The Interplay Between Gut Microbiota and Central Nervous System

Page: [3274 - 3281] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

This review highlights the relationships between gastrointestinal microorganisms and the brain. The gut microbiota communicates with the central nervous system through nervous, endocrine, and immune signalling mechanisms. Our brain can modulate the gut microbiota structure and function through the autonomic nervous system, and possibly through neurotransmitters which directly act on bacterial gene expression. In this context, oxidative stress is one the main factors involved in the dysregulation of the gut-brain axis and consequently in neurodegenerative disorders. Several factors influence the susceptibility to oxidative stress by altering the antioxidant status or free oxygen radical generation. Amongst these, of interest is alcohol, a commonly used substance which can negatively influence the central nervous system and gut microbiota, with a key role in the development of neurodegenerative disorder. The role of “psychobiotics” as a novel contrast strategy for preventing and treating disorders caused due to alcohol use and abuse has been investigated.

[1]
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin Microbiol Rev 2022; 35(1).
[http://dx.doi.org/10.1128/CMR.00338-20] [PMID: 34985325]
[2]
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek 2020; 113(12): 2019-40.
[http://dx.doi.org/10.1007/s10482-020-01474-7] [PMID: 33136284]
[3]
Gervasi, T, Grassby, T, Barreca, D, Mandalari, G, Gut microbiota and health, in: Dietary supplements with antioxidant activity: Understanding mechanisms and potential health benefits: Dietary supplements with antioxidant activity: Understanding mechanisms and potential health benefits. Books Gateway. Royal Society of Chemistry 2023.
[4]
Morais LH, Schreiber HL IV, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021; 19(4): 241-55.
[http://dx.doi.org/10.1038/s41579-020-00460-0] [PMID: 33093662]
[5]
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99(4): 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[6]
Liang S, Wu X, Jin F. Gut-brain psychology: Rethinking psychology from the microbiota–gut–brain axis. Front Integr Nuerosci 2018; 12: 33.
[http://dx.doi.org/10.3389/fnint.2018.00033] [PMID: 30271330]
[7]
Suganya K, Koo BS. Gut–brain axis: role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci 2020; 21(20): 7551.
[http://dx.doi.org/10.3390/ijms21207551] [PMID: 33066156]
[8]
Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 2018; 6(2): 133-48.
[http://dx.doi.org/10.1016/j.jcmgh.2018.04.003] [PMID: 30023410]
[9]
Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J Neuroinflammation 2019; 16(1): 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[10]
Banks WA. Characteristics of compounds that cross the blood- brain barrier. BMC Neurol 2009; 9(Suppl 1): S3.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S3] [PMID: 19534732]
[11]
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 2017; 17(12): 94.
[http://dx.doi.org/10.1007/s11910-017-0802-6] [PMID: 29039142]
[12]
Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry 2014; 19(2): 146-8.
[http://dx.doi.org/10.1038/mp.2013.65] [PMID: 23689536]
[13]
Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry 2015; 78(4): e7-9.
[http://dx.doi.org/10.1016/j.biopsych.2014.12.023] [PMID: 25700599]
[14]
Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a bubble: Using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 2016; 19(8): pyw020.
[http://dx.doi.org/10.1093/ijnp/pyw020] [PMID: 26912607]
[15]
Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108(7): 3047-52.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[16]
Lu J, Lu L, Yu Y, Cluette-Brown J, Martin CR, Claud EC. Effects of intestinal microbiota on brain development in humanized gnotobiotic mice. Sci Rep 2018; 8(1): 5443.
[http://dx.doi.org/10.1038/s41598-018-23692-w] [PMID: 29615691]
[17]
Hoban AE, Stilling RM, Ryan FJ, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 2016; 6(4): e774-4.
[http://dx.doi.org/10.1038/tp.2016.42] [PMID: 27045844]
[18]
Shahbazi A, Sepehrinezhad A, Vahdani E, et al. Gut dysbiosis and blood-brain barrier alteration in hepatic encephalopathy: From gut to brain. Biomedicines 2023; 11(5): 1272.
[http://dx.doi.org/10.3390/biomedicines11051272] [PMID: 37238943]
[19]
Fock E, Parnova R. Mechanisms of blood–brain barrier protection by microbiota-derived short-chain fatty acids. Cells 2023; 12(4): 657.
[http://dx.doi.org/10.3390/cells12040657] [PMID: 36831324]
[20]
Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 2019; 16(8): 461-78.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[21]
Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res 2022; 38: 223-44.
[http://dx.doi.org/10.1016/j.jare.2021.09.005] [PMID: 35572407]
[22]
Wang H, Yang F, Zhang S, Xin R, Sun Y. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis 2021; 7(1): 70.
[http://dx.doi.org/10.1038/s41531-021-00213-7] [PMID: 34381040]
[23]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[24]
Shi H, Ge X, Ma X, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 2021; 9(1): 223.
[http://dx.doi.org/10.1186/s40168-021-01172-0] [PMID: 34758889]
[25]
Pan RY, Zhang J, Wang J, et al. Intermittent fasting protects against Alzheimer’s disease in mice by altering metabolism through remodeling of the gut microbiota. Nature Aging 2022; 2(11): 1024-39.
[http://dx.doi.org/10.1038/s43587-022-00311-y] [PMID: 37118092]
[26]
Luna RA, Oezguen N, Balderas M, et al. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell Mol Gastroenterol Hepatol 2017; 3(2): 218-30.
[http://dx.doi.org/10.1016/j.jcmgh.2016.11.008] [PMID: 28275689]
[27]
Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016; 167(6): 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[28]
Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015; 48: 186-94.
[http://dx.doi.org/10.1016/j.bbi.2015.03.016] [PMID: 25882912]
[29]
Intili G, Paladino L, Rappa F, et al. From dysbiosis to neurodegenerative diseases through different communication pathways: An overview. Biology (Basel) 2023; 12(2): 195.
[http://dx.doi.org/10.3390/biology12020195] [PMID: 36829474]
[30]
Chiu LS, Anderton RS. The role of the microbiota–gut–brain axis in long-term neurodegenerative processes following traumatic brain injury. Eur J Neurosci 2023; 57(2): 400-18.
[http://dx.doi.org/10.1111/ejn.15892] [PMID: 36494087]
[31]
Sundman MH, Chen N, Subbian V, Chou Y. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 2017; 66: 31-44.
[http://dx.doi.org/10.1016/j.bbi.2017.05.009] [PMID: 28526435]
[32]
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[33]
Sun Y, Lu Y, Saredy J, et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 2020; 37
[http://dx.doi.org/10.1016/j.redox.2020.101696] [PMID: 32950427]
[34]
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019; 24(8): 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[35]
Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett 2018; 592(5): 692-702.
[http://dx.doi.org/10.1002/1873-3468.12964] [PMID: 29292494]
[36]
Sellge G, Kufer TA. PRR-signaling pathways: Learning from microbial tactics. Semin Immunol 2015; 27(2): 75-84.
[http://dx.doi.org/10.1016/j.smim.2015.03.009] [PMID: 25911384]
[37]
Saint-Georges-Chaumet Y, Edeas M. Microbiota–mitochondria inter-talk: Consequence for microbiota–host interaction. Pathog Dis 2016; 74(1): ftv096.
[http://dx.doi.org/10.1093/femspd/ftv096] [PMID: 26500226]
[38]
Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne) 2020; 11: 25.
[http://dx.doi.org/10.3389/fendo.2020.00025] [PMID: 32082260]
[39]
Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; 30(3): 350-8.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[40]
Chai X-Y, Diwakarla S, Pustovit RV, et al. Investigation of nerve pathways mediating colorectal dysfunction in Parkinson's disease model produced by lesion of nigrostriatal dopaminergic neurons. Neurogastroenterol Motil 2020; 32(9): e13893.
[http://dx.doi.org/10.1111/nmo.13893] [PMID: 32512642]
[41]
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004; 318(1): 121-34.
[http://dx.doi.org/10.1007/s00441-004-0956-9] [PMID: 15338272]
[42]
Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol 2020; 19(2): 179-94.
[http://dx.doi.org/10.1016/S1474-4422(19)30356-4] [PMID: 31753762]
[43]
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci 2016; 39(11): 763-81.
[http://dx.doi.org/10.1016/j.tins.2016.09.002] [PMID: 27793434]
[44]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[45]
Bairamian D, Sha S, Rolhion N, et al. Microbiota in neuroinflammation and synaptic dysfunction: A focus on Alzheimer’s disease. Mol Neurodegener 2022; 17(1): 19.
[http://dx.doi.org/10.1186/s13024-022-00522-2] [PMID: 35248147]
[46]
Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer’s disease: What we know and what remains to be explored. Mol Neurodegener 2023; 18(1): 9.
[http://dx.doi.org/10.1186/s13024-023-00595-7] [PMID: 36721148]
[47]
Wang JW, Kuo CH, Kuo FC, et al. Fecal microbiota transplantation: Review and update. J Formos Med Assoc 2019; 118 (Suppl. 1): S23-31.
[http://dx.doi.org/10.1016/j.jfma.2018.08.011] [PMID: 30181015]
[48]
Kamal H, Tan GC, Ibrahim SF, et al. Alcohol use disorder, Neurodegeneration, Alzheimer’s and Parkinson’s disease: Interplay between oxidative stress, neuroimmune response and excitotoxicity. Front Cell Neurosci 2020; 14: 282.
[http://dx.doi.org/10.3389/fncel.2020.00282] [PMID: 33061892]
[49]
Daviet R, Aydogan G, Jagannathan K, et al. Associations between alcohol consumption and gray and white matter volumes in the UK Biobank. Nat Commun 2022; 13(1): 1175.
[http://dx.doi.org/10.1038/s41467-022-28735-5] [PMID: 35246521]
[50]
Immonen S, Launes J, Järvinen I, et al. Moderate alcohol use is associated with decreased brain volume in early middle age in both sexes. Sci Rep 2020; 10(1): 13998.
[http://dx.doi.org/10.1038/s41598-020-70910-5] [PMID: 32814788]
[51]
Paul CA, Au R, Fredman L, et al. Association of alcohol consumption with brain volume in the Framingham study. Arch Neurol 2008; 65(10): 1363-7.
[http://dx.doi.org/10.1001/archneur.65.10.1363] [PMID: 18852353]
[52]
Mukamal KJ. Alcohol consumption and subclinical findings on magnetic resonance imaging of the brain in older adults: The cardiovascular health study. Stroke 2001; 32(9): 1939-46.
[http://dx.doi.org/10.1161/hs0901.095723]
[53]
den Heijer T, Vermeer SE, van Dijk EJ, et al. Alcohol intake in relation to brain magnetic resonance imaging findings in older persons without dementia. Am J Clin Nutr 2004; 80(4): 992-7.
[http://dx.doi.org/10.1093/ajcn/80.4.992] [PMID: 15447910]
[54]
Martino C, Zaramela LS, Gao B, et al. Acetate reprograms gut microbiota during alcohol consumption. Nat Commun 2022; 13(1): 4630.
[http://dx.doi.org/10.1038/s41467-022-31973-2] [PMID: 35941112]
[55]
Keshavarzian A, Farhadi A, Forsyth CB, et al. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol 2009; 50(3): 538-47.
[http://dx.doi.org/10.1016/j.jhep.2008.10.028] [PMID: 19155080]
[56]
Mcc C, Nl L, Cm F, et al. Comparing the effects of acute alcohol consumption in germ-free and conventional mice: The role of the gut microbiota. BMC Microbiol 2014; 14(1): 240.
[http://dx.doi.org/10.1186/s12866-014-0240-4] [PMID: 25223989]
[57]
Mutlu EA, Gillevet PM, Rangwala H, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 2012; 302(9): G966-78.
[http://dx.doi.org/10.1152/ajpgi.00380.2011] [PMID: 22241860]
[58]
Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 2009; 50(2): 638-44.
[http://dx.doi.org/10.1002/hep.23009] [PMID: 19575462]
[59]
Elamin E, Masclee A, Troost F, et al. Ethanol impairs intestinal barrier function in humans through mitogen activated protein kinase signaling: A combined in vivo and in vitro approach. PLoS One 2014; 9(9): e107421.
[http://dx.doi.org/10.1371/journal.pone.0107421] [PMID: 25226407]
[60]
Hellman J, Roberts JD Jr, Tehan MM, Allaire JE, Warren HS. Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in gram-negative sepsis and causes inflammation and death in mice. J Biol Chem 2002; 277(16): 14274-80.
[http://dx.doi.org/10.1074/jbc.M109696200] [PMID: 11830585]
[61]
Leclercq S, De Saeger C, Delzenne N, de Timary P, Stärkel P. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry 2014; 76(9): 725-33.
[http://dx.doi.org/10.1016/j.biopsych.2014.02.003] [PMID: 24629538]
[62]
Leclercq S, Matamoros S, Cani PD, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Nat Acad Sci. 2014; 111(42): E4485-93.
[http://dx.doi.org/10.1073/pnas.1415174111] [PMID: 25288760]
[63]
Yan AWE, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53(1): 96-105.
[http://dx.doi.org/10.1002/hep.24018] [PMID: 21254165]
[64]
Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 2009; 33(10): 1836-46.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01022.x] [PMID: 19645728]
[65]
Bull-Otterson L, Feng W, Kirpich I, et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 2013; 8(1): e53028.
[http://dx.doi.org/10.1371/journal.pone.0053028] [PMID: 23326376]
[66]
Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The gastrointestinal microbiome: Alcohol effects on the composition of intestinal microbiota. Alcohol Res 2015; 37(2): 223-236.
[67]
Xiao H, Ge C, Feng G, et al. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol Lett 2018; 287: 23-30.
[http://dx.doi.org/10.1016/j.toxlet.2018.01.021] [PMID: 29391279]
[68]
Kosnicki KL, Penprase JC, Cintora P, et al. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome. Addict Biol 2019; 24(4): 617-30.
[http://dx.doi.org/10.1111/adb.12626] [PMID: 29750384]
[69]
Calleja-Conde J, Echeverry-Alzate V, Bühler KM, et al. The immune system through the lens of alcohol intake and gut microbiota. Int J Mol Sci 2021; 22(14): 7485.
[http://dx.doi.org/10.3390/ijms22147485] [PMID: 34299105]
[70]
García-Marchena N, Maza-Quiroga R, Serrano A, et al. Abstinent patients with alcohol use disorders show an altered plasma cytokine profile: Identification of both interleukin 6 and interleukin 17A as potential biomarkers of consumption and comorbid liver and pancreatic diseases. J Psychopharmacol 2020; 34(11): 1250-60.
[http://dx.doi.org/10.1177/0269881120928176] [PMID: 32536325]
[71]
Kölbel CBM, Singer MV, Möhle T, Heinzel C, Eysselein V, Goebell H. Action of intravenous ethanol and atropine on the secretion of gastric acid, pancreatic enzymes, and bile acids and the motility of the upper gastrointestinal tract in nonalcoholic humans. Pancreas 1986; 1(3): 211-8.
[http://dx.doi.org/10.1097/00006676-198605000-00003] [PMID: 2437566]
[72]
Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146(6): 1513-24.
[http://dx.doi.org/10.1053/j.gastro.2014.01.020] [PMID: 24440671]
[73]
de Timary P, Stärkel P, Delzenne NM, Leclercq S. A role for the peripheral immune system in the development of alcohol use disorders? Neuropharmacology 2017; 122: 148-60.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.013] [PMID: 28400259]
[74]
Airapetov M, Eresko S, Lebedev A, Bychkov E, Shabanov P. The role of toll-like receptors in neurobiology of alcoholism. Biosci Trends 2021; 15(2): 74-82.
[http://dx.doi.org/10.5582/bst.2021.01041] [PMID: 33716257]
[75]
Ibáñez F, Montesinos J, Ureña-Peralta JR, Guerri C, Pascual M. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J Neuroinflammation 2019; 16(1): 136.
[http://dx.doi.org/10.1186/s12974-019-1529-x] [PMID: 31272469]
[76]
Ballway JW, Song BJ. Translational approaches with antioxidant phytochemicals against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease. Antioxidants 2021; 10(3): 384.
[http://dx.doi.org/10.3390/antiox10030384] [PMID: 33806556]
[77]
Dinan TG, Stanton C, Cryan JF. Psychobiotics: A novel class of psychotropic. Biol Psychiatry 2013; 74(10): 720-6.
[http://dx.doi.org/10.1016/j.biopsych.2013.05.001] [PMID: 23759244]
[78]
Evrensel A, Ünsalver BÖ, Ceylan ME. Psychobiotics. Adv Exp Med Biol 2019; 1192: 565-81.
[http://dx.doi.org/10.1007/978-981-32-9721-0_28]
[79]
Del Toro-Barbosa M, Hurtado-Romero A, Garcia-Amezquita LE, García-Cayuela T. Psychobiotics: Mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients 2020; 12(12): 3896.
[http://dx.doi.org/10.3390/nu12123896] [PMID: 33352789]
[80]
Allen AP, Hutch W, Borre YE, et al. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry 2016; 6(11): e939-9.
[http://dx.doi.org/10.1038/tp.2016.191] [PMID: 27801892]
[81]
Adikari AMGCP, Appukutty M, Kuan G. Effects of daily probiotics supplementation on anxiety induced physiological parameters among competitive football players. Nutrients 2020; 12(7): 1920.
[http://dx.doi.org/10.3390/nu12071920] [PMID: 32610465]
[82]
Miyaoka T, Kanayama M, Wake R, et al. Clostridium butyricum MIYAIRI 588 as adjunctive therapy for treatment-resistant major depressive disorder: A prospective open-label trial. Clin Neuropharmacol 2018; 41(5): 151-5.
[http://dx.doi.org/10.1097/WNF.0000000000000299] [PMID: 30234616]
[83]
Nishida K, Sawada D, Kawai T, Kuwano Y, Fujiwara S, Rokutan K. Para-psychobiotic Lactobacillus gasseri CP 2305 ameliorates stress-related symptoms and sleep quality. J Appl Microbiol 2017; 123(6): 1561-70.
[http://dx.doi.org/10.1111/jam.13594] [PMID: 28948675]
[84]
Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2011; 2(4): 256-61.
[http://dx.doi.org/10.4161/gmic.2.4.16108] [PMID: 21983070]
[85]
Majeed M, Nagabhushanam K, Arumugam S, Majeed S, Ali F. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: A randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr Res 2018; 62.
[http://dx.doi.org/10.29219/fnr.v62.1218] [PMID: 29997457]
[86]
Pinto-Sanchez MI, Hall GB, Ghajar K, et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterology 2017; 153(2): 448-459.e8.
[http://dx.doi.org/10.1053/j.gastro.2017.05.003] [PMID: 28483500]
[87]
Rodriguez-Gonzalez A, Orio L. Microbiota and alcohol use disorder: Are psychobiotics a novel therapeutic strategy? Curr Pharm Des 2020; 26(20): 2426-37.
[http://dx.doi.org/10.2174/1381612826666200122153541] [PMID: 31969090]