; 6: 1-11.
[5]
Botelho J, Mascarenhas P, Viana J, et al. An umbrella review of the evidence linking oral health and systemic noncommunicable diseases. Nat Commun 2022; 13(1): 7614.
[http://dx.doi.org/10.1038/s41467-022-35337-8] [PMID: 36494387]
[6]
Cerf ME. Healthy lifestyles and noncommunicable diseases: Nutrition, the life-course, and health promotion. Lifestyle Med 2021; 2(2): e31.
[http://dx.doi.org/10.1002/lim2.31]
[7]
Budreviciute A, Damiati S, Sabir DK, et al. Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors. Front Public Health 2020; 8: 574111.
[http://dx.doi.org/10.3389/fpubh.2020.574111] [PMID: 33324597]
[8]
Tokgozoglu L, Hekimsoy V, Costabile G, Calabrese I, Riccardi G. Diet, Lifestyle, Smoking. In: von Eckardstein A, Binder CJ, Eds. Prevention and Treatment of Atherosclerosis: Improving State-of-the-Art Management and Search for Novel Targets. Cham: Springer International Publishing 2022; pp. 3-24.
[http://dx.doi.org/10.1007/164_2020_353]
[9]
Ammendola M, Haponska M, Balik K, et al. Stability and anti-proliferative properties of biologically active compounds extracted from Cistus L. after sterilization treatments. Sci Rep 2020; 10(1): 6521.
[http://dx.doi.org/10.1038/s41598-020-63444-3] [PMID: 32300137]
[10]
Sharma A, Sharma S, Kumar A, Kumar V, Sharma AK. Plant secondary metabolites: An introduction of their chemistry and biological significance with physicochemical aspect. In: Sharma AK, Sharma A, Eds. Plant Secondary Metabolites: Physico-Chemical Properties and Therapeutic Applications. Singapore: Springer Nature 2022; pp. 1-45.
[http://dx.doi.org/10.1007/978-981-16-4779-6_1]
[11]
Tiwari D, Kewlani P, Gaira KS, Bhatt ID, Sundriyal RC, Pande V. Predicting phytochemical diversity of medicinal and aromatic plants (MAPs) across eco-climatic zones and elevation in Uttarakhand using Generalized Additive Model. Sci Rep 2023; 13(1): 10888.
[http://dx.doi.org/10.1038/s41598-023-37495-1] [PMID: 37407604]
[12]
Behl T, Bungau S, Kumar K, et al. Pleotropic effects of polyphenols in cardiovascular system. Biomed Pharmacother 2020; 130: 110714.
[http://dx.doi.org/10.1016/j.biopha.2020.110714] [PMID: 34321158]
[13]
Miadoková E. Isoflavonoids - an overview of their biological activities and potential health benefits. Interdiscip Toxicol 2009; 2(4): 211-8.
[http://dx.doi.org/10.2478/v10102-009-0021-3] [PMID: 21217857]
[14]
Lin LG, Liu QY, Ye Y. Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Med 2014; 80(13): 1053-66.
[http://dx.doi.org/10.1055/s-0034-1383026] [PMID: 25153098]
[15]
Billingsley HE, Carbone S. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: An in- depth review of the PREDIMED. Nutr Diabetes 2018; 8(1): 13.
[http://dx.doi.org/10.1038/s41387-018-0025-1] [PMID: 29549354]
[16]
Zulhendri F, Chandrasekaran K, Kowacz M, et al. Antiviral, antibacterial, antifungal, and antiparasitic properties of propolis: A review. Foods 2021; 10(6): 1360.
[http://dx.doi.org/10.3390/foods10061360] [PMID: 34208334]
[17]
Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crops Prod 2014; 62: 250-64.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.055]
[18]
Kandemir K, Piskin E, Xiao J, Tomas M, Capanoglu E. Fruit juice industry wastes as a source of bioactives. J Agric Food Chem 2022; 70(23): 6805-32.
[http://dx.doi.org/10.1021/acs.jafc.2c00756] [PMID: 35544590]
[19]
Putnik P, Lorenzo J, Barba F, et al. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods 2018; 7(7): 106.
[http://dx.doi.org/10.3390/foods7070106] [PMID: 29976906]
[20]
Bambole AN, Meena SN, Nandre VS, Kodam KM. 2023. Available from: https://www.sciencedirect.com/science/article/pii/ B9780443152320000084 (Accessed on 2023 Oct 20)
[21]
Covas MI, Nyyssönen K, Poulsen HE, et al. The effect of virgin and refined olive oils on heart disease risk factors. Annal Inter Med 2006; 145: 333.https://www.acpjournals.org/doi/full/10.7326/0003-4819-145-5- 200609050-00002
[22]
Bertan LC, Tanada-Palmu PS, Siani AC, Grosso CR. Effect of fatty acids and ‘Brazilian elemi’ on composite films based on gelatin. Food Hydrocolloids 2005; 19(1): 73-82.https://www.sciencedirect.com/science/article/abs/pii/S026800- 5X04000542.
[23]
Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From theory to practice. Foods 2021; 10(11): 2595.
[http://dx.doi.org/10.3390/foods10112595] [PMID: 34828876]
[24]
Renaud J, Martinoli MG. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int J Mol Sci 2019; 20(8): 1883.
[http://dx.doi.org/10.3390/ijms20081883] [PMID: 30995776]
[25]
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: Structure–function and mechanisms of action and opportunities for drug development. Toxicol Res 2021; 37(2): 147-62.
[http://dx.doi.org/10.1007/s43188-020-00080-z] [PMID: 33868973]
[26]
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary polyphenols: A multifactorial strategy to target Alzheimer’s disease. Int J Mol Sci 2019; 20(20): 5090.
[http://dx.doi.org/10.3390/ijms20205090] [PMID: 31615073]
[27]
Onuh JO, Dawkins NL, Aluko RE. Cardiovascular disease protective properties of blueberry polyphenols (Vaccinium corymbosum): A concise review. Food Prod Process Nutr 2023; 5(1): 27.
[http://dx.doi.org/10.1186/s43014-023-00139-y]
[28]
Maaliki D, Shaito AA, Pintus G, El-Yazbi A, Eid AH. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr Opin Pharmacol 2019; 45: 57-65.
[http://dx.doi.org/10.1016/j.coph.2019.04.014] [PMID: 31102958]
[29]
Atucha NM, Romecín P, Vargas F, García-Estañ J. Effects of flavonoids in experimental models of arterial hypertension. Curr Top Med Chem 2022; 22(9): 735-45.
[http://dx.doi.org/10.2174/1568026621666211105100800] [PMID: 34749613]
[30]
Tan YQ, Lin F, Ding YK, et al. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. Phytomedicine 2022; 107: 154458.
[http://dx.doi.org/10.1016/j.phymed.2022.154458] [PMID: 36152591]
[31]
Wójciak M, Feldo M, Borowski G, Kubrak T, Płachno BJ, Sowa I. Antioxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells. Molecules 2022; 27(23): 8232.
[http://dx.doi.org/10.3390/molecules27238232] [PMID: 36500323]
[32]
Mozaffarian D, Wu JHY. Flavonoids, dairy foods, and cardiovascular and metabolic health. Circ Res 2018; 122(2): 369-84.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309008] [PMID: 29348256]
[33]
Jiang Y, Sun-Waterhouse D, Chen Y, Li F, Li D. Epigenetic mechanisms underlying the benefits of flavonoids in cardiovascular health and diseases: Are long non-coding RNAs rising stars? Crit Rev Food Sci Nutr 2022; 62(14): 3855-72.
[http://dx.doi.org/10.1080/10408398.2020.1870926] [PMID: 33427492]
[34]
Brum ISC, Mafra D, Moreira LSG, et al. Consumption of oils and anthocyanins may positively modulate PPAR-γ expression in chronic noncommunicable diseases: A systematic review. Nutr Res 2022; 105: 66-76.
[http://dx.doi.org/10.1016/j.nutres.2022.06.004] [PMID: 35905655]
[35]
Derangula M, Ruhinaz KK, Panati K, Subramani PA, Tatireddigari VRA, Narala VR. Natural product ligands of the peroxisome proliferator-activated receptor gamma as anti-inflammatory mediators. Nat Prod J 2023; 13(6): e070922208617.
[http://dx.doi.org/10.2174/2210315512666220907150542]
[36]
Barreca MM, Alessandro R, Corrado C. Effects of flavonoids on cancer, cardiovascular and neurodegenerative diseases: Role of NF-κB signaling pathway. Int J Mol Sci 2023; 24(11): 9236.
[http://dx.doi.org/10.3390/ijms24119236] [PMID: 37298188]
[37]
Alharbi KS, Afzal O, almalki WH, et al. Nuclear factor-kappa B (NF-κB) inhibition as a therapeutic target for plant nutraceuticals in mitigating inflammatory lung diseases. Chem Biol Interact 2022; 354: 109842.
[http://dx.doi.org/10.1016/j.cbi.2022.109842] [PMID: 35104489]
[38]
Xiao J. Recent advances in dietary flavonoids for management of type 2 diabetes. Curr Opin Food Sci 2022; 44: 100806.
[http://dx.doi.org/10.1016/j.cofs.2022.01.002]
[39]
Li H, Zhang Q. Research progress of flavonoids regulating endothelial function. Pharmaceuticals 2023; 16(9): 1201.
[http://dx.doi.org/10.3390/ph16091201] [PMID: 37765009]
[40]
Shishtar E, Rogers GT, Blumberg JB, Au R, Jacques PF. Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort. Am J Clin Nutr 2020; 112(2): 343-53.
[http://dx.doi.org/10.1093/ajcn/nqaa079] [PMID: 32320019]
[41]
Harvard Health Publishing The Thinking on Flavonoids. 2020. Available from: https://www.health.harvard.edu/mind-and-mood/ the-thinking-on-flavonoids (Accessed on 2023 Oct 21).
[42]
Godos J, Caraci F, Castellano S, et al. Association between dietary flavonoids intake and cognitive function in an italian cohort. Biomolecules 2020; 10(9): 1300.
[http://dx.doi.org/10.3390/biom10091300] [PMID: 32916935]
[43]
Zhou D, Bai Z, Guo T, et al. Dietary flavonoids and human top-ranked diseases: The perspective of in vivo bioactivity and bioavailability. Trends Food Sci Technol 2022; 120: 374-86.
[http://dx.doi.org/10.1016/j.tifs.2022.01.019]
[44]
El Gaamouch F, Chen F, Ho L, et al. Benefits of dietary polyphenols in Alzheimer’s disease. Front Aging Neurosci 2022; 14: 1019942.https://www.frontiersin.org/articles/10.3389/fnagi.2022.1019942
[http://dx.doi.org/10.3389/fnagi.2022.1019942] [PMID: 36583187]
[45]
Lu KT, Ko MC, Chen BY, et al. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem 2008; 56(16): 6910-3.
[http://dx.doi.org/10.1021/jf8007212] [PMID: 18616261]
[46]
Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int J Biol Macromol 2022; 206: 567-79.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.004] [PMID: 35247420]
[47]
Matsuda S, Minami A, Ono Y, Kitagishi Y. Neuroprotection of genistein in Alzheimer’s disease. In: Martin CR, Preedy VR, Eds. Diet and Nutrition in Dementia and Cognitive Decline. San Diego: Academic Press 2015; pp. 1003-10.https://www.sciencedirect.com/science/article/pii/B978012407- 8246000938
[http://dx.doi.org/10.1016/B978-0-12-407824-6.00093-8]
[48]
Marton LT, Pescinini-e-Salzedas LM, Camargo MEC, et al. The effects of curcumin on diabetes mellitus: A systematic review. Front Endocrinol 2021; 12: 669448.
[http://dx.doi.org/10.3389/fendo.2021.669448] [PMID: 34012421]
[49]
Raina J, Firdous A, Singh G, Kumar R, Kaur C. Role of polyphenols in the management of diabetic complications. Phytomedicine 2023; 155155.
[http://dx.doi.org/10.1016/j.phymed.2023.155155]
[50]
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic properties of curcumin ii: Evidence from in vivo studies. Nutrients 2019; 12(1): 58.
[http://dx.doi.org/10.3390/nu12010058] [PMID: 31881654]
[51]
Senevirathne BS, Jayasinghe MA, Pavalakumar D, Siriwardhana CG. Ceylon cinnamon: A versatile ingredient for futuristic diabetes management. J Future Foods 2022; 2(2): 125-42.
[http://dx.doi.org/10.1016/j.jfutfo.2022.03.010]
[52]
Wang J, Wang S, Yang J, et al. Acute effects of cinnamon spice on post-prandial glucose and insulin in normal weight and overweight/obese subjects: A pilot study. Front Nutr 2021; 7: 619782. https://www.frontiersin.org/articles/10.3389/fnut.2020.619782
[http://dx.doi.org/10.3389/fnut.2020.619782] [PMID: 33553233]
[53]
Silva ML, Bernardo MA, Singh J, de Mesquita MF. Cinnamon as a complementary therapeutic approach for dysglycemia and dyslipidemia control in type 2 diabetes mellitus and its molecular mechanism of action: A review. Nutrients 2022; 14(13): 2773.
[http://dx.doi.org/10.3390/nu14132773] [PMID: 35807953]
[54]
Zhang X, Li X, Fang H, et al. Flavonoids as inducers of white adipose tissue browning and thermogenesis: Signalling pathways and molecular triggers. Nutr Metab 2019; 16(1): 47.
[http://dx.doi.org/10.1186/s12986-019-0370-7] [PMID: 31346342]
[55]
Yang T, Zhou W, Xu W, et al. Modulation of gut microbiota and hypoglycemic/hypolipidemic activity of flavonoids from the fruits of Lycium barbarum on high-fat diet/streptozotocin-induced type 2 diabetic mice. Food Funct 2022; 13(21): 11169-84.
[http://dx.doi.org/10.1039/D2FO01268E] [PMID: 36218053]
[56]
Tan Z, Halter B, Liu D, Gilbert ER, Cline MA. Dietary flavonoids as modulators of lipid metabolism in poultry. Front Physiol 2022; 13: 863860.https://www.frontiersin.org/articles/10.3389/fphys.2022.863860
[http://dx.doi.org/10.3389/fphys.2022.863860] [PMID: 35547590]
[57]
Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: A concise review. J Food Biochem 2022; 46(10): e14264.
[http://dx.doi.org/10.1111/jfbc.14264] [PMID: 35694805]
[58]
Rahman MM, Bibi S, Rahaman MS, et al. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150: 113041.
[http://dx.doi.org/10.1016/j.biopha.2022.113041] [PMID: 35658211]
[59]
Rudrapal M, Khairnar SJ, Khan J, et al. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front Pharmacol 2022; 13: 806470.
[http://dx.doi.org/10.3389/fphar.2022.806470] [PMID: 35237163]
[60]
Beigh S, Rehman MU, Khan A, et al. Therapeutic role of flavonoids in lung inflammatory disorders. Phytomed Plus 2022; 2(1): 100221.
[http://dx.doi.org/10.1016/j.phyplu.2022.100221]
[61]
Mokra D, Adamcakova J, Mokry J. Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A time for a new player in the treatment of respiratory diseases? Antioxidants 2022; 11(8): 1566.
[http://dx.doi.org/10.3390/antiox11081566] [PMID: 36009285]
[62]
Yang N, Li X. Epigallocatechin gallate relieves asthmatic symptoms in mice by suppressing HIF-1α/VEGFA-mediated M2 skewing of macrophages. Biochem Pharmacol 2022; 202: 115112.
[http://dx.doi.org/10.1016/j.bcp.2022.115112] [PMID: 35640712]
[63]
Usman M, Khan WR, Yousaf N, et al. Exploring the phytochemicals and anti-cancer potential of the members of fabaceae family: A comprehensive review. Molecules 2022; 27(12): 3863.
[http://dx.doi.org/10.3390/molecules27123863] [PMID: 35744986]
[64]
Yadav P, Vats R, Bano A, Vashishtha A, Bhardwaj R. A phytochemicals approach towards the treatment of cervical cancer using polyphenols and flavonoids. Asian Pac J Cancer Prev 2022; 23(1): 261-70.
[http://dx.doi.org/10.31557/APJCP.2022.23.1.261] [PMID: 35092396]
[65]
Caponio G, Cofano M, Lippolis T, et al. Anti-proliferative and pro-apoptotic effects of digested aglianico grape pomace extract in human colorectal cancer cells. Molecules 2022; 27(20): 6791.
[http://dx.doi.org/10.3390/molecules27206791] [PMID: 36296379]
[66]
Slika H, Mansour H, Wehbe N, et al. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146: 112442.
[http://dx.doi.org/10.1016/j.biopha.2021.112442] [PMID: 35062053]
[67]
Maleki Dana P, Sadoughi F, Asemi Z, Yousefi B. The role of polyphenols in overcoming cancer drug resistance: A comprehensive review Cell Mol Biol Lett 2022; 27(1): 1-26.https://cmbl.biomedcentral.com/articles/10.1186/s11658-021- 00301-9
[68]
Vilhelmova-Ilieva N, Petrova Z, Georgieva A, Tzvetanova E, Trepechova M, Mileva M. Anti-coronavirus efficiency and redox- modulating capacity of polyphenol-rich extracts from traditional bulgarian medicinal plants. Life 2022; 12(7): 1088.
[http://dx.doi.org/10.3390/life12071088] [PMID: 35888176]
[69]
Gasmi A, Mujawdiya PK, Lysiuk R, et al. Quercetin in the prevention and treatment of coronavirus infections: A Focus on SARS- CoV-2. Pharmaceuticals 2022; 15(9): 1049.
[http://dx.doi.org/10.3390/ph15091049] [PMID: 36145270]
[70]
Musazadeh V, Karimi A, bagheri N, et al. The favorable impacts of silibinin polyphenols as adjunctive therapy in reducing the complications of COVID-19: A review of research evidence and underlying mechanisms. Biomed Pharmacother 2022; 154: 113593.
[http://dx.doi.org/10.1016/j.biopha.2022.113593] [PMID: 36027611]
[71]
El-Missiry MA, Fekri A, Kesar LA, Othman AI. Polyphenols are potential nutritional adjuvants for targeting COVID-19. Phytother Res 2021; 35(6): 2879-89.
[http://dx.doi.org/10.1002/ptr.6992] [PMID: 33354848]
[72]
Tait S, Salvati AL, Desideri N, Fiore L. Antiviral activity of substituted homoisoflavonoids on enteroviruses. Antiviral Res 2006; 72(3): 252-5.
[http://dx.doi.org/10.1016/j.antiviral.2006.07.003] [PMID: 16934879]
[73]
Temple NJ. Dietary Supplements Dietary Supplements and Health: One Part Science, Nine Parts Hype. In: Temple NJ, Wilson T, Jacobs Jr David R, Bray GA, Eds. Nutritional Health: Strategies for Disease Prevention. Cham: Springer International Publishing 2023; pp. 389-400.
[http://dx.doi.org/10.1007/978-3-031-24663-0_31]
[74]
U.S. Food & Drugs Administration. Dietary Supplements. Available from: https://www.fda.gov/consumers/consumer-updates/dietary-supplements (Accessed on 2023 Oct 21).
[75]
EMA. Scientific Guidelines. European Medicines Agency. 2018. Available from: https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines (Accessed on 2023 Oct 22).
[76]
Ross CF, Hoye C Jr, Fernandez-Plotka VC. Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. J Food Sci 2011; 76(6): C884-90.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02280.x] [PMID: 22417486]
[77]
Harjanti DW, Wahyono F, Ciptaningtyas VR. Effects of different sterilization methods of herbal formula on phytochemical compounds and antibacterial activity against mastitis-causing bacteria. Vet World 2020; 13(6): 1187-92.
[http://dx.doi.org/10.14202/vetworld.2020.1187-1192] [PMID: 32801572]
[78]
Santos GHF, Silva EB, Silva BL, Sena KXFR, Lima CSA. Influence of gamma radiation on the antimicrobial activity of crude extracts of Anacardium occidentale L., Anacardiaceae, rich in tannins. Rev Bras Farmacogn 2011; 21(3): 444-9.
[http://dx.doi.org/10.1590/S0102-695X2011005000045]
[79]
D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R. Bioavailability of the polyphenols: Status and controversies. Int J Mol Sci 2010; 11(4): 1321-42.
[http://dx.doi.org/10.3390/ijms11041321] [PMID: 20480022]
[80]
Tang GY. Why polyphenols have promiscuous actions? An investigation by chemical bioinformatics. Nat Prod Commun 2016; 11(5): 1934578X1601100525.
[http://dx.doi.org/10.1177/1934578X1601100525]
[81]
European Medicine Agency. Reflection paper on Polycyclic Aromatic Hydrocarbons in herbal medicinal products/traditional herbal medicinal productsm report no. 2016.
[82]
Duda-Chodak A, Tarko T. Possible side effects of polyphenols and their interactions with medicines. Molecules 2023; 28(6): 2536.
[http://dx.doi.org/10.3390/molecules28062536] [PMID: 36985507]