Current Nanoscience

Author(s): Yongshi Chen, Hao Wu, Geng Lu, Yi Zhu, Junfeng Ban* and XiaoFang li*

DOI: 10.2174/0115734137276083231128082103

DownloadDownload PDF Flyer Cite As
Membranes Containing Nanoparticles Incorporated with Metronidazole for Improved Permeability to Promote Periodontal Tissue Recovery

Page: [319 - 332] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Infection is the main reason for the failure of the clinical application of guided tissue regeneration (GTR).

Objective: The aim of this study is to develop a membrane containing nanoparticles incorporated with the antimicrobial drug metronidazole (MTZ-NPs Membrane) to enhance drug permeation delivery into cells and promote periodontal tissue recovery and regeneration.

Methods: We prepared membranes containing nanoparticles incorporated with metronidazole (MTZ-NPs Membrane) and characterized the properties, such as mechanical properties, physicochemical properties, and release. Coumarin-6 was used to prepare a membrane containing nanoparticles incorporated with Coumarin-6 (C6-NPs Membrane) to evaluate the efficiency of the nanoparticles-loaded membranes on transmembrane entry into cells. Moreover, in vivo experiments were conducted to assess the effectiveness of the membrane.

Results: MTZ-NPs membrane had suitable mechanical strength; the drug was released by diffusion. Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) results showed the existence of metronidazole might be in the amorphous state in the membrane and had good compatibility with polymers. The in vitro cytotoxicity assays showed that the MTZ-NPs membrane was biocompatible. Cellular uptake of the C6-NPs membrane was significantly higher than that of the C6 membrane (p < 0.0001), signifying that encapsulating the drug in nanoparticles increases drug permeability and improves drug transport efficiency across the cellular membrane. The histological analysis showed that the MTZ-NPs membrane could promote periodontal tissue recovery.

Conclusion: MTZ-NPs membrane can improve drug penetration delivery into the cells and has a good prospect for the treatment of periodontal disease.

Keywords: Metronidazole, PLGA nanoparticles, membrane, periodontal disease, drug delivery system, regeneration.

Graphical Abstract

[1]
Trindade, D.; Carvalho, R.; Machado, V.; Chambrone, L.; Mendes, J.J.; Botelho, J. Prevalence of periodontitis in dentate people between 2011 and 2020: A systematic review and meta‐analysis of epidemiological studies. J. Clin. Periodontol., 2023, 50(5), 604-626.
[http://dx.doi.org/10.1111/jcpe.13769] [PMID: 36631982]
[2]
Mirzaeei, S.; Ezzati, A.; Mehrandish, S.; Asare-Addo, K.; Nokhodchi, A. An overview of guided tissue regeneration (GTR) systems designed and developed as drug carriers for management of periodontitis. J. Drug Deliv. Sci. Technol., 2022, 71, 103341.
[http://dx.doi.org/10.1016/j.jddst.2022.103341]
[3]
Liang, Y.; Luan, X.; Liu, X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact. Mater., 2020, 5(2), 297-308.
[http://dx.doi.org/10.1016/j.bioactmat.2020.02.012] [PMID: 32154444]
[4]
Kim, J.Y.; Park, J.B. Various coated barrier membranes for better guided bone regeneration: A review. Coatings, 2022, 12(8), 1059.
[http://dx.doi.org/10.3390/coatings12081059]
[5]
Turri, A.; Elgali, I.; Vazirisani, F.; Johansson, A.; Emanuelsson, L.; Dahlin, C.; Thomsen, P.; Omar, O. Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials, 2016, 84, 167-183.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.034] [PMID: 26828682]
[6]
Liu, Z.; Chen, X.; Zhang, Z.; Zhang, X.; Saunders, L.; Zhou, Y.; Ma, P.X. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss. ACS Nano, 2018, 12(10), 9785-9799.
[http://dx.doi.org/10.1021/acsnano.7b08976] [PMID: 30141906]
[7]
Ardekani, S.M.; Dehghani, A.; Ye, P.; Nguyen, K.A.; Gomes, V.G. Conjugated carbon quantum dots: Potent nano-antibiotic for intracellular pathogens. J. Colloid Interface Sci., 2019, 552, 378-387.
[http://dx.doi.org/10.1016/j.jcis.2019.05.067] [PMID: 31136856]
[8]
Manzanares, D.; Ceña, V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4), 371.
[http://dx.doi.org/10.3390/pharmaceutics12040371] [PMID: 32316537]
[9]
Li, X.; Wang, C.; Wang, L.; Huang, R.; Li, W.C.; Wang, X.; Wong, S.S.W.; Cai, Z.; Leung, K.C.F.; Jin, L. A glutathione-responsive silica-based nanosystem capped with in-situ polymerized cell-penetrating poly(disulfide)s for precisely modulating immuno-inflammatory responses. J. Colloid Interface Sci., 2022, 614, 322-336.
[http://dx.doi.org/10.1016/j.jcis.2022.01.091] [PMID: 35104706]
[10]
Li, Y.; Yang, L.; Hou, Y.; Zhang, Z.; Chen, M.; Wang, M.; Liu, J.; Wang, J.; Zhao, Z.; Xie, C.; Lu, X. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact. Mater., 2022, 18, 213-227.
[http://dx.doi.org/10.1016/j.bioactmat.2022.03.021] [PMID: 35387166]
[11]
Ghavimi, M.A.; Bani, S.A.; Jarolmasjed, S.; Memar, M.Y.; Maleki, S.; Sharifi, S. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci. Rep., 2020, 10(1), 18200.
[http://dx.doi.org/10.1038/s41598-020-75454-2] [PMID: 33097790]
[12]
Tzanova, M.M.; Hagesaether, E.; Tho, I. Solid lipid nanoparticle-loaded mucoadhesive buccal films-Critical quality attributes and in vitro safety & efficacy. Int. J. Pharm., 2021, 592, 120100.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120100] [PMID: 33227374]
[13]
Li, F.; Wen, Y.; Zhang, Y.; Zheng, K.; Ban, J.; Xie, Q.; Wen, Y.; Liu, Q.; Chen, F.; Mo, Z.; Liu, L.; Chen, Y.; Lu, Z. Characterisation of 2-HP-β-cyclodextrin-PLGA nanoparticle complexes for potential use as ocular drug delivery vehicles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4097-4108.
[http://dx.doi.org/10.1080/21691401.2019.1683567] [PMID: 31663388]
[14]
Vandervoort, J.; Ludwig, A. Biocompatible stabilizers in the preparation of PLGA nanoparticles: A factorial design study. Int. J. Pharm., 2002, 238(1-2), 77-92.
[http://dx.doi.org/10.1016/S0378-5173(02)00058-3] [PMID: 11996812]
[15]
Junmahasathien, T.; Panraksa, P.; Protiarn, P.; Hormdee, D.; Noisombut, R.; Kantrong, N.; Jantrawut, P. Preparation and evaluation of metronidazole-loaded pectin films for potentially targeting a microbial infection associated with periodontal disease. Polymers, 2018, 10(9), 1021.
[http://dx.doi.org/10.3390/polym10091021] [PMID: 30960947]
[16]
Borges, A.F.; Silva, C.; Coelho, J.F.J.; Simões, S. Oral films: Current status and future perspectives. J. Control. Release, 2015, 206, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.006] [PMID: 25747406]
[17]
Irfan, M.; Rabel, S.; Bukhtar, Q.; Qadir, M.I.; Jabeen, F.; Khan, A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm. J., 2016, 24(5), 537-546.
[http://dx.doi.org/10.1016/j.jsps.2015.02.024] [PMID: 27752225]
[18]
Ezzati, N.D.J.; Hamishehkar, H.; Eskandani, M.; Valizadeh, H. Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2014, 117, 21-28.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.055] [PMID: 24607519]
[19]
Song, J.; Fan, X.; Shen, Q. Daidzein-loaded nanostructured lipid carriers-PLGA nanofibers for transdermal delivery. Int. J. Pharm., 2016, 501(1-2), 245-252.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.003] [PMID: 26851353]
[20]
Chandra, A.; Chondkar, A.D.; Shirodkar, R.; Lewis, S.A. Rapidly dissolving lacidipine nanoparticle strips for transbuccal administration. J. Drug Deliv. Sci. Technol., 2018, 47, 259-267.
[http://dx.doi.org/10.1016/j.jddst.2018.07.025]
[21]
Li, Y.; Liu, Y.; Ren, Y.; Su, L.; Li, A.; An, Y.; Rotello, V.; Zhang, Z.; Wang, Y.; Liu, Y.; Liu, S.; Liu, J.; Laman, J.D.; Shi, L.; van der Mei, H.C.; Busscher, H.J. Coating of a novel antimicrobial nanoparticle with a macrophage membrane for the selective entry into infected macrophages and killing of intracellular staphylococci. Adv. Funct. Mater., 2020, 30(48), 2004942.
[http://dx.doi.org/10.1002/adfm.202004942] [PMID: 34737689]
[22]
Roussel, S.; Grenier, P.; Chénard, V.; Bertrand, N. Dual-labelled nanoparticles inform on the stability of fluorescent labels in vivo. Pharmaceutics, 2023, 15(3), 769.
[http://dx.doi.org/10.3390/pharmaceutics15030769] [PMID: 36986630]
[23]
Takeuchi, I.; Suzuki, T.; Makino, K. Skin permeability and transdermal delivery route of 50-nm indomethacin-loaded PLGA nanoparticles. Colloids Surf. B Biointerfaces, 2017, 159, 312-317.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.003] [PMID: 28858661]
[24]
Wei, Y.; Deng, Y.; Ma, S.; Ran, M.; Jia, Y.; Meng, J.; Han, F.; Gou, J.; Yin, T.; He, H.; Wang, Y.; Zhang, Y.; Tang, X. Local drug delivery systems as therapeutic strategies against periodontitis: A systematic review. J. Control. Release, 2021, 333, 269-282.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.041] [PMID: 33798664]
[25]
Ruan, H.; Yu, Y.; Liu, Y.; Ding, X.; Guo, X.; Jiang, Q. Preparation and characteristics of thermoresponsive gel of minocycline hydrochloride and evaluation of its effect on experimental periodontitis models. Drug Deliv., 2016, 23(2), 525-531.
[http://dx.doi.org/10.3109/10717544.2014.929195] [PMID: 24963751]
[26]
Liu, R.; Li, N.; Liu, N.; Zhou, X.; Dong, Z.; Wen, X.; Liu, L. Effects of systemic ornidazole, systemic and local compound ornidazole and pefloxacin mesylate on experimental periodontitis in rats. Med. Sci. Monit., 2012, 18(3), BR95-BR102.
[http://dx.doi.org/10.12659/MSM.882514] [PMID: 22367122]
[27]
Almoshari, Y.; Ren, R.; Zhang, H.; Jia, Z.; Wei, X.; Chen, N.; Li, G.; Ryu, S.; Lele, S.M.; Reinhardt, R.A.; Wang, D. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials, 2020, 261, 120293.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120293] [PMID: 32877763]
[28]
Vaidya, B.; Parvathaneni, V.; Kulkarni, N.S.; Shukla, S.K.; Damon, J.K.; Sarode, A.; Kanabar, D.; Garcia, J.V.; Mitragotri, S.; Muth, A.; Gupta, V. Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int. J. Biol. Macromol., 2019, 122, 338-347.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.181] [PMID: 30401652]
[29]
Pichayakorn, W.; Boonme, P. Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Mater. Sci. Eng. C, 2013, 33(3), 1197-1202.
[http://dx.doi.org/10.1016/j.msec.2012.12.010] [PMID: 23827560]
[30]
Peter Christoper, G.V.; Vijaya Raghavan, C.; Siddharth, K.; Siva Selva Kumar, M.; Hari Prasad, R. Formulation and optimization of coated PLGA – Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency. Saudi Pharm. J., 2014, 22(2), 133-140.
[http://dx.doi.org/10.1016/j.jsps.2013.04.002] [PMID: 24648825]
[31]
Han, F.Y.; Liu, Y.; Kumar, V.; Xu, W.; Yang, G.; Zhao, C.X.; Woodruff, T.M.; Whittaker, A.K.; Smith, M.T. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. Int. J. Pharm., 2020, 581, 119291.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119291] [PMID: 32259638]
[32]
Bensouiki, S.; Belaib, F.; Sindt, M.; Rup-Jacques, S.; Magri, P.; Ikhlef, A.; Meniai, A.H. Synthesis of cyclodextrins-metronidazole inclusion complexes and incorporation of metronidazole - 2-hydroxypropyl-β-cyclodextrin inclusion complex in chitosan nanoparticles. J. Mol. Struct., 2022, 1247, 131298.
[http://dx.doi.org/10.1016/j.molstruc.2021.131298]
[33]
de Oliveira, A.M.; Jäger, E.; Jäger, A.; Stepánek, P.; Giacomelli, F.C. Physicochemical aspects behind the size of biodegradable polymeric nanoparticles: A step forward. Colloids Surf. A Physicochem. Eng. Asp., 2013, 436, 1092-1102.
[http://dx.doi.org/10.1016/j.colsurfa.2013.08.056]
[34]
Song, X.; Zhao, Y.; Wu, W.; Bi, Y.; Cai, Z.; Chen, Q.; Li, Y.; Hou, S. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency. Int. J. Pharm., 2008, 350(1-2), 320-329.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.034] [PMID: 17913411]
[35]
Teodorescu, M.; Bercea, M.; Morariu, S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol. Adv., 2019, 37(1), 109-131.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.008] [PMID: 30472307]
[36]
Zhao, J.; Wei, Y.; Xiong, J.; Liu, H.; Lv, G.; Zhao, J.; He, H.; Gou, J.; Yin, T.; Tang, X.; Zhang, Y. A multiple controlled-release hydrophilicity minocycline hydrochloride delivery system for the efficient treatment of periodontitis. Int. J. Pharm., 2023, 636, 122802.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122802] [PMID: 36894039]
[37]
Abd El Azim, H.; Nafee, N.; Ramadan, A.; Khalafallah, N. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins. Int. J. Pharm., 2015, 488(1-2), 78-85.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.052] [PMID: 25899288]
[38]
Song, Q.; Guo, X.; Sun, Y.; Yang, M. Anti-solvent precipitation method coupled electrospinning process to produce poorly water-soluble drug-loaded orodispersible films. AAPS PharmSciTech, 2019, 20(7), 273.
[http://dx.doi.org/10.1208/s12249-019-1464-2] [PMID: 31385126]
[39]
Xue, J.; He, M.; Liu, H.; Niu, Y.; Crawford, A.; Coates, P.D.; Chen, D.; Shi, R.; Zhang, L. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, 2014, 35(34), 9395-9405.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.060] [PMID: 25134855]
[40]
Celebioglu, A.; Uyar, T. Metronidazole/Hydroxypropyl-β-Cyclo-dextrin inclusion complex nanofibrous webs as fast-dissolving oral drug delivery system. Int. J. Pharm., 2019, 572, 118828.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118828] [PMID: 31715341]
[41]
Kraisit, P.; Hirun, N.; Mahadlek, J.; Limmatvapirat, S. Fluconazole-loaded solid lipid nanoparticles (SLNs) as a potential carrier for buccal drug delivery of oral candidiasis treatment using the Box-Behnken design. J. Drug Deliv. Sci. Technol., 2021, 63, 102437.
[http://dx.doi.org/10.1016/j.jddst.2021.102437]
[42]
Kraisit, P.; Limmatvapirat, S.; Luangtana-Anan, M.; Sriamornsak, P. Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. Asian J. Pharm. Sci., 2018, 13(1), 34-43.
[http://dx.doi.org/10.1016/j.ajps.2017.07.006] [PMID: 32104376]
[43]
Ji, S.; Sun, R.; Wang, W.; Xia, Q. Preparation, characterization, and evaluation of tamarind seed polysaccharide-carboxy-methylcellulose buccal films loaded with soybean peptides-chitosan nanoparticles. Food Hydrocoll., 2023, 141, 108684.
[http://dx.doi.org/10.1016/j.foodhyd.2023.108684]
[44]
Pezik, E.; Gulsun, T.; Sahin, S.; Vural, İ. Development and characterization of pullulan-based orally disintegrating films containing amlodipine besylate. Eur. J. Pharm. Sci., 2021, 156, 105597.
[http://dx.doi.org/10.1016/j.ejps.2020.105597] [PMID: 33065224]
[45]
Elgendy, H.A.; Makky, A.M.A.; Elakkad, Y.E.; Ismail, R.M.; Younes, N.F. Syringeable atorvastatin loaded eugenol enriched PEGylated cubosomes in-situ gel for the intra-pocket treatment of periodontitis: Statistical optimization and clinical assessment. Drug Deliv., 2023, 30(1), 2162159.
[http://dx.doi.org/10.1080/10717544.2022.2162159] [PMID: 36604813]
[46]
Lai, P.C.; Walters, J.D. Relative effectiveness of azithromycin in killing intracellular Porphyromonas gingivalis. Clin. Exp. Dent. Res., 2016, 2(1), 35-43.
[http://dx.doi.org/10.1002/cre2.17] [PMID: 29744147]
[47]
Firdessa, R.; Oelschlaeger, T.A.; Moll, H. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems. Eur. J. Cell Biol., 2014, 93(8-9), 323-337.
[http://dx.doi.org/10.1016/j.ejcb.2014.08.001] [PMID: 25224362]