Synthetic 1,2,4-triazole-3-carboxamides Induce Cell Cycle Arrest and Apoptosis in Leukemia Cells

Page: [3478 - 3487] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: A number of studies demonstrate the efficacy of ribavirin against various cancer types in in vitro and in vivo models. However, ribavirin induces the development of multiple side effects, suggesting a high demand for ribavirin analogues with improved therapeutic indexes.

Objective: This study was focused on the analysis of ribavirin, its aglycon 1,2,4-triazole-3-carboxamide, and several of its derivatives activities in blood cancer cells in vitro.

Methods: Four 1,2,4-triazole-3-carboxamide derivatives were designed and synthesized. Antiproliferative effects were evaluated in chronic myeloid leukemia cells К562 and acute lymphoblastic leukemia cells CCRF-SB as well as in the cells of whole blood mononuclear fraction of healthy volunteers by cell counting using the trypan blue exclusion method. Cell cycle distribution and apoptosis under the influence of the compounds were analyzed by flow cytometry with PI staining, and then apoptosis data were confirmed by Western blot analysis for PARP1 and caspase-3 cleavage.

Results: We demonstrated the significant antiproliferative effect of 5-(tetrahydropyran-2-yl)-1,2,4-triazole-3- carboxamide and 1-(tetrahydropyran-2-yl)-1,2,4-triazol-3-carboxamide in leukemia cell lines in vitro in comparison to non-transformed monocytes, providing the rationale for further studies of 1,2,4-triazole-3-carboxamide derivatives as anti-leukemia drugs.

Conclusion: These results implied that the 1,2,4-triazole-3-carboxamide derivatives exhibited their antiproliferative activities by induction of cell cycle arrest. Consequently, 5-(tetrahydropyran-2-yl)-1,2,4-triazole-3-carboxamide and 1-(tetrahydrofuran-2-yl)-1,2,4-triazol-3-carboxamide may present antimetabolites with potential anticancer efficacy.

[1]
Gökbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Semin Hematol 2009; 46(1): 64-75.
[http://dx.doi.org/10.1053/j.seminhematol.2008.09.003] [PMID: 19100369]
[2]
Di Francia R, Crisci S, De Monaco A, et al. Response and toxicity to cytarabine therapy in leukemia and lymphoma: From dose puzzle to pharmacogenomic biomarkers. Cancers 2021; 13(5): 966.
[http://dx.doi.org/10.3390/cancers13050966] [PMID: 33669053]
[3]
Mohseni M, Uludag H, Brandwein JM. Advances in biology of acute lymphoblastic leukemia (ALL) and therapeutic implications. Am J Blood Res 2018; 8(4): 29-56.
[PMID: 30697448]
[4]
Neri LM, Cani A, Martelli AM, et al. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 2014; 28(4): 739-48.
[http://dx.doi.org/10.1038/leu.2013.226] [PMID: 23892718]
[5]
Man LM, Morris AL, Keng M. New therapeutic strategies in acute lymphocytic leukemia. Curr Hematol Malig Rep 2017; 12(3): 197-206.
[http://dx.doi.org/10.1007/s11899-017-0380-3] [PMID: 28353016]
[6]
Samra B, Jabbour E, Ravandi F, Kantarjian H, Short NJ. Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions. J Hematol Oncol 2020; 13(1): 70.
[http://dx.doi.org/10.1186/s13045-020-00905-2] [PMID: 32503572]
[7]
Cooper SL, Brown PA. Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am 2015; 62(1): 61-73.
[http://dx.doi.org/10.1016/j.pcl.2014.09.006] [PMID: 25435112]
[8]
Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J 2017; 7(6): e577.
[http://dx.doi.org/10.1038/bcj.2017.53] [PMID: 28665419]
[9]
Dominguez-Gomez G, Cortez-Pedroza D, Chavez-Blanco A, et al. Growth inhibition and transcriptional effects of ribavirin in lymphoma. Oncol Rep 2019; 42(3): 1248-56.
[http://dx.doi.org/10.3892/or.2019.7240] [PMID: 31322273]
[10]
Urtishak KA, Wang LS, Culjkovic-Kraljacic B, et al. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene 2019; 38(13): 2241-62.
[http://dx.doi.org/10.1038/s41388-018-0567-7] [PMID: 30478448]
[11]
Kökény S, Papp J, Weber G, Vaszkó T, Carmona-Saez P, Oláh E. Ribavirin acts via multiple pathways in inhibition of leukemic cell proliferation. Anticancer Res 2009; 29(6): 1971-80.
[PMID: 19528454]
[12]
Assouline S, Culjkovic-Kraljacic B, Bergeron J, et al. A phase I trial of ribavirin and low-dose cytarabine for the treatment of relapsed and refractory acute myeloid leukemia with elevated eIF4E. Haematologica 2015; 100(1): e7-9.
[http://dx.doi.org/10.3324/haematol.2014.111245] [PMID: 25425688]
[13]
Chen J, Xu X, Chen J. Clinically relevant concentration of anti-viral drug ribavirin selectively targets pediatric osteosarcoma and increases chemosensitivity. Biochem Biophys Res Commun 2018; 506(3): 604-10.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.124] [PMID: 30454696]
[14]
Teng L, Ding D, Chen Y, et al. Anti-tumor effect of ribavirin in combination with interferon-α on renal cell carcinoma cell lines in vitro. Cancer Cell Int 2014; 14(1): 63.
[http://dx.doi.org/10.1186/1475-2867-14-63] [PMID: 25904822]
[15]
Wambecke A, Laurent-Issartel C, Leroy-Dudal J, et al. Evaluation of the potential of a new ribavirin analog impairing the dissemination of ovarian cancer cells. PLoS One 2019; 14(12): e0225860.
[http://dx.doi.org/10.1371/journal.pone.0225860] [PMID: 31825993]
[16]
Pettersson F, Yau C, Dobocan MC, et al. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res 2011; 17(9): 2874-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2334] [PMID: 21415224]
[17]
Casaos J, Huq S, Lott T, et al. Ribavirin as a potential therapeutic for atypical teratoid/rhabdoid tumors. Oncotarget 2018; 9(8): 8054-67.
[http://dx.doi.org/10.18632/oncotarget.23883] [PMID: 29487714]
[18]
Shen X, Zhu Y, Xiao Z, et al. Antiviral drug ribavirin targets thyroid cancer cells by inhibiting the eIF4E-β-Catenin axis. Am J Med Sci 2017; 354(2): 182-9.
[http://dx.doi.org/10.1016/j.amjms.2017.03.025] [PMID: 28864377]
[19]
Huq S, Casaos J, Serra R, et al. Repurposing the FDA-approved antiviral drug ribavirin as targeted therapy for nasopharyngeal carcinoma. Mol Cancer Ther 2020; 19(9): 1797-808.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0572] [PMID: 32606016]
[20]
Pettersson F, del Rincon SV, Miller WH Jr. Eukaryotic translation initiation factor 4E as a novel therapeutic target in hematological malignancies and beyond. Expert Opin Ther Targets 2014; 18(9): 1035-48.
[http://dx.doi.org/10.1517/14728222.2014.937426] [PMID: 25004955]
[21]
De La Cruz-Hernandez E, Medina-Franco JL, Trujillo J, et al. Ribavirin as a tri-targeted antitumor repositioned drug. Oncol Rep 2015; 33(5): 2384-92.
[http://dx.doi.org/10.3892/or.2015.3816] [PMID: 25738706]
[22]
Jia X, Zhou H. Phospho-eIF4E: A new target for acute myeloid leukemia. Curr Protein Pept Sci 2021; 22(4): 328-35.
[PMID: 33605855]
[23]
Naffouje R, Grover P, Yu H, et al. Anti-tumor potential of imp dehydrogenase inhibitors: A century-long story. Cancers 2019; 11(9): 1346.
[http://dx.doi.org/10.3390/cancers11091346] [PMID: 31514446]
[24]
Alifanov VV, Tashireva LA, Zavyalova MV. LIMCH1 protein expression associated with lymph node metastasis in breast cancer. Siberian J Oncol 2023; 22: 74-81.
[25]
Kochhar DM, Penner JD, Knudsen TB. Embryotoxic, teratogenic, and metabolic effects of ribavirin in mice. Toxicol Appl Pharmacol 1980; 52(1): 99-112.
[http://dx.doi.org/10.1016/0041-008X(80)90252-5] [PMID: 7361317]
[26]
Narayana K, D’Souza UJA, Seetharama Rao KP. The genotoxic and cytotoxic effects of ribavirin in rat bone marrow. Mutat Res Genet Toxicol Environ Mutagen 2002; 521(1-2): 179-85.
[http://dx.doi.org/10.1016/S1383-5718(02)00239-5] [PMID: 12438014]
[27]
Soota K, Maliakkal B. Ribavirin induced hemolysis: A novel mechanism of action against chronic hepatitis C virus infection. World J Gastroenterol 2014; 20(43): 16184-90.
[http://dx.doi.org/10.3748/wjg.v20.i43.16184] [PMID: 25473172]
[28]
Pokuri S, Singla R, Bhat V, Shenoy G. Insights on the antioxidant potential of 1,2,4-triazoles: Synthesis, screening & QSAR studies. Curr Drug Metab 2014; 15(4): 389-97.
[http://dx.doi.org/10.2174/1389200215666140908101958] [PMID: 25204824]
[29]
Pandey VK, Tusi Z, Tusi S, Joshi M. Synthesis and biological evaluation of some novel 5-[(3-aralkyl amido/imidoalkyl) phenyl]-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines as antiviral agents. ISRN Org Chem 2012; 2012: 1-7.
[http://dx.doi.org/10.5402/2012/760517] [PMID: 24052850]
[30]
Cao X, Wang W, Wang S, Bao L. Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action. Eur J Med Chem 2017; 139: 718-25.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.057] [PMID: 28858766]
[31]
Peng L, Xia Y, Wan JQ, et al. Inventors Novel triazole nucleoside derivatives, their preparation and their application in therapeutics patent. EP Patent 2113508A1, 2009.
[32]
Xia Y, Qu F, Peng L. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity. Mini Rev Med Chem 2010; 10(9): 806-21.
[http://dx.doi.org/10.2174/138955710791608316] [PMID: 20482498]
[33]
Mustafa M, Abdelhamid D, Abdelhafez EMN, Ibrahim MAA, Gamal-Eldeen AM, Aly OM. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur J Med Chem 2017; 141: 293-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.063] [PMID: 29031074]
[34]
Mustafa M, Anwar S, Elgamal F, Ahmed ER, Aly OM. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur J Med Chem 2019; 183: 111697.
[http://dx.doi.org/10.1016/j.ejmech.2019.111697] [PMID: 31536891]
[35]
El-Sherief HAM, Youssif BGM, Abbas Bukhari SN, Abdelazeem AH, Abdel-Aziz M, Abdel-Rahman HM. Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur J Med Chem 2018; 156: 774-89.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.024] [PMID: 30055463]
[36]
Solarte C, Dos Santos M, Gonzalez S, et al. Synthesis 2017; 49: 1993-2002.
[http://dx.doi.org/10.1055/s-0036-1588409]
[37]
Armarego WLF. Purification of Laboratory Chemicals. Elsevier Science 2003.
[38]
Chipen GI, Grinshtein VY. A new method of preparing 1, 2, 4-triazole carboxylic-3 acids. Chem Heterocycl Compd 1966; 1(4): 420-1.
[http://dx.doi.org/10.1007/BF00473826]
[39]
Chudinov MV, Konstantinova ID, Ryzhova OI, et al. A new effective method for the synthesis of 1,2,4-triazole-3-carboxamide and ribavirin derivatives. Pharm Chem J 2005; 39(4): 212-5.
[http://dx.doi.org/10.1007/s11094-005-0119-7]
[40]
Grebenkina LE, Matveev AV, Chudinov MV. Parallel synthesis of derivatives of 1H-1,2,4-triazole-3-carboxylic acids with heterocyclic substituents at position 5. Chem Heterocycl Compd 2020; 56(9): 1173-9.
[http://dx.doi.org/10.1007/s10593-020-02794-2]
[41]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72(1-2): 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[42]
Gara N, Ghany MG. What the infectious disease physician needs to know about pegylated interferon and ribavirin. Clin Infect Dis 2013; 56(11): 1629-36.
[http://dx.doi.org/10.1093/cid/cit074] [PMID: 23429551]
[43]
Dusheiko G, Main J, Thomas H, et al. Ribavirin treatment for patients with chronic hepatitis C: Results of a placebo-controlled study. J Hepatol 1996; 25(5): 591-8.
[http://dx.doi.org/10.1016/S0168-8278(96)80225-X] [PMID: 8938532]
[44]
Beesley AH, Palmer M-L, Ford J, et al. Authenticity and drug resistance in a panel of acute lymphoblastic leukaemia cell lines. Br J Cancer 2006; 95(11): 1537-44.
[http://dx.doi.org/10.1038/sj.bjc.6603447] [PMID: 17117183]
[45]
Yamauchi T, Uzui K, Nishi R, Shigemi H, Ueda T. Reduced drug incorporation into DNA and antiapoptosis as the crucial mechanisms of resistance in a novel nelarabine-resistant cell line. BMC Cancer 2014; 14(1): 547.
[http://dx.doi.org/10.1186/1471-2407-14-547] [PMID: 25070259]
[46]
Cowley GS, Weir BA, Vazquez F, et al. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci Data 2014; 1(1): 140035.
[http://dx.doi.org/10.1038/sdata.2014.35] [PMID: 25984343]
[47]
Assouline S, Culjkovic B, Cocolakis E, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): A proof-of-principle clinical trial with ribavirin. Blood 2009; 114(2): 257-60.
[http://dx.doi.org/10.1182/blood-2009-02-205153] [PMID: 19433856]
[48]
Kentsis A, Volpon L, Topisirovic I, et al. Further evidence that ribavirin interacts with eIF4E. RNA 2005; 11(12): 1762-6.
[http://dx.doi.org/10.1261/rna.2238705] [PMID: 16251386]
[49]
Sintchak MD, Fleming MA, Futer O, et al. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 1996; 85(6): 921-30.
[http://dx.doi.org/10.1016/S0092-8674(00)81275-1] [PMID: 8681386]
[50]
Hedstrom L. IMP dehydrogenase: Structure, mechanism, and inhibition. Chem Rev 2009; 109(7): 2903-28.
[http://dx.doi.org/10.1021/cr900021w] [PMID: 19480389]
[51]
Topisirovic I, Guzman ML, McConnell MJ, et al. Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol 2003; 23(24): 8992-9002.
[http://dx.doi.org/10.1128/MCB.23.24.8992-9002.2003] [PMID: 14645512]
[52]
Inamdar KV, Romaguera JE, Drakos E, et al. Expression of eukaryotic initiation factor 4E predicts clinical outcome in patients with mantle cell lymphoma treated with hyper-CVAD and rituximab, alternating with rituximab, high-dose methotrexate, and cytarabine. Cancer 2009; 115(20): 4727-36.
[http://dx.doi.org/10.1002/cncr.24506] [PMID: 19708031]
[53]
Volpon L, Osborne MJ, Zahreddine H, Romeo AA, Borden KLB. Conformational changes induced in the eukaryotic translation initiation factor eIF4E by a clinically relevant inhibitor, ribavirin triphosphate. Biochem Biophys Res Commun 2013; 434(3): 614-9.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.125] [PMID: 23583375]
[54]
Culjkovic B, Borden KL. Understanding and targeting the eukaryotic translation initiation factor eIF4E in head and neck cancer. J Oncol 2009; 2009: 1-12.
[http://dx.doi.org/10.1155/2009/981679] [PMID: 20049173]
[55]
Borden KLB, Culjkovic-Kraljacic B. Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk Lymphoma 2010; 51(10): 1805-15.
[http://dx.doi.org/10.3109/10428194.2010.496506] [PMID: 20629523]
[56]
Li RJ, Wang YL, Wang QH, Wang J, Cheng MS. In silico design of human IMPDH inhibitors using pharmacophore mapping and molecular docking approaches. Comput Math Methods Med 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/418767] [PMID: 25784957]
[57]
Taylor WR, DePrimo SE, Agarwal A, et al. Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol Cell 1999; 10(11): 3607-22.
[http://dx.doi.org/10.1091/mbc.10.11.3607] [PMID: 10564259]