Recent Progress and Challenges in Clinical Translation of Nanomedicines in Diagnosis and Treatment of Lung Cancer

Page: [12 - 24] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Lung cancer is one of the leading causes of death across the world. There are numerous challenges in the early diagnosis and effective treatment of lung cancer, including developing multidrug resistance. However, the diagnosis of lung cancer could be minimally invasive or non-invasive. Nowadays, nanomedicines offer solutions to several emerging challenges in drug delivery research areas. It has the potential to enhance the therapeutic efficacy of biologically and chemically active agents at the site of action. This approach can also be employed in molecular and cellular imaging, precise and early detection, screening, and targeting drugs for lung cancer treatment. A proper understanding of the disease and timely diagnosis using strategically designed effective nanocarriers can be a promising approach to effectively managing cancer. The present review explores issues related to lung cancer chemotherapy and the promises and hurdles of newer approaches like nanomedicine. The article also summarizes the preclinical studies on diagnosis and treatment, pitfalls, and challenges in the clinical translation of nanomedicines for lung cancer therapy.

Graphical Abstract

[1]
Vikas , Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: Emerging trends and advances in lung cancer therapeutics. Nanomedicine 2022; 17(19): 1375-95.
[http://dx.doi.org/10.2217/nnm-2021-0470] [PMID: 36317852]
[2]
Chaitanya Thandra K, Barsouk A, Saginala K, et al. Epidemiology of lung cancer. Contemp Oncol 2021; 25(1): 45-52.
[http://dx.doi.org/10.5114/wo.2021.103829]
[3]
Bade BC, Dela Cruz CS. Lung cancer 2020: Epidemiology, etiology, and prevention. Clin Chest Med 2020; 41(1): 1-24.
[4]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Rehfeld A. Revisiting the action of steroids and triterpenoids on the human sperm Ca2+ channel CatSper. Mol Hum Reprod 2020; 26(11): 816-24.
[http://dx.doi.org/10.1093/molehr/gaaa062] [PMID: 32926144]
[6]
Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci 2021; 22(16): 8661.
[http://dx.doi.org/10.3390/ijms22168661] [PMID: 34445366]
[7]
Bade BC, Dela Cruz CS. Lung Cancer 2020. Clin Chest Med 2020; 41(1): 1-24.
[http://dx.doi.org/10.1016/j.ccm.2019.10.001] [PMID: 32008623]
[8]
Alexander M, Kim SY, Cheng H. Update 2020: Management of non-small cell lung cancer. Lung 2020; 198(6): 897-907.
[http://dx.doi.org/10.1007/s00408-020-00407-5] [PMID: 33175991]
[9]
Horvath L, Pircher A. ASCO 2020 non-small lung cancer (NSCLC) personal highlights. Mag Eur Med Oncol 2021; 14(1): 66-9.
[http://dx.doi.org/10.1007/s12254-020-00673-2] [PMID: 33456617]
[10]
Novikov SN, Krzhivitskii PI, Radgabova ZA, et al. Single photon emission computed tomography-computed tomography visualization of sentinel lymph nodes for lymph flow guided nodal irradiation in oral tongue cancer. Radiat Oncol J 2021; 39(3): 193-201.
[http://dx.doi.org/10.3857/roj.2021.00395] [PMID: 34610658]
[11]
Majeed H, Gupta V. Adverse effects of radiation therapy. Stat- Pearls. Treasure Island, FL: StatPearls Publishing 2023.
[12]
Uzel EK, Figen M, Uzel Ö. Radiotherapy in lung cancer: Current and future role. Curr Fut Role Sisli Etfal Hastan Tip Bul 2019; 53(4): 353-60.
[PMID: 32377108]
[13]
Mithoowani H, Febbraro M. Non-small-cell lung cancer in 2022: A review for general practitioners in oncology. Curr Oncol 2022; 29(3): 1828-39.
[http://dx.doi.org/10.3390/curroncol29030150] [PMID: 35323350]
[14]
Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7: 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[15]
Gomathi AC, Xavier Rajarathinam SR, Mohammed Sadiq A, Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol 2020; 55: 101376.
[http://dx.doi.org/10.1016/j.jddst.2019.101376]
[16]
Taniguchi H, Sen T, Rudin CM. Targeted therapies and biomarkers in small cell lung cancer. Front Oncol 2020; 10: 741.
[http://dx.doi.org/10.3389/fonc.2020.00741] [PMID: 32509576]
[17]
Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020; 9(2): 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[18]
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater 2020; 9(9): 1901058.
[http://dx.doi.org/10.1002/adhm.201901058] [PMID: 32196144]
[19]
Fan M, Han Y, Gao S, et al. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics 2020; 10(11): 4944-57.
[http://dx.doi.org/10.7150/thno.42471] [PMID: 32308760]
[20]
Chen R, Manochakian R, James L, et al. Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol 2020; 13(1): 58.
[http://dx.doi.org/10.1186/s13045-020-00881-7] [PMID: 32448366]
[21]
Rosenblum D, Gutkin A, Kedmi R, et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv 2020; 6(47): eabc9450.
[http://dx.doi.org/10.1126/sciadv.abc9450] [PMID: 33208369]
[22]
Sharma A, Shambhwani D, Pandey S, et al. Advances in lung cancer treatment using nanomedicines. ACS Omega 2023; 8(1): 10-41.
[http://dx.doi.org/10.1021/acsomega.2c04078] [PMID: 36643475]
[23]
Mondal S. Nanomaterials definition matters. Nat Nanotechnol 2019; 14(3): 193-3.
[http://dx.doi.org/10.1038/s41565-019-0412-3] [PMID: 30837755]
[24]
Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med 2020; 1: 10-9.
[http://dx.doi.org/10.1016/j.smaim.2020.04.001] [PMID: 34553138]
[25]
Nikalje AP. Nanotechnology and its applications in medicine. Med Chem 2015; 5(2)
[http://dx.doi.org/10.4172/2161-0444.1000247]
[26]
Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: From fundamentals to the clinic. Chem Commun 2014; 50(58): 7743-65.
[http://dx.doi.org/10.1039/C4CC01429D] [PMID: 24805962]
[27]
Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S. Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 2012; 12(3): 286-311.
[http://dx.doi.org/10.1002/mabi.201100325] [PMID: 22278779]
[28]
Zhang C, Yan L, Wang X, et al. Progress, challenges, and future of nanomedicine. Nano Today 2020; 35: 101008.
[http://dx.doi.org/10.1016/j.nantod.2020.101008]
[29]
Feng T, Zhao Y. Nanomaterial-based drug delivery carriers for cancer therapy. Appl Sci Technol 2017; 1(3): 15-54.
[30]
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50(5): 3355-423.
[http://dx.doi.org/10.1039/D0CS00384K] [PMID: 33491714]
[31]
Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: Progress and challenges. J Nanomater 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/863951]
[32]
Guevara ML, Persano F, Persano S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front Chem 2020; 8: 589959.
[http://dx.doi.org/10.3389/fchem.2020.589959] [PMID: 33195094]
[33]
Mukherjee A, Paul M, Mukherjee S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers 2019; 11(5): 597.
[http://dx.doi.org/10.3390/cancers11050597] [PMID: 31035440]
[34]
Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 2019; 198: 189-205.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.010] [PMID: 30796927]
[35]
Aikins ME, Xu C, Moon JJ. Engineered nanoparticles for cancer vaccination and immunotherapy. Acc Chem Res 2020; 53(10): 2094-105.
[http://dx.doi.org/10.1021/acs.accounts.0c00456] [PMID: 33017150]
[36]
Singh RD, Shandilya R, Bhargava A, et al. Quantum dot-based nano-biosensors for detection of circulating cell-free miRNAs in lung carcinogenesis: From biology to clinical translation. Front Genet 2018; 9: 616.
[http://dx.doi.org/10.3389/fgene.2018.00616] [PMID: 30574163]
[37]
Mashinchian O, Ahar M J, Ghaemi B, et al. Impacts of quantum dots in molecular detection and bioimaging of cancer. Bioimpacts 2014; 4(3): 149-69.
[38]
Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. A review of cancer immunotherapy: From the past, to the present, to the future. Curr Oncol 2020; 27(12): 87-97.
[http://dx.doi.org/10.3747/co.27.5223] [PMID: 32368178]
[39]
O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019; 16(3): 151-67.
[http://dx.doi.org/10.1038/s41571-018-0142-8] [PMID: 30523282]
[40]
Yadav B, Chauhan M, Shekhar S, et al. RGD-decorated PLGA nanoparticles improved effectiveness and safety of cisplatin for lung cancer therapy. Int J Pharm 2023; 633: 122587.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122587] [PMID: 36623741]
[41]
Vikas M, Mehata AK, Suseela MNL, et al. Chitosan-alginate nanoparticles of cabazitaxel: Design, dual-receptor targeting and efficacy in lung cancer model. Int J Biol Macromol 2022; 221: 874-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.053] [PMID: 36089091]
[42]
Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013; 8(2): 137-43.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[43]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[44]
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 2019; 71(8): 1185-98.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[45]
Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: Passive versus active targeting. Nanomedicine 2010; 5(9): 1415-33.
[http://dx.doi.org/10.2217/nnm.10.113] [PMID: 21128723]
[46]
Mehata AK, Viswanadh MK, Solomon VR, Muthu MS. Radionanotheranostics for breast cancer diagnosis and therapy: Recent advances and future opportunities. In: Paliwal SR, Paliwal R, Eds. Targeted Nanomedicine for Breast Cancer Therapy. Massachusetts, United States: Academic Press, Elsevier 2022; pp. 465-508.
[http://dx.doi.org/10.1016/B978-0-12-824476-0.00018-8]
[47]
Liang W, Kwok PCL, Chow MYT, et al. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids. Eur J Pharm Biopharm 2014; 86(1): 64-73.
[http://dx.doi.org/10.1016/j.ejpb.2013.05.006] [PMID: 23702276]
[48]
Wu J, Zhang J, Deng C, Meng F, Cheng R, Zhong Z. Robust, responsive, and targeted PLGA anticancer nanomedicines by a combination of reductively clear able surfactant and covalent hyaluronic acid coating. ACS Appl Mater Interfaces 2017; 9(4): 3985-94.
[http://dx.doi.org/10.1021/acsami.6b15105] [PMID: 28079367]
[49]
Tseng C, Wang T, Dong G, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 2007; 28(27): 3996-4005.
[http://dx.doi.org/10.1016/j.biomaterials.2007.05.006] [PMID: 17570484]
[50]
Wolfram J, Ferrari M. Clinical cancer nanomedicine. Nano Today 2019; 25: 85-98.
[http://dx.doi.org/10.1016/j.nantod.2019.02.005] [PMID: 31360214]
[51]
Rijavec E, Genova C, Barletta G, et al. Ipilimumab in non-small cell lung cancer and small-cell lung cancer: new knowledge on a new therapeutic strategy. Expert Opin Biol Ther 2014; 14(7): 1007-17.
[http://dx.doi.org/10.1517/14712598.2014.907786] [PMID: 24702205]
[52]
Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015; 47(5): 505-11.
[http://dx.doi.org/10.1038/ng.3252] [PMID: 25822088]
[53]
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161(2): 175-87.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[54]
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 161(4): 933-45.
[http://dx.doi.org/10.1016/j.cell.2015.03.053] [PMID: 25957691]
[55]
Ozin G. Nanochemistry reproducibility. Available from:www.materialsviews.com/nanochemistry-reproducibility
[56]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[57]
Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015; 520(7547): 373-7.
[http://dx.doi.org/10.1038/nature14292] [PMID: 25754329]
[58]
Goldberg MS. Immunoengineering: How nanotechnology can enhance cancer immunotherapy. Cell 2015; 161(2): 201-4.
[http://dx.doi.org/10.1016/j.cell.2015.03.037] [PMID: 25860604]
[59]
Chow EK-H, Ho D. Cancer nanomedicine: From drug delivery to imaging. Sci Transl Med 2013; 5(216): 214.
[http://dx.doi.org/10.1126/scitranslmed.3005872]
[60]
Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med 2014; 11(1): 44-55.
[PMID: 24738038]
[61]
Bölükbas DA, Meiners S. Lung cancer nanomedicine: Potentials and pitfalls. Nanomedicine 2015; 10(21): 3203-12.
[http://dx.doi.org/10.2217/nnm.15.155] [PMID: 26472521]
[62]
Zhang L, Chen Q, Ma Y, Sun J. Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl Bio Mater 2020; 3(1): 107-20.
[http://dx.doi.org/10.1021/acsabm.9b00853] [PMID: 35019430]
[63]
Xu X, Farach-Carson M, Advances XJ-B. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 2020; 32(7): 1256-68.
[64]
Bretaudeau L, Tremblais K, Aubrit F, Meichenin M, Arnaud I. Good Manufacturing Practice (GMP) compliance for phage therapy medicinal products. Front Microbiol 2020; 11: 1161.
[http://dx.doi.org/10.3389/fmicb.2020.01161] [PMID: 32582101]
[65]
Matsumoto Y, Nichols JW, Toh K, et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat Nanotechnol 2016; 11(6): 533-8.
[http://dx.doi.org/10.1038/nnano.2015.342] [PMID: 26878143]
[66]
Wang W, Zhang MJ, Chu LY. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc Chem Res 2014; 47(2): 373-84.
[http://dx.doi.org/10.1021/ar4001263] [PMID: 24199893]
[67]
Velagaleti R, Burns PK, Gill M, Prothro J. Impact of current good manufacturing practices and emission regulations and guidances on the discharge of pharmaceutical chemicals into the environment from manufacturing, use, and disposal. Environ Health Perspect 2002; 110(3): 213-20.
[http://dx.doi.org/10.1289/ehp.02110213] [PMID: 11882470]
[68]
Stahly GP. Diversity in Single- and Multiple-Component Crystals. The Search for and Prevalence of Polymorphs and Cocrystals. Cryst Growth Des 2007; 7(6): 1007-26.
[http://dx.doi.org/10.1021/cg060838j]
[69]
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 2015; 161(2): 205-14.
[http://dx.doi.org/10.1016/j.cell.2015.03.030] [PMID: 25860605]
[70]
Mezei M, Gulasekharam V. Liposomes - A selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci 1980; 26(18): 1473-7.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4] [PMID: 6893068]
[71]
Trial in squamous non-small cell lung cancer subjects comparing ipilimumab plus paclitaxel and carboplatin versus placebo plus paclitaxel and carboplatin. NCT01285609, 2020.
[72]
Safety and efficacy trial of ipilimumab versus pemetrexed in nonsquamous non-small cell lung cancer.. NCT01471197, 2014.
[73]
Evaluation of Circulating T Cells and Tumor Infiltrating Lymphocytes (TILs) During /​ After Pre-Surgery Chemotherapy in Non-Small Cell Lung Cancer (NSCLC) (TOP1201 IPI). NCT01820754, 2021.
[74]
Japanese Study of Ipilimumab Administered in Combination With Paclitaxel/​Carboplatin in Patients With Nonsmall-cell Lung Cancer. NCT01165216, 2014.
[75]
Combination Checkpoint Inhibitor Plus Erlotinib or Crizotinib for EGFR or ALK Mutated Stage IV Non-small Cell Lung Cancer. NCT01998126, 2018.
[76]
The Addition of Ipilimumab to Carboplatin and Etoposide Chemotherapy for Extensive Stage Small Cell Lung Cancer (ICE). NCT01331525, 2016.
[77]
Trial in Extensive-Disease Small Cell Lung Cancer (ED-SCLC) Subjects Comparing Ipilimumab Plus Etoposide and Platinum Therapy to Etoposide and Platinum Therapy Alone. NCT01450761, 2020.