Neuropathy, its Profile and Experimental Nerve Injury Neuropathic Pain Models: A Review

Page: [3343 - 3356] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Neuropathy is a terrible disorder that has a wide range of etiologies. Drug-induced neuropathy, which happens whenever a chemical agent damages the peripheral nerve system, has been linked here to the iatrogenic creation of some drugs. It is potentially permanent and causes sensory impairments and paresthesia that typically affects the hands, feet, and stockings; motor participation is uncommon. It might appear suddenly or over time, and the long-term outlook varies. The wide range of chronic pain conditions experienced by people has been one of the main obstacles to developing new, more effective medications for the treatment of neuropathic pain. Animal models can be used to examine various neuropathic pain etiologies and symptoms. Several models investigate the peripheral processes of neuropathic pain, whereas some even investigate the central mechanisms, such as drug induce models like vincristine, cisplatin, bortezomib, or thalidomide, etc., and surgical models like sciatic nerve chronic constriction injury (CCI), sciatic nerve ligation through spinal nerve ligation (SNL), sciatic nerve damage caused by a laser, SNI (spared nerve injury), etc. The more popular animal models relying on peripheral nerve ligatures are explained. In contrast to chronic sciatic nerve contraction, which results in behavioral symptoms of less reliable stressful neuropathies, (SNI) spared nerve injury generates behavioral irregularities that are more feasible over a longer period. This review summarizes the latest methods models as well as clinical ideas concerning this mechanism. Every strongest current information on neuropathy is discussed, along with several popular laboratory models for causing neuropathy.

[1]
Bollenbach M, Lugnier C, Kremer M, et al. Design and synthesis of 3-aminophthalazine derivatives and structural analogues as PDE5 inhibitors: Anti-allodynic effect against neuropathic pain in a mouse model. Eur J Med Chem 2019; 177: 269-90.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.026] [PMID: 31158744]
[2]
Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009; 139(2): 267-84.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]
[3]
Waxman SG. The molecular pathophysiology of pain: Abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain 1999; 82: S133-40.
[http://dx.doi.org/10.1016/S0304-3959(99)00147-5]
[4]
Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome. J Diabetes Investig 2017; 8(5): 646-55.
[http://dx.doi.org/10.1111/jdi.12650] [PMID: 28267267]
[5]
Gilbey S. Neuropathy and foot problems in diabetes. Clin Med 2004; 4(4): 318-23.
[http://dx.doi.org/10.7861/clinmedicine.4-4-318]
[6]
Streckmann F, Balke M, Cavaletti G, et al. Exercise and neuropathy: Systematic review with meta-analysis. Sports Med 2022; 52(5): 1043-65.
[http://dx.doi.org/10.1007/s40279-021-01596-6] [PMID: 34964950]
[7]
Rutkove SB. Peripheral neuropathies. In: Essentials of Physical Medicine and Rehabilitation. Elsevier 2008; pp. 767-71.
[http://dx.doi.org/10.1016/B978-1-4160-4007-1.50135-8]
[8]
Siao P, Kaku M. A clinician’s approach to peripheral neuropathy. Semin Neurol 2019; 39(5): 519-30.
[http://dx.doi.org/10.1055/s-0039-1694747] [PMID: 31639835]
[9]
Hanewinckel R, Ikram MA, Van Doorn PA. Peripheral neuropathies. Handb Clin Neurol 2016; (138): 263-82.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00015-X]
[10]
Cho E, Kim W. Effect of acupuncture on diabetic neuropathy: A narrative review. Int J Mol Sci 2021; 22(16): 8575.
[http://dx.doi.org/10.3390/ijms22168575] [PMID: 34445280]
[11]
Zoccarato M, Grisold W, Grisold A, Poretto V, Boso F, Giometto B. Paraneoplastic neuropathies: What’s new since the 2004 recommended diagnostic criteria. Front Neurol 2021; 12: 706169.
[http://dx.doi.org/10.3389/fneur.2021.706169] [PMID: 34659082]
[12]
Beecher G, Shelly S, Dyck PJB, et al. Pure motor onset and IgM-gammopathy occurrence in multifocal acquired demyelinating sensory and motor neuropathy. Neurology 2021; 97(14): e1392-403.
[http://dx.doi.org/10.1212/WNL.0000000000012618] [PMID: 34376509]
[13]
Chowdhury D, Patel N. Approach to a case of autonomic peripheral neuropathy. J Assoc Physicians India 2006; 54: 727-32.
[PMID: 17212023]
[14]
Lin X, Chen C, Liu Y, et al. Peripheral nerve conduction and sympathetic skin response are reliable methods to detect diabetic cardiac autonomic neuropathy. Front Endocrinol 2021; 12: 709114.
[http://dx.doi.org/10.3389/fendo.2021.709114] [PMID: 34621241]
[15]
Lehmann HC, Burke D, Kuwabara S. Chronic inflammatory demyelinating polyneuropathy: update on diagnosis, immunopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2019; 90(9): 981-7.
[http://dx.doi.org/10.1136/jnnp-2019-320314] [PMID: 30992333]
[16]
Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic neuropathy: A position statement by the American diabetes association. Diabetes Care 2017; 40(1): 136-54.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[17]
Kaku M, Berk JL. Neuropathy associated with systemic amyloidosis. Semin Neurol 2019; 39(5): 578-88.
[http://dx.doi.org/10.1055/s-0039-1688994] [PMID: 31639841]
[18]
Kim JH, Keum G, Chung H, Nam G. Synthesis and T-type calcium channel-blocking effects of aryl(1,5-disubstituted-pyrazol-3-yl)methyl sulfonamides for neuropathic pain treatment. Eur J Med Chem 2016; 123: 665-72.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.032] [PMID: 27517811]
[19]
Baron R. Mechanisms of disease: Neuropathic pain-A clinical perspective. Nat Clin Pract Neurol 2006; 2(2): 95-106.
[http://dx.doi.org/10.1038/ncpneuro0113] [PMID: 16932531]
[20]
Nam M, Kim T, Kwak J, et al. Discovery and biological evaluation of tetrahydrothieno[2,3-c]pyridine derivatives as selective metabotropic glutamate receptor 1 antagonists for the potential treatment of neuropathic pain. Eur J Med Chem 2015; 97: 245-58.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.060] [PMID: 25984841]
[21]
Lee JH, Seo SH, Lim EJ, et al. Synthesis and biological evaluation of 1-(isoxazol-5-ylmethylaminoethyl)-4-phenyl tetrahydropyridine and piperidine derivatives as potent T-type calcium channel blockers with antinociceptive effect in a neuropathic pain model. Eur J Med Chem 2014; 74: 246-57.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.056] [PMID: 24480356]
[22]
Cruccu G, Sommer C, Anand P, et al. EFNS guidelines on neuropathic pain assessment: Revised 2009. Eur J Neurol 2010; 17(8): 1010-8.
[http://dx.doi.org/10.1111/j.1468-1331.2010.02969.x] [PMID: 20298428]
[23]
Xiong J, Jin J, Gao L, et al. Piperidine propionamide as a scaffold for potent sigma-1 receptor antagonists and mu opioid receptor agonists for treating neuropathic pain. Eur J Med Chem 2020; 191: 112144.
[http://dx.doi.org/10.1016/j.ejmech.2020.112144] [PMID: 32087465]
[24]
Maier C, Baron R, Tölle TR, et al. Quantitative sensory testing in the german research network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010; 150(3): 439-50.
[http://dx.doi.org/10.1016/j.pain.2010.05.002] [PMID: 20627413]
[25]
Bollenbach M, Salvat E, Daubeuf F, et al. Phenylpyridine-2-ylguanidines and rigid mimetics as novel inhibitors of TNFα overproduction: Beneficial action in models of neuropathic pain and of acute lung inflammation. Eur J Med Chem 2018; 147: 163-82.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.049] [PMID: 29432948]
[26]
Colleoni M, Sacerdote P. Murine models of human neuropathic pain. Biochim Biophys Acta Mol Basis Dis 2010; 1802(10): 924-33.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.012] [PMID: 19879943]
[27]
Angeli A, Di Cesare Mannelli L, Ghelardini C, et al. Benzensulfonamides bearing spyrohydantoin moieties act as potent inhibitors of human carbonic anhydrases II and VII and show neuropathic pain attenuating effects. Eur J Med Chem 2019; 177: 188-97.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.058] [PMID: 31136893]
[28]
Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol 2011; 25(1): 1-28.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00801.x] [PMID: 20030738]
[29]
Mogil JS. Animal models of pain: Progress and challenges. Nat Rev Neurosci 2009; 10(4): 283-94.
[http://dx.doi.org/10.1038/nrn2606] [PMID: 19259101]
[30]
Xiong J, Zhuang T, Ma Y, et al. Optimization of bifunctional piperidinamide derivatives as σ1R Antagonists/MOR agonists for treating neuropathic pain. Eur J Med Chem 2021; 226: 113879.
[http://dx.doi.org/10.1016/j.ejmech.2021.113879] [PMID: 34628236]
[31]
Challa SR. Surgical animal models of neuropathic pain: Pros and cons. Int J Neurosci 2015; 125(3): 170-4.
[http://dx.doi.org/10.3109/00207454.2014.922559] [PMID: 24831263]
[32]
Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 2001; 94(3): 293-304.
[http://dx.doi.org/10.1016/S0304-3959(01)00363-3] [PMID: 11731066]
[33]
Chung JM, Kim HK, Chung K. Segmental spinal nerve ligation model of neuropathic pain Pain Res Methods Protoc 2004; 35-45.
[http://dx.doi.org/10.1385/1-59259-770-X:203]
[34]
Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990; 43(2): 205-18.
[http://dx.doi.org/10.1016/0304-3959(90)91074-S] [PMID: 1982347]
[35]
Guida F, De Gregorio D, Palazzo E, et al. Behavioral, biochemical and electrophysiological changes in spared nerve injury model of neuropathic pain. Int J Mol Sci 2020; 21(9): 3396.
[http://dx.doi.org/10.3390/ijms21093396] [PMID: 32403385]
[36]
Bourquin A-F. Assessment and analysis of mechanical allodynialike behavior induced by spared nerve injury (SNI) in the mouse. Pain 2006; 122(1): 14e1-14e14.
[http://dx.doi.org/10.1016/j.pain.2005.10.036]
[37]
Decosterd I, Woolf CJ. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 2000; 87(2): 149-58.
[http://dx.doi.org/10.1016/S0304-3959(00)00276-1] [PMID: 10924808]
[38]
Erichsen HK, Blackburn-Munro G. Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain 2002; 98(1): 151-61.
[http://dx.doi.org/10.1016/S0304-3959(02)00039-8] [PMID: 12098627]
[39]
Rodrigues-Filho R, Campos MM, Ferreira J, Santos ARS, Bertelli JA, Calixto JB. Pharmacological characterisation of the rat brachial plexus avulsion model of neuropathic pain. Brain Res 2004; 1018(2): 159-70.
[http://dx.doi.org/10.1016/j.brainres.2004.05.058] [PMID: 15276874]
[40]
Rodrigues-Filho R, Santos ARS, Bertelli JA, Calixto JB. Avulsion injury of the rat brachial plexus triggers hyperalgesia and allodynia in the hindpaws: A new model for the study of neuropathic pain. Brain Res 2003; 982(2): 186-94.
[http://dx.doi.org/10.1016/S0006-8993(03)03007-5] [PMID: 12915254]
[41]
Chiang HY, Chen CT, Chien HF, Hsieh ST. Skin denervation, neuropathology, and neuropathic pain in a laser-induced focal neuropathy. Neurobiol Dis 2005; 18(1): 40-53.
[http://dx.doi.org/10.1016/j.nbd.2004.09.006] [PMID: 15649695]
[42]
Leem YJ, Joh JW, Joeng KW, Suh JH, Shin JW, Leem JG. Central pain from excitotoxic spinal cord injury induced by intraspinal nmda injection: A pilot study. Korean J Pain 2010; 23(2): 109-15.
[http://dx.doi.org/10.3344/kjp.2010.23.2.109] [PMID: 20556212]
[43]
Austin PJ, Wu A, Moalem-Taylor G. Chronic constriction of the sciatic nerve and pain hypersensitivity testing in rats. J Vis Exp 2012; (61): 3393.
[http://dx.doi.org/10.3791/3393] [PMID: 22433911]
[44]
Engle MP, Gassman M, Sykes KT, Bettler B, Hammond DL. Spinal nerve ligation does not alter the expression or function of GABAB receptors in spinal cord and dorsal root ganglia of the rat. Neuroscience 2006; 138(4): 1277-87.
[http://dx.doi.org/10.1016/j.neuroscience.2005.11.064] [PMID: 16427742]
[45]
Goel R, Tyagi N. Potential contribution of antioxidant mechanism in the defensive effect of lycopene against partial sciatic nerve ligation induced behavioral, biochemical and histopathological modification in wistar rats. Drug Res 2016; 66(12): 633-8.
[http://dx.doi.org/10.1055/s-0042-112364] [PMID: 27504866]
[46]
Thatte M, Babhulkar S, Hiremath A. Brachial plexus injury in adults: Diagnosis and surgical treatment strategies. Ann Indian Acad Neurol 2013; 16(1): 26-33.
[http://dx.doi.org/10.4103/0972-2327.107686] [PMID: 23661959]
[47]
Lindenlaub T, Sommer C. Partial sciatic nerve transection. In: Pain Research. Totowa, NJ: Humana Press 2004; pp. 47-53.
[http://dx.doi.org/10.1385/1-59259-770-X:215]
[48]
Talmadge RJ, Roy RR, Caiozzo VJ, Edgerton VR. Mechanical properties of rat soleus after long-term spinal cord transection. J Appl Physiol 2002; 93(4): 1487-97.
[http://dx.doi.org/10.1152/japplphysiol.00053.2002] [PMID: 12235051]
[49]
Tai TW, Su FC, Chien JT, et al. Changes in excursion and strain in the rat sciatic nerve under cauda equina compression induced by epidural balloon inflation. Spine J 2015; 15(2): 329-35.
[http://dx.doi.org/10.1016/j.spinee.2014.10.006] [PMID: 25463401]
[50]
Barez MM. Stimulation effect of low level laser therapy on sciatic nerve regeneration in rat. J Lasers Med Sci 2017; 8: S32-7.
[http://dx.doi.org/10.15171/jlms.2017.s7]
[51]
Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988; 33(1): 87-107.
[http://dx.doi.org/10.1016/0304-3959(88)90209-6] [PMID: 2837713]
[52]
Sacerdote P, Franchi S, Trovato AE, Valsecchi AE, Panerai AE, Colleoni M. Transient early expression of TNF-α in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci Lett 2008; 436(2): 210-3.
[http://dx.doi.org/10.1016/j.neulet.2008.03.023] [PMID: 18394803]
[53]
Gutmann E, Holubar J. The degeneration of peripheral nerve fibers. J Neurol Neurosurg Psychiatry 1950; 13(2): 89-105.
[http://dx.doi.org/10.1136/jnnp.13.2.89] [PMID: 15415748]
[54]
Chung T, Prasad K, Lloyd TE. Peripheral neuropathy. Neuroimaging Clin N Am 2014; 24(1): 49-65.
[http://dx.doi.org/10.1016/j.nic.2013.03.023] [PMID: 24210312]
[55]
Ho Kim S, Mo Chung J. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992; 50(3): 355-63.
[http://dx.doi.org/10.1016/0304-3959(92)90041-9] [PMID: 1333581]
[56]
Shiers S, Elahi H, Hennen S, Price TJ. Evaluation of calcium-sensitive adenylyl cyclase AC1 and AC8 mRNA expression in the anterior cingulate cortex of mice with spared nerve injury neuropathy. Neurobiol Pain 2022; 11: 100081.
[http://dx.doi.org/10.1016/j.ynpai.2021.100081] [PMID: 35005298]
[57]
Rode F, Jensen DG, Blackburn-Munro G, Bjerrum OJ. Centrally-mediated antinociceptive actions of GABAA receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol 2005; 516(2): 131-8.
[http://dx.doi.org/10.1016/j.ejphar.2005.04.034] [PMID: 15936014]
[58]
Anand P, Birch R. Restoration of sensory function and lack of long‐term chronic pain syndromes after brachial plexus injury in human neonates. Brain 2002; 125(1): 113-22.
[http://dx.doi.org/10.1093/brain/awf017] [PMID: 11834597]
[59]
Carvalho GA, Nikkhah G, Samii M. Schmerzbehandlung nach posttraumatischen Armplexusläsionen. Orthopade 1997; 26(7): 621-5.
[http://dx.doi.org/10.1007/s001320050132] [PMID: 9340591]
[60]
Parry WCB. Pain in avulsion lesions of the brachial plexus. Pain 1980; 9(1): 41-53.
[http://dx.doi.org/10.1016/0304-3959(80)90027-5] [PMID: 6968424]
[61]
Wall PD, Devor M, Inbal R, et al. Autotomy following peripheral nerve lesions: Experimental anesthesia dolorosa. Pain 1979; 7(2): 103-13.
[http://dx.doi.org/10.1016/0304-3959(79)90002-2] [PMID: 574931]
[62]
Devor M, Wall PD. Type of sensory nerve fibre sprouting to form a neuroma. Nature 1976; 262(5570): 705-8.
[http://dx.doi.org/10.1038/262705a0] [PMID: 958442]
[63]
Amir R, Devor M. Ongoing activity in neuroma afferents bearing retrograde sprouts. Brain Res 1993; 630(1-2): 283-8.
[http://dx.doi.org/10.1016/0006-8993(93)90667-C] [PMID: 8118694]
[64]
Muthuraman A, Diwan V, Jaggi AS, Singh N, Singh D. Ameliorative effects of Ocimum sanctum in sciatic nerve transection-induced neuropathy in rats. J Ethnopharmacol 2008; 120(1): 56-62.
[http://dx.doi.org/10.1016/j.jep.2008.07.049] [PMID: 18762236]
[65]
Wall PD, Scadding JW, Tomkiewicz MM. The production and prevention of experimental anesthesia dolorosa. Pain 1979; 6(2): 175-82.
[http://dx.doi.org/10.1016/0304-3959(79)90124-6] [PMID: 460929]
[66]
Zeltser R, Beilin BZ, Zaslansky R, Seltzer Z. Comparison of autotomy behavior induced in rats by various clinically-used neurectomy methods. Pain 2000; 89(1): 19-24.
[http://dx.doi.org/10.1016/S0304-3959(00)00342-0] [PMID: 11113289]
[67]
Kauppila T. Correlation between autotomy-behavior and current theories of neuropathic pain. Neurosci Biobehav Rev 1998; 23(1): 111-29.
[http://dx.doi.org/10.1016/S0149-7634(98)00038-4] [PMID: 9861616]
[68]
Riopelle JM. The ethics of using animal models to study treatment of phantom pain. Anesthesiology 1992; 76(6): 1069-71.
[http://dx.doi.org/10.1097/00000542-199206000-00048] [PMID: 1599105]
[69]
Li L, Xian CJ, Zhong JH, Zhou XF. Effect of lumbar 5 ventral root transection on pain behaviors: A novel rat model for neuropathic pain without axotomy of primary sensory neurons. Exp Neurol 2002; 175(1): 23-34.
[http://dx.doi.org/10.1006/exnr.2002.7897] [PMID: 12009757]
[70]
Yogeeswari P, Sharma M, Samala G, et al. Discovery of novel tetrahydro-pyrazolo [4,3-c] pyridines for the treatment of neuropathic pain: Synthesis and neuropharmacology. Eur J Med Chem 2013; 66: 211-20.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.022] [PMID: 23807113]
[71]
Shen CC, Yang YC, Huang TB, Chan SC, Liu BS. Low-level laser-accelerated peripheral nerve regeneration within a reinforced nerve conduit across a large gap of the transected sciatic nerve in rats. Evid Based Complement Alternat Med 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/175629] [PMID: 23737818]
[72]
Na HS, Han JS, Ko KH, Hong SK. A behavioral model for peripheral neuropathy produced in rat’s tail by inferior caudal trunk injury. Neurosci Lett 1994; 177(1-2): 50-2.
[http://dx.doi.org/10.1016/0304-3940(94)90042-6] [PMID: 7824181]
[73]
Kaur G, Jaggi AS, Singh N. Ameliorative potential of pralidoxime in tibial and sural nerve transection-induced neuropathic pain in rats. Biol Pharm Bull 2010; 33(8): 1331-6.
[http://dx.doi.org/10.1248/bpb.33.1331] [PMID: 20686227]
[74]
Jain V, Jaggi AS, Singh N. Ameliorative potential of rosiglitazone in tibial and sural nerve transection-induced painful neuropathy in rats. Pharmacol Res 2009; 59(6): 385-92.
[http://dx.doi.org/10.1016/j.phrs.2009.02.001] [PMID: 19429470]
[75]
Vadakkan KI, Jia YH, Zhuo M. A behavioral model of neuropathic pain induced by ligation of the common peroneal nerve in mice. J Pain 2005; 6(11): 747-56.
[http://dx.doi.org/10.1016/j.jpain.2005.07.005] [PMID: 16275599]
[76]
Gornstein E, Schwarz TL. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 2014; 76(Pt A): 175-83.
[http://dx.doi.org/10.1016/j.neuropharm.2013.08.016] [PMID: 23978385]
[77]
Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted agents: Diagnosis, treatment, and prevention. Neuro-oncol 2012; 14(S4): 45-54.
[http://dx.doi.org/10.1093/neuonc/nos203]
[78]
Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2017; 10: 174.
[http://dx.doi.org/10.3389/fnmol.2017.00174] [PMID: 28620280]
[79]
Bland KA, Kirkham AA, Bovard J, et al. Effect of exercise on taxane chemotherapy-induced peripheral neuropathy in women with breast cancer: A randomized controlled trial. Clin Breast Cancer 2019; 19(6): 411-22.
[http://dx.doi.org/10.1016/j.clbc.2019.05.013] [PMID: 31601479]
[80]
Bennett GJ, Liu GK, Xiao WH, Jin HW, Siau C. Terminal arbor degeneration - A novel lesion produced by the antineoplastic agent paclitaxel. Eur J Neurosci 2011; 33(9): 1667-76.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07652.x] [PMID: 21395870]
[81]
Liu C, Miao R, Raza F, Qian H, Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 2023; 245(Pt 1): 114893.
[http://dx.doi.org/10.1016/j.ejmech.2022.114893] [PMID: 36395649]
[82]
Koyanagi M, Imai S, Matsumoto M, et al. Pronociceptive roles of schwann cell–derived galectin-3 in taxane-induced peripheral neuropathy. Cancer Res 2021; 81(8): 2207-19.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2799] [PMID: 33608316]
[83]
Authier N, Gillet JP, Fialip J, Eschalier A, Coudore F. Description of a short-term Taxol®-induced nociceptive neuropathy in rats. Brain Res 2000; 887(2): 239-49.
[http://dx.doi.org/10.1016/S0006-8993(00)02910-3] [PMID: 11134612]
[84]
Kilpatrick TJ, Phan S, Reardon K, Lopes EC, Cheema SS. Leukaemia inhibitory factor abrogates Paclitaxel-induced axonal atrophy in the Wistar rat. Brain Res 2001; 911(2): 163-7.
[http://dx.doi.org/10.1016/S0006-8993(01)02627-0] [PMID: 11511385]
[85]
Garcia-Larrea L, Magnin M. Physiopathologie de la douleur neuropathique: Revue des modèles expérimentaux et des mécanismes proposés. Presse Med 2008; 37(2): 315-40.
[http://dx.doi.org/10.1016/j.lpm.2007.07.025] [PMID: 18191368]
[86]
Velasco-González R, Coffeen U. Neurophysiopathological aspects of paclitaxel-induced peripheral neuropathy. Neurotox Res 2022; 40(6): 1673-89.
[http://dx.doi.org/10.1007/s12640-022-00582-8] [PMID: 36169871]
[87]
Ruddy KJ, Le-Rademacher J, Lacouture ME, et al. Randomized controlled trial of cryotherapy to prevent paclitaxel-induced peripheral neuropathy (RU221511I); An ACCRU trial. Breast 2019; 48: 89-97.
[http://dx.doi.org/10.1016/j.breast.2019.09.011] [PMID: 31590108]
[88]
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60(10): 1369-82.
[http://dx.doi.org/10.1080/0284186X.2021.1954241] [PMID: 34313190]
[89]
Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 2020; 324: 113121.
[http://dx.doi.org/10.1016/j.expneurol.2019.113121] [PMID: 31758983]
[90]
Lee K, Ku JM, Choi YJ, et al. Herbal prescription SH003 alleviates docetaxel-induced neuropathic pain in C57BL/6 mice. Evid Based Complement Alternat Med 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/4120334] [PMID: 34422067]
[91]
Hilkens PHE, Verweij J, Stoter G, Vecht CJ, van Putten WLJ, van den Bent MJ. Peripheral neurotoxicity induced by docetaxel. Neurology 1996; 46(1): 104-8.
[http://dx.doi.org/10.1212/WNL.46.1.104] [PMID: 8559354]
[92]
Li G, Hu Y, Li D, et al. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology 2020; 81: 161-71.
[http://dx.doi.org/10.1016/j.neuro.2020.10.004] [PMID: 33053366]
[93]
Chiba T, Kambe T, Yamamoto K, Kawakami K, Taguchi K, Abe K. Vincristine increased spinal cord substance P levels in a peripheral neuropathy rat model. Drug Chem Toxicol 2022; 45(1): 393-7.
[http://dx.doi.org/10.1080/01480545.2019.1706547] [PMID: 31899978]
[94]
Babu A, Prasanth KG, Balaji B. Effect of curcumin in mice model of vincristine-induced neuropathy. Pharm Biol 2015; 53(6): 838-48.
[http://dx.doi.org/10.3109/13880209.2014.943247] [PMID: 25429779]
[95]
Faizi M, Mosaddegh M, Sahranavard S, Khoramjouy M, Khakpash M, Askari SA. Hydroethanolic extract of Lavandula angustifolia ameliorates vincristine-induced peripheral neuropathy in rats. Res Pharm Sci 2022; 17(3): 265-73.
[http://dx.doi.org/10.4103/1735-5362.343080] [PMID: 35531130]
[96]
Aley KO, Reichling DB, Levine JD. Vincristine hyperalgesia in the rat: A model of painful vincristine neuropathy in humans. Neuroscience 1996; 73(1): 259-65.
[http://dx.doi.org/10.1016/0306-4522(96)00020-6] [PMID: 8783247]
[97]
Sweitzer SM, Pahl JL, DeLeo JA. Propentofylline attenuates vincristine-induced peripheral neuropathy in the rat. Neurosci Lett 2006; 400(3): 258-61.
[http://dx.doi.org/10.1016/j.neulet.2006.02.058] [PMID: 16530953]
[98]
Lynch JJ III, Wade CL, Zhong CM, Mikusa JP, Honore P. Attenuation of mechanical allodynia by clinically utilized drugs in a rat chemotherapy-induced neuropathic pain model. Pain 2004; 110(1): 56-63.
[http://dx.doi.org/10.1016/j.pain.2004.03.010] [PMID: 15275752]
[99]
Albany C, Dockter T, Wolfe E, et al. Cisplatin-associated neuropathy characteristics compared with those associated with other neurotoxic chemotherapy agents (Alliance A151724). Support Care Cancer 2021; 29(2): 833-40.
[http://dx.doi.org/10.1007/s00520-020-05543-5] [PMID: 32500206]
[100]
Dewaeles E, Carvalho K, Fellah S, et al. Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects. J Clin Invest 2022; 132(22): e152924.
[http://dx.doi.org/10.1172/JCI152924] [PMID: 36377661]
[101]
Shim HS, Bae C, Wang J, et al. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol Pain 2019; 15: 1744806919840098.
[http://dx.doi.org/10.1177/1744806919840098] [PMID: 30857460]
[102]
Angeli A, di Cesare Mannelli L, Lucarini E, Peat TS, Ghelardini C, Supuran CT. Design, synthesis and X-ray crystallography of selenides bearing benzenesulfonamide moiety with neuropathic pain modulating effects. Eur J Med Chem 2018; 154: 210-9.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.026] [PMID: 29803994]
[103]
Calls A, Torres-Espin A, Navarro X, Yuste VJ, Udina E, Bruna J. Cisplatin-induced peripheral neuropathy is associated with neuronal senescence-like response. Neuro-oncol 2021; 23(1): 88-99.
[http://dx.doi.org/10.1093/neuonc/noaa151] [PMID: 32597980]
[104]
Cavaletti G, Petruccioli MG, Marmiroli P, et al. Circulating nerve growth factor level changes during oxaliplatin treatment-induced neurotoxicity in the rat. Anticancer Res 2002; 22(6C): 4199-204.
[PMID: 12553056]
[105]
Kang L, Tian Y, Xu S, Chen H. Oxaliplatin-induced peripheral neuropathy: Clinical features, mechanisms, prevention and treatment. J Neurol 2021; 268(9): 3269-82.
[http://dx.doi.org/10.1007/s00415-020-09942-w] [PMID: 32474658]
[106]
Yogeeswari P, Menon N, Semwal A, Arjun M, Sriram D. Discovery of molecules for the treatment of neuropathic pain: Synthesis, antiallodynic and antihyperalgesic activities of 5-(4-nitrophenyl)- furoic-2-acid hydrazones. Eur J Med Chem 2011; 46(7): 2964-70.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.021] [PMID: 21536354]
[107]
Wei G, Gu Z, Gu J, et al. Platinum accumulation in oxaliplatin‐induced peripheral neuropathy. J Peripher Nerv Syst 2021; 26(1): 35-42.
[http://dx.doi.org/10.1111/jns.12432] [PMID: 33462873]
[108]
Wu C, Tcherny-Lessenot S, Dai W, et al. Assessing the risk for peripheral neuropathy in patients treated with dronedarone compared with that in other antiarrhythmics. Clin Ther 2018; 40(3): 450-455.e1.
[http://dx.doi.org/10.1016/j.clinthera.2018.01.015] [PMID: 29500139]
[109]
Vilholm OJ, Christensen AA, Zedan AH, Itani M. Drug-induced peripheral neuropathy. Basic Clin Pharmacol Toxicol 2014; 115(2): 185-92.
[http://dx.doi.org/10.1111/bcpt.12261] [PMID: 24786912]
[110]
Niimi N, Yako H, Tsukamoto M, et al. Involvement of oxidative stress and impaired lysosomal degradation in amiodarone‐induced schwannopathy. Eur J Neurosci 2016; 44(1): 1723-33.
[http://dx.doi.org/10.1111/ejn.13268] [PMID: 27152884]
[111]
Arcani R, Pellerey M, Rouby F, et al. Un effet indésirable rare de l’amiodarone: la neuropathie optique. Rev Med Interne 2019; 40(12): 826-30.
[http://dx.doi.org/10.1016/j.revmed.2019.09.001] [PMID: 31561935]
[112]
Delforge M, Bladé J, Dimopoulos MA, et al. Treatment-related peripheral neuropathy in multiple myeloma: The challenge continues. Lancet Oncol 2010; 11(11): 1086-95.
[http://dx.doi.org/10.1016/S1470-2045(10)70068-1] [PMID: 20932799]
[113]
Luo J, Gagne JJ, Landon J, Avorn J, Kesselheim AS. Comparative effectiveness and safety of thalidomide and lenalidomide in patients with multiple myeloma in the United States of America: A population-based cohort study. Eur J Cancer 2017; 70: 22-33.
[http://dx.doi.org/10.1016/j.ejca.2016.10.018] [PMID: 27866096]
[114]
Ludwig H, Delforge M, Facon T, et al. Prevention and management of adverse events of novel agents in multiple myeloma: A consensus of the European Myeloma Network. Leukemia 2018; 32(7): 1542-60.
[http://dx.doi.org/10.1038/s41375-018-0040-1] [PMID: 29720735]
[115]
Yin Y, Qi X, Qiao Y, et al. The association of neuronal stress with activating transcription factor 3 in dorsal root ganglion of in vivo and in vitro models of bortezomib-induced neuropathy. Curr Cancer Drug Targets 2018; 19(1): 50-64.
[http://dx.doi.org/10.2174/1568009618666181003170027] [PMID: 30289077]
[116]
Chaudhry V, Cornblath DR, Polydefkis M, Ferguson A, Borrello I. Characteristics of bortezomib‐ and thalidomide‐induced peripheral neuropathy. J Peripher Nerv Syst 2008; 13(4): 275-82.
[http://dx.doi.org/10.1111/j.1529-8027.2008.00193.x] [PMID: 19192067]
[117]
Romagnolo A, Merola A, Artusi CA, Rizzone MG, Zibetti M, Lopiano L. Levodopa‐induced neuropathy: A systematic review. Mov Disord Clin Pract 2019; 6(2): 96-103.
[http://dx.doi.org/10.1002/mdc3.12688] [PMID: 30838307]
[118]
Rajabally YA, Martey J. Levodopa, vitamins, ageing and the neuropathy of Parkinson’s disease. J Neurol 2013; 260(11): 2844-8.
[http://dx.doi.org/10.1007/s00415-013-7079-8] [PMID: 23989342]
[119]
Toth C, Breithaupt K, Ge S, et al. Levodopa, methylmalonic acid, and neuropathy in idiopathic Parkinson disease. Ann Neurol 2010; 68(1): 28-36.
[http://dx.doi.org/10.1002/ana.22021] [PMID: 20582991]
[120]
Gorgone G, Currò M, Ferlazzo N, et al. Coenzyme Q10, hyperhomocysteinemia and MTHFR C677T polymorphism in levodopa-treated Parkinson’s disease patients. Neuromolecular Med 2012; 14(1): 84-90.
[http://dx.doi.org/10.1007/s12017-012-8174-1] [PMID: 22354693]
[121]
Ceravolo R, Cossu G, Bandettini di Poggio M, et al. Neuropathy and levodopa in Parkinson’s disease: Evidence from a multicenter study. Mov Disord 2013; 28(10): 1391-7.
[http://dx.doi.org/10.1002/mds.25585] [PMID: 23836370]