Knockdown of miR-135a-5p Promotes Mitophagy by Regulating FoxO1/PINK1/Parkin Signaling in Hepatoma Cells Exposed to Oxidative Stress

Page: [169 - 183] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Excessive oxidative stress is always associated with hepatic disease, including hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Despite this, the intricate molecular processes driving hepatocyte apoptosis due to oxidative stress remain incompletely comprehended.

Aim: Consequently, we aimed to explore the role of miR-135a-5p in hepatoma cells (HepG2/3B).

Method: The assessment of protein expression was conducted through western blotting. Furthermore, miR-135a-5p expression was evaluated through RT-qPCR, and apoptosis detection was performed using a flow cytometry assay.

Result: The findings suggest a connection between miR-135a-5p and mitochondrial-driven apoptosis through caspase signaling pathways. Furthermore, miR-135a-5p suppression inhibited the apoptotic response triggered by H2O2, reactive oxygen species (ROS) generation, as well as the decrease in mitochondrial membrane potential.

Conclusion: Additionally, miR-135a-5p knockdown promoted mitophagy by regulating FoxO1/PINK1/Parkin signaling via targeting FoxO1. To conclude, our study implied that miR- 135a-5p might function as a probable regulator that protects cells against oxidative stress.

Graphical Abstract

[1]
Gortan Cappellari, G.; Semolic, A.; Ruozi, G.; Barbetta, D.; Bortolotti, F.; Vinci, P.; Zanetti, M.; Mak, R.H.; Garibotto, G.; Giacca, M.; Barazzoni, R. n-3 PUFA dietary lipid replacement normalizes muscle mitochondrial function and oxidative stress through enhanced tissue mitophagy and protects from muscle wasting in experimental kidney disease. Metabolism, 2022, 133, 155242.
[http://dx.doi.org/10.1016/j.metabol.2022.155242] [PMID: 35750236]
[2]
Bulman, A.; Neagu, M.; Constantin, C. Immunomics in skin cancer - improvement in diagnosis, prognosis and therapy monitoring. Curr. Proteomics, 2013, 10(3), 202-217.
[http://dx.doi.org/10.2174/1570164611310030003] [PMID: 24228023]
[3]
Filip, M.; Baldea, I.; David, L.; Moldovan, B.; Flontas, G.C.; Macavei, S.; Muntean, D.M.; Decea, N.; Tigu, A.B.; Clichici, S.V. Hybrid Material Based on Vaccinium myrtillus L. Extract and Gold Nanoparticles Reduces Oxidative Stress and Inflammation in Hepatic Stellate Cells Exposed to TGF-β. Biomolecules, 2023, 13(8), 1271.
[http://dx.doi.org/10.3390/biom13081271] [PMID: 37627336]
[4]
Wang, W.; Mao, X.; Zhang, R.; Zhou, X.X.; Liu, Y.; Zhou, H.; Jia, J.; Yan, B. Nanoplastic exposure at environmental concentrations disrupts hepatic lipid metabolism through oxidative stress induction and endoplasmic reticulum homeostasis perturbation. Environ. Sci. Technol., 2023, 57(38), 14127-14137.
[http://dx.doi.org/10.1021/acs.est.3c02769] [PMID: 37683116]
[5]
Chen, Z.; Wu, H.; Yang, J.; Li, B.; Ding, J.; Cheng, S.; Bsoul, N.; Zhang, C. li; Liu, H.; Lin, D.; Gao, W. Activating Parkin-dependent mitophagy alleviates oxidative stress, apoptosis, and promotes random-pattern skin flaps survival. Commun. Biol., 2022, 5(1), 616.
[http://dx.doi.org/10.1038/s42003-022-03556-w] [PMID: 35732814]
[6]
Shah, A.; Singh, H.; Sachdev, V.; Lee, J.; Yotsukura, S.; Salgia, R.; Bharti, A. Differential serum level of specific haptoglobin isoforms in small cell lung cancer. Curr. Proteomics, 2010, 7(1), 49-56.
[http://dx.doi.org/10.2174/157016410790979635] [PMID: 20526421]
[7]
Park, J.; An, G.; You, J.; Park, H.; Hong, T.; Song, G.; Lim, W. Dimethenamid promotes oxidative stress and apoptosis leading to cardiovascular, hepatic, and pancreatic toxicities in zebrafish embryo. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2023, 273, 109741.
[http://dx.doi.org/10.1016/j.cbpc.2023.109741] [PMID: 37689173]
[8]
Thomaz, M.S.; Sertorio, M.N.; Gazarini, M.L.; Ribeiro, D.A.; Pisani, L.P.; Nagaoka, M.R. Effect of kinins on the hepatic oxidative stress in mice treated with a methionine-choline deficient diet. Biomedicines, 2023, 11(8), 2199.
[http://dx.doi.org/10.3390/biomedicines11082199] [PMID: 37626696]
[9]
Buddhiraju, H.S.; Balaraman, J.; Dehariya, D.; Pebam, M.; Eswar, K.; Rengan, A.K. PLGA nanoparticle loaded with antioxidants and photosensitizer for ROS shock mediated phototherapy of triple negative breast cancer. Biomed. Mater., 2023, 18(6), 065002.
[http://dx.doi.org/10.1088/1748-605X/acf5b9] [PMID: 37652047]
[10]
Das, A.; Chakrabarty, S.; Nag, D.; Paul, S.; Ganguli, A.; Chakrabarti, G. Heavy water (D2O) induces autophagy-dependent apoptotic cell death in non-small cell lung cancer A549 cells by generating reactive oxygen species (ROS) upon microtubule disruption. Toxicol. In Vitro, 2023, 93, 105703.
[http://dx.doi.org/10.1016/j.tiv.2023.105703] [PMID: 37751786]
[11]
Barreca, F.; Aventaggiato, M.; Vitiello, L.; Sansone, L.; Russo, M.A.; Mai, A.; Valente, S.; Tafani, M. SIRT5 activation and inorganic phosphate binding reduce cancer cell vitality by modulating autophagy/mitophagy and ROS. Antioxidants, 2023, 12(8), 1635.
[http://dx.doi.org/10.3390/antiox12081635] [PMID: 37627630]
[12]
Dutta, A.; Panchali, T.; Khatun, A.; Jarapala, S.R.; Das, K.; Ghosh, K.; Chakrabarti, S.; Pradhan, S. Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line. Sci. Rep., 2023, 13(1), 14125.
[http://dx.doi.org/10.1038/s41598-023-34885-3] [PMID: 37644076]
[13]
Tanase, C.; Enciu, A.M.; Mihai, S.; Neagu, A.; Calenic, B.; Cruceru, M. Anti-cancer therapies in high grade gliomas. Curr. Proteomics, 2013, 10(3), 246-260.
[http://dx.doi.org/10.2174/1570164611310030007] [PMID: 24228024]
[14]
Hosseini, L.; Majdi, A.; Sadigh-Eteghad, S.; Farajdokht, F.; Ziaee, M.; Rahigh Aghsan, S.; Farzipour, M.; Mahmoudi, J. Coenzyme Q10 ameliorates aging-induced memory deficits via modulation of apoptosis, oxidative stress, and mitophagy in aged rats. Exp. Gerontol., 2022, 168, 111950.
[http://dx.doi.org/10.1016/j.exger.2022.111950] [PMID: 36089173]
[15]
Gao, Q.; Li, G.; Zu, Y.; Xu, Y.; Wang, C.; Xiang, D.; He, W.; Shang, T.; Cheng, X.; Liu, D.; Zhang, C. Ginsenoside Rg1 alleviates ANIT-induced cholestatic liver injury by inhibiting hepatic inflammation and oxidative stress via SIRT1 activation. J. Ethnopharmacol., 2023, 319(Pt 1), 117089.
[PMID: 37634749]
[16]
Grilo, L.F.; Martins, J.D.; Diniz, M.S.; Tocantins, C.; Cavallaro, C.H.; Baldeiras, I.; Cunha-Oliveira, T.; Ford, S.; Nathanielsz, P.W.; Oliveira, P.J.; Pereira, S.P. Maternal hepatic adaptations during obese pregnancy encompass lobe-specific mitochondrial alterations and oxidative stress. Clin. Sci., 2023, 137(17), 1347-1372.
[http://dx.doi.org/10.1042/CS20230048] [PMID: 37565250]
[17]
Jiang, N.; Xing, B.; Peng, R.; Shang, J.; Wu, B.; Xiao, P.; Lin, S.; Xu, X.; Lu, H. Inhibition of Cpt1a alleviates oxidative stress-induced chondrocyte senescence via regulating mitochondrial dysfunction and activating mitophagy. Mech. Ageing Dev., 2022, 205, 111688.
[http://dx.doi.org/10.1016/j.mad.2022.111688] [PMID: 35728631]
[18]
Lee, D.H.; Jee, J.J.; Lee, Y.S.; Kim, D.Y.; Bang, J.Y.; Lee, H.W.; Koh, H.; Bae, S.H. Fecal microbiota transplantation improves hepatic fibro-inflammation via regulating oxidative stress in experimental NASH. Dig. Liver Dis., 2023, 55(11), 1521-1532.
[http://dx.doi.org/10.1016/j.dld.2023.06.015] [PMID: 37380586]
[19]
Mohamed, E.K.; Hafez, D.M. Gallic acid and metformin co-administration reduce oxidative stress, apoptosis and inflammation via Fas/caspase-3 and NF-κB signaling pathways in thioacetamide-induced acute hepatic encephalopathy in rats. BMC Complemen. Med. Therap., 2023, 23(1), 265.
[http://dx.doi.org/10.1186/s12906-023-04067-9] [PMID: 37491245]
[20]
Dubnov, S.; Yayon, N.; Yakov, O.; Bennett, D.A.; Seshadri, S.; Mufson, E. Knockout of the longevity gene Klotho perturbs aging- and Alzheimer’s disease-linked brain microRNAs and tRNA fragments. bioRxiv, 2023, 2023, 557032.
[http://dx.doi.org/10.1101/2023.09.10.557032]
[21]
Jiang, W.; He, S.; Liu, L.; Meng, X.; Lu, J.; Li, J.; Chen, T.; Xu, Y.; Xiao, Q.; Qi, L.; Zhang, J. New insight of Müller glial cells functions: focus on microRNAs-dependent manner. Br. J. Ophthalmol., 2023, 324132.
[http://dx.doi.org/10.1136/bjo-2023-324132] [PMID: 37751989]
[22]
Nemecz, M.; Stefan, D.S. Comarița, I.K.; Constantin, A.; Tanko, G.; Guja, C.; Georgescu, A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc. Diabetol., 2023, 22(1), 260.
[http://dx.doi.org/10.1186/s12933-023-01988-0] [PMID: 37749569]
[23]
Senaratne, M.; Swami, S.S.; Aye, S.L.; Trivedi, Y.; Bolgarina, Z.; Desai, H.N.; Mohammed, L. Clinical value of circulating micrornas in diagnosis and prognosis of pancreatic cancer: A systematic review. Cureus, 2023, 15(8), e43931.
[http://dx.doi.org/10.7759/cureus.43931] [PMID: 37746488]
[24]
Jiang, Z.; Yang, X.; Han, Y.; Li, J.; Hu, C.; Liu, C.; Xiao, W. Sarmentosin promotes USP17 and regulates Nrf2-mediated mitophagy and cellular oxidative stress to alleviate APAP-induced acute liver failure. Phytomedicine, 2022, 104, 154337.
[http://dx.doi.org/10.1016/j.phymed.2022.154337] [PMID: 35849971]
[25]
Lan, T.; Yan, B.; Guo, W.; Shen, Z.; Chen, J. VDR promotes nucleus pulposus cell mitophagy as a protective mechanism against oxidative stress injury. Free Radic. Res., 2022, 56(3-4), 316-327.
[http://dx.doi.org/10.1080/10715762.2022.2094791] [PMID: 35786375]
[26]
Ding, X.; Jian, T.; Wu, Y.; Zuo, Y.; Li, J.; Lv, H.; Ma, L.; Ren, B.; Zhao, L.; Li, W.; Chen, J. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed. Pharmacother., 2019, 110, 85-94.
[http://dx.doi.org/10.1016/j.biopha.2018.11.018] [PMID: 30466006]
[27]
Li, Y.; Duan, J.Z.; He, Q.; Wang, C.Q. miR 155 modulates high glucose induced cardiac fibrosis via the Nrf2/HO 1 signaling pathway. Mol. Med. Rep., 2020, 22(5), 4003-4016.
[http://dx.doi.org/10.3892/mmr.2020.11495] [PMID: 32901848]
[28]
Yang, Z.B.; Chen, W.W.; Chen, H.P.; Cai, S.X.; Lin, J.D.; Qiu, L.Z. MiR-155 aggravated septic liver injury by oxidative stress-mediated ER stress and mitochondrial dysfunction via targeting Nrf-2. Exp. Mol. Pathol., 2018, 105(3), 387-394.
[http://dx.doi.org/10.1016/j.yexmp.2018.09.003] [PMID: 30218645]
[29]
Zhai, Y.; Liu, B.; Wu, L.; Zou, M.; Mei, X.; Mo, X. Pachymic acid prevents neuronal cell damage induced by hypoxia/reoxygenation via miR 155/NRF2/HO 1 axis. Acta Neurobiol. Exp., 2022, 82(2), 197-206.
[http://dx.doi.org/10.55782/ane-2022-018] [PMID: 35833819]
[30]
Li, G.; Jian, Z.; Wang, H.; Xu, L.; Zhang, T.; Song, J. Irisin promotes osteogenesis by modulating oxidative stress and mitophagy through sirt3 signaling under diabetic conditions. Oxid. Med. Cell. Longev., 2022, 2022, 1-21.
[http://dx.doi.org/10.1155/2022/3319056] [PMID: 36262283]
[31]
Qin, Y.; Huang, J.; Zhao, X.; Chen, C. MiR-135a-5p and Mst1 regulate MPP + -1 induced apoptosis and autophagy in Parkinson’s disease model In Vitro. Cell. Signal., 2022, 94, 110328.
[http://dx.doi.org/10.1016/j.cellsig.2022.110328] [PMID: 35385779]
[32]
Omar, N.N.; Mosbah, R.A.; Sarawi, W.S.; Rashed, M.M.; Badr, A.M. Rifaximin protects against malathion-induced rat testicular toxicity: A Possible clue on modulating gut microbiome and inhibition of oxidative stress by mitophagy. Molecules, 2022, 27(13), 4069.
[http://dx.doi.org/10.3390/molecules27134069] [PMID: 35807317]
[33]
Shi, X.; Zhang, Z. MicroRNA 135a 5p is involved in osteoporosis progression through regulation of osteogenic differentiation by targeting RUNX2. Exp. Ther. Med., 2019, 18(4), 2393-2400.
[http://dx.doi.org/10.3892/etm.2019.7849] [PMID: 31555350]
[34]
Zhang, D.; Zheng, N.; Fu, X.; Shi, J.; Zhang, J. Dl-3-n-butylphthalide attenuates myocardial ischemia reperfusion injury by suppressing oxidative stress and regulating cardiac mitophagy via the PINK1/Parkin pathway in rats. J. Thorac. Dis., 2022, 14(5), 1651-1662.
[http://dx.doi.org/10.21037/jtd-22-585] [PMID: 35693588]
[35]
Klekowski, J. Zielińska, D.; Hofman, A.; Zajdel, N.; Gajdzis, P.; Chabowski, M. Clinical Significance of Nectins in HCC and Other Solid Malignant Tumors: Implications for Prognosis and New Treatment Opportunities—A Systematic Review. Cancers, 2023, 15(15), 3983.
[http://dx.doi.org/10.3390/cancers15153983] [PMID: 37568798]
[36]
Muscolino, P.; Granata, B.; Calabròٍ, F.; De Pasquale, C.; Campana, S. Calabrٍ, A.; D’Anna, F.; Drommi, F.; Pezzino, G.; Cavaliere, R.; Ferlazzo, G.; Silvestris, N.; Speranza, D. Potential predictive role of gut microbiota to immunotherapy in HCC patients: a brief review. Front. Oncol., 2023, 13, 1247614.
[http://dx.doi.org/10.3389/fonc.2023.1247614] [PMID: 37692859]
[37]
Shi, S.; Yi, H.; Zheng, Y.; Zhao, Y.; Yu, D. Adipose distribution patterns as prognostic factors in patients with HCC: A systematic review and meta-analysis. Eur. J. Radiol., 2023, 167, 111025.
[http://dx.doi.org/10.1016/j.ejrad.2023.111025] [PMID: 37634440]
[38]
Zhao, B.; Peng, Q.; Wang, D.; Zhou, R.; Wang, R.; Zhu, Y.; Qi, S. Leonurine protects bone mesenchymal stem cells from oxidative stress by activating mitophagy through PI3K/Akt/mTOR pathway. Cells, 2022, 11(11), 1724.
[http://dx.doi.org/10.3390/cells11111724] [PMID: 35681421]
[39]
Zhang, T.; Ma, S.; Liu, C.; Hu, K.; Xu, M.; Wang, R. Rosmarinic acid prevents radiation-induced pulmonary fibrosis through attenuation of ROS/MYPT1/TGFβ1 signaling via miR-19b-3p. Dose Response, 2020, 18(4), 1559325820968413.
[http://dx.doi.org/10.1177/1559325820968413] [PMID: 33149731]
[40]
Zhao, Q.; Liu, K.; Zhang, L.; Li, Z.; Wang, L.; Cao, J.; Xu, Y.; Zheng, A.; Chen, Q.; Zhao, T. BNIP3-dependent mitophagy safeguards ESC genomic integrity via preventing oxidative stress-induced DNA damage and protecting homologous recombination. Cell Death Dis., 2022, 13(11), 976.
[http://dx.doi.org/10.1038/s41419-022-05413-4] [PMID: 36402748]
[41]
He, X.R.; Lin, Q.C.; Chen, Q. [Effects of Prescription Yiqi Huatan Quyu on oxidative stress level and pathological changes in chronic intermittent hypoxia rat liver]. Zhonghua Yi Xue Za Zhi, 2017, 97(6), 457-461.
[PMID: 28219135]
[42]
Raeeszadeh, M.; Beheshtipour, J.; Jamali, R.; Akbari, A. The antioxidant properties of alfalfa (medicago sativa l.) and its biochemical, antioxidant, anti-inflammatory, and pathological effects on nicotine-induced oxidative stress in the rat liver. Oxid. Med. Cell. Longev., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/2691577] [PMID: 35378828]
[43]
Cao, Y.; Sun, W.; Liu, C.; Zhou, Z.; Deng, Z.; Zhang, M.; Yan, M.; Yin, X.; Zhu, X. Resveratrol ameliorates diabetic encephalopathy through PDE4D/PKA/Drp1 signaling. Brain Res. Bull., 2023, 203, 110763.
[http://dx.doi.org/10.1016/j.brainresbull.2023.110763] [PMID: 37722608]
[44]
Huang, B.; Xie, L.; Ke, M.; Fan, Y.; Tan, J.; Ran, J.; Zhu, C. Programmed Release METTL3-14 inhibitor microneedle protects myocardial function by reducing drp1 m6a modification-mediated mitochondrial fission. ACS Appl. Mater. Interfaces, 2023, 15(40), 46583-46597.
[http://dx.doi.org/10.1021/acsami.3c06318] [PMID: 37752784]
[45]
Yang, Y.; Zhou, W.; Wang, Y.; Ge, Y.; Fan, Z.; Liu, Q.; Gao, Y. Bavachin induces liver injury and cell apoptosis by targeting Wnt/β-catenin/DRP1 signaling pathway mediated mitochondrial dysfunction. Toxicol. Lett., 2023, 387, 1-13.
[http://dx.doi.org/10.1016/j.toxlet.2023.09.006] [PMID: 37748667]
[46]
Liang, X.; Dang, S. Mitochondrial dynamics related genes -MFN1, MFN2 and DRP1 polymorphisms are associated with risk of lung cancer. Pharm. Genomics Pers. Med., 2021, 14, 695-703.
[http://dx.doi.org/10.2147/PGPM.S314860] [PMID: 34163214]
[47]
Abudureyimu, M.; Yang, M.; Wang, X.; Luo, X.; Ge, J.; Peng, H.; Zhang, Y.; Ren, J. Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF. Front. Med., 2023.
[http://dx.doi.org/10.1007/s11684-023-0983-0] [PMID: 37656418]
[48]
Zhang, L.; Xie, X.; Tao, J.; Wang, S.; Hu, M.; Wang, X.; Yu, Z.; Xu, L.; Lin, Y.; Wu, W.; Cheng, J.; Wu, L.; Liu, W.; Gao, R.; Wang, J. Mystery of bisphenol F-induced nonalcoholic fatty liver disease-like changes: Roles of Drp1-mediated abnormal mitochondrial fission in lipid droplet deposition. Sci. Total Environ., 2023, 904, 166831.
[http://dx.doi.org/10.1016/j.scitotenv.2023.166831] [PMID: 37683851]
[49]
Wang, J.; Chen, A.; Xue, Z.; Liu, J.; He, Y.; Liu, G.; Zhao, Z.; Li, W.; Zhang, Q.; Chen, A.; Wang, J.; Li, X.; Wang, X.; Huang, B. BCL2L13 promotes mitophagy through DNM1L-mediated mitochondrial fission in glioblastoma. Cell Death Dis., 2023, 14(9), 585.
[http://dx.doi.org/10.1038/s41419-023-06112-4] [PMID: 37660127]
[50]
Westermann, B. Mitochondrial double membrane fission: A mystery solved? J. Cell Biol., 2023, 222(10), e202308119.
[http://dx.doi.org/10.1083/jcb.202308119] [PMID: 37656142]
[51]
Hu, H.F.; Xu, W.W.; Li, Y.J.; He, Y.; Zhang, W.X.; Liao, L.; Zhang, Q.H.; Han, L.; Yin, X.F.; Zhao, X.X.; Pan, Y.L.; Li, B.; He, Q.Y. Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission. Theranostics, 2021, 11(4), 1828-1844.
[http://dx.doi.org/10.7150/thno.48698] [PMID: 33408784]
[52]
Zhang, L.; Wang, M.; An, R.; Dai, J.; Liu, S.; Chen, M.; Ding, H. Activation of NLRP3 inflammasome via Drp1 overexpression in kupffer cells aggravates ischemia-reperfusion injury in hepatic steatosis. J. Clin. Transl. Hepatol., 2023, 11(5), 1069-1078.
[http://dx.doi.org/10.14218/JCTH.2022.00109] [PMID: 37577223]
[53]
Liu, H.J.; Qin, Y.; Zhao, Z.H.; Zhang, Y.; Yang, J.H.; Zhai, D.H.; Cui, F.; Luo, C.; Lu, M.X.; Liu, P.P.; Xu, H.W.; Li, K.; Sun, B.; Chen, S.; Zhou, H.G.; Yang, C.; Sun, T. Lentinan-functionalized selenium nanoparticles target tumor cell mitochondria via TLR4/TRAF3/MFN1 pathway. Theranostics, 2020, 10(20), 9083-9099.
[http://dx.doi.org/10.7150/thno.46467] [PMID: 32802180]
[54]
Moghaddam, F.D.; Mortazavi, P.; Hamedi, S.; Nabiuni, M.; Roodbari, N.H. Apoptotic effects of melittin on 4t1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression. Anticancer. Agents Med. Chem., 2020, 20(7), 790-799.
[http://dx.doi.org/10.2174/1871520620666200211091451] [PMID: 32072917]
[55]
Li, S.; Han, S.; Zhang, Q.; Zhu, Y.; Zhang, H.; Wang, J.; Zhao, Y.; Zhao, J.; Su, L.; Li, L.; Zhou, D.; Ye, C.; Feng, X.H.; Liang, T.; Zhao, B. FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion. Nat. Commun., 2022, 13(1), 3486.
[http://dx.doi.org/10.1038/s41467-022-31187-6] [PMID: 35710796]
[56]
Liu, H.J.; Qin, Y.; Zhao, Z.H.; Zhang, Y.; Yang, J.H.; Zhai, D.H.; Cui, F.; Luo, C.; Lu, M.X.; Liu, P.P.; Xu, H.W.; Li, K.; Sun, B.; Chen, S.; Zhou, H.G.; Yang, C.; Sun, T. Lentinan-functionalized selenium nanoparticles target tumor cell mitochondria via TLR4/TRAF3/MFN1 pathway: Erratum. Theranostics, 2022, 12(17), 7645.
[http://dx.doi.org/10.7150/thno.78949] [PMID: 36438475]
[57]
Shahin, S.; Lu, B.; Zhou, Y.; Xu, H.; Chetsawang, J.; Baloh, R.H.; Wang, S. MFN1 augmentation prevents retinal degeneration in a Charcot-Marie-Tooth type 2A mouse model. iScience, 2023, 26(3), 106270.
[http://dx.doi.org/10.1016/j.isci.2023.106270] [PMID: 36936780]
[58]
Zheng, D.; Chen, L.; Li, G.; Jin, L.; Wei, Q.; Liu, Z.; Yang, G.; Li, Y.; Xie, X. Fucoxanthin ameliorated myocardial fibrosis in STZ-induced diabetic rats and cell hypertrophy in HG-induced H9c2 cells by alleviating oxidative stress and restoring mitophagy. Food Funct., 2022, 13(18), 9559-9575.
[http://dx.doi.org/10.1039/D2FO01761J] [PMID: 35997158]
[59]
Xie, H.; Xu, G.; Gao, Y.; Yuan, Z. hCINAP serves a critical role in hypoxia induced cardiomyocyte apoptosis via modulating lactate production and mitochondrial mediated apoptosis signaling. Mol. Med. Rep., 2021, 23(2), 23.
[PMID: 33300073]
[60]
Gu, L.; Feng, C.; Li, M.; Hong, Z.; Di, W.; Qiu, L. Exosomal NOX1 promotes tumor-associated macrophage M2 polarization-mediated cancer progression by stimulating ROS production in cervical cancer: A preliminary study. Eur. J. Med. Res., 2023, 28(1), 323.
[http://dx.doi.org/10.1186/s40001-023-01246-9] [PMID: 37679792]
[61]
Kang, M.; Kang, J.H.; Sim, I.A.; Seong, D.Y.; Han, S.; Jang, H.; Lee, H.; Kang, S.W.; Kim, S.Y. Glucose deprivation induces cancer cell death through failure of ROS regulation. Int. J. Mol. Sci., 2023, 24(15), 11969.
[http://dx.doi.org/10.3390/ijms241511969] [PMID: 37569345]
[62]
Zhong, P.C.; Liu, Z.W.; Xing, Q.C.; Chen, J.; Yang, R.P. Neferine inhibits the development of lung cancer cells by downregulating TGF ‐β to regulate MST1/ROS ‐induced pyroptosis. Kaohsiung J. Med. Sci., 2023, 39(11), 1106-1118.
[http://dx.doi.org/10.1002/kjm2.12752] [PMID: 37698291]
[63]
Zhu, X.; Tao, F.; Zhang, L.; Yu, Y.; Xu, Y.; Yang, G.; Wei, Z.; Cheng, Y.; Yin, X.; Zhang, X.; Wei, W.; Wang, A. Astragaloside IV protects detrusor from partial bladder outlet obstruction-induced oxidative stress by activating mitophagy through AMPK-ULK1 Pathway. Oxid. Med. Cell. Longev., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/5757367] [PMID: 35873803]
[64]
Bian, Z.; Zhang, Q.; Qin, Y.; Sun, X.; Liu, L.; Liu, H.; Mao, L.; Yan, Y.; Liao, W.; Zha, L.; Sun, S. Sodium butyrate inhibits oxidative stress and NF-κB/NLRP3 activation in dextran sulfate sodium salt-induced colitis in mice with involvement of the Nrf2 signaling pathway and mitophagy. Dig. Dis. Sci., 2023, 68(7), 2981-2996.
[http://dx.doi.org/10.1007/s10620-023-07845-0] [PMID: 36867295]
[65]
Figueiredo-Pereira, C.; Villarejo-Zori, B.; Cipriano, P.C.; Tavares, D. Ramírez-Pardo, I.; Boya, P.; Vieira, H.L.A. Carbon monoxide stimulates both mitophagy and mitochondrial biogenesis to mediate protection against oxidative stress in astrocytes. Mol. Neurobiol., 2023, 60(2), 851-863.
[http://dx.doi.org/10.1007/s12035-022-03108-7] [PMID: 36378469]
[66]
Chernyavskij, D.A.; Pletjushkina, O.Y.; Kashtanova, A.V.; Galkin, I.I.; Karpukhina, A.; Chernyak, B.V.; Vassetzky, Y.S.; Popova, E.N. Mitochondrial oxidative stress and mitophagy activation contribute to tnf-dependent impairment of myogenesis. Antioxidants, 2023, 12(3), 602.
[http://dx.doi.org/10.3390/antiox12030602] [PMID: 36978858]
[67]
Lai, X.; Zhang, Y.; Wu, J.; Shen, M.; Yin, S.; Yan, J. Rutin Attenuates oxidative stress via phb2-mediated mitophagy in MPP+-induced SH-SY5Y cells. Neurotox. Res., 2023, 41(3), 242-255.
[http://dx.doi.org/10.1007/s12640-023-00636-5] [PMID: 36738374]
[68]
Liu, L.; Zhang, W.; Liu, T.; Tan, Y.; Chen, C.; Zhao, J.; Geng, H.; Ma, C. The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress. Redox Biol., 2023, 62, 102663.
[http://dx.doi.org/10.1016/j.redox.2023.102663] [PMID: 36924682]
[69]
Miao, C.; Zhao, Y.; Chen, Y.; Wang, R.; Ren, N.; Chen, B.; Dong, P.; Zhang, Q. Investigation of He’s Yang Chao recipe against oxidative stress-related mitophagy and pyroptosis to improve ovarian function. Front. Endocrinol., 2023, 14, 1077315.
[http://dx.doi.org/10.3389/fendo.2023.1077315] [PMID: 36777359]
[70]
Shang, J.; Lin, N.; Peng, R.; Jiang, N.; Wu, B.; Xing, B.; Lin, S.; Xu, X.; Lu, H. Inhibition of Klf10 attenuates oxidative stress-induced senescence of chondrocytes via modulating mitophagy. Molecules, 2023, 28(3), 924.
[http://dx.doi.org/10.3390/molecules28030924] [PMID: 36770589]
[71]
Shen, Y.; Liu, L.; Li, M.Z.; Wang, H.R.; Zhao, Y.; Li, J.L. Lycopene prevents Di-(2-ethylhexyl) phthalate-induced mitophagy and oxidative stress in mice heart via modulating mitochondrial homeostasis. J. Nutr. Biochem., 2023, 115, 109285.
[http://dx.doi.org/10.1016/j.jnutbio.2023.109285] [PMID: 36796548]
[72]
Song, C.; Zhang, A.; Zhang, M.; Song, Y.; Huangfu, H.; Jin, S.; Sun, Y.; Zhang, C.; Shi, D.; Wang, J.; Peng, W.; Luo, Q. Nrf2/PINK1-mediated mitophagy induction alleviates sodium fluoride-induced hepatic injury by improving mitochondrial function, oxidative stress, and inflammation. Ecotoxicol. Environ. Saf., 2023, 252, 114646.
[http://dx.doi.org/10.1016/j.ecoenv.2023.114646] [PMID: 36791501]
[73]
Wang, H.; Lin, H.; Kang, W.; Huang, L.; Gong, S.; Zhang, T.; Huang, X.; He, F.; Ye, Y.; Tang, Y.; Jia, H.; Yang, H. miR-34a/DRP-1-mediated mitophagy participated in cisplatin-induced ototoxicity via increasing oxidative stress. BMC Pharmacol. Toxicol., 2023, 24(1), 16.
[http://dx.doi.org/10.1186/s40360-023-00654-1] [PMID: 36882858]
[74]
Zhang, L.; Zhang, X.; Zhang, T.; Guo, Y.; Pei, W.; Liu, R.; Chang, M.; Wang, X. Linolenic acid ameliorates sarcopenia in C. elegans by promoting mitophagy and fighting oxidative stress. Food Funct., 2023, 14(3), 1498-1509.
[http://dx.doi.org/10.1039/D2FO02974J] [PMID: 36651495]
[75]
Pang, Y.; Zhu, Z.; Wen, Z.; Lu, J.; Lin, H.; Tang, M.; Xu, Z.; Lu, J. HIGD 1B inhibits hypoxia induced mitochondrial fragmentation by regulating OPA1 cleavage in cardiomyocytes. Mol. Med. Rep., 2021, 24(2), 549.
[http://dx.doi.org/10.3892/mmr.2021.12188] [PMID: 34080026]