Current Cosmetic Science

Author(s): Luiza Meurer Brand, Marcelo Lazzaron Lamers and Bibiana Franzen Matte*

DOI: 10.2174/0126667797269907231118130449

DownloadDownload PDF Flyer Cite As
Development of Aged Skin Equivalent Model

Article ID: e041223224169 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Skin aging is a result of the aging process and also intrinsic and extrinsic factors. In order to better understand this process and evaluate anti-aging products, it is necessary to develop in vitro models that can recapitulate the biological process of aged skin. Therefore, the aim of this study was to develop an aged skin equivalent model to evaluate these properties.

Methods: Human fibroblasts were incorporated into the collagen matrix and keratinocytes were added and cultured in an air-liquid interface for 21 days. During this period, the matrices were exposed to UV or EX527 to trigger biological aging processes.

Results: The two protocols evaluated demonstrated reduced expression of genes related to longevity and regulation of cellular redox homeostasis, and it was confirmed with histological analysis. Also, the model demonstrated the anti-aging potential of resveratrol.

Conclusion: The model developed is a promising platform for reproducing aged skin and evaluating rejuvenating agents.

Keywords: Skin equivalent, aged skin equivalent model, skin aging, resveratrol, intrinsic and extrinsic factors, Human fibroblasts.

Graphical Abstract

[1]
Gruber, F.; Kremslehner, C.; Eckhart, L.; Tschachler, E. Cell aging and cellular senescence in skin aging - Recent advances in fibroblast and keratinocyte biology. Exp. Gerontol., 2020, 130, 110780.
[http://dx.doi.org/10.1016/j.exger.2019.110780] [PMID: 31794850]
[2]
Milligan, D.A.; Tyler, E.J.; Bishop, C.L. Tissue engineering to better understand senescence: Organotypics come of age. Mech. Ageing Dev., 2020, 190, 111261.
[http://dx.doi.org/10.1016/j.mad.2020.111261] [PMID: 32461142]
[3]
Weinmüllner, R.; Zbiral, B.; Becirovic, A.; Stelzer, E.M.; Nagelreiter, F.; Schosserer, M.; Lämmermann, I.; Liendl, L.; Lang, M.; Terlecki-Zaniewicz, L.; Andriotis, O.; Mildner, M.; Golabi, B.; Waidhofer-Söllner, P.; Schedle, K.; Emsenhuber, G.; Thurner, P.J.; Tschachler, E.; Gruber, F.; Grillari, J. Organotypic human skin culture models constructed with senescent fibroblasts show hallmarks of skin aging. NPJ Aging Mech. Dis., 2020, 6(1), 4.
[http://dx.doi.org/10.1038/s41514-020-0042-x] [PMID: 32194977]
[4]
Hecker, A.; Schellnegger, M.; Hofmann, E.; Luze, H.; Nischwitz, S.P.; Kamolz, L.P.; Kotzbeck, P. The impact of resveratrol on skin wound healing, scarring, and aging. Int. Wound J., 2022, 19(1), 9-28.
[http://dx.doi.org/10.1111/iwj.13601] [PMID: 33949795]
[5]
Timpson, P.; Mcghee, E.J.; Erami, Z.; Nobis, M.; Quinn, J.A.; Edward, M.; Anderson, K.I. Organotypic collagen I assay: A malleable platform to assess cell behaviour in a 3-dimensional context. J. Vis. Exp., 2011, (56), e3089.
[http://dx.doi.org/10.3791/3089] [PMID: 22025017]
[6]
Phang, S.J.; Basak, S.; Teh, H.X.; Packirisamy, G.; Fauzi, M.B.; Kuppusamy, U.R.; Neo, Y.P.; Looi, M.L. Advancements in extracellular matrix-based biomaterials and biofabrication of 3d organotypic skin models. ACS Biomater. Sci. Eng., 2022, 8(8), 3220-3241.
[http://dx.doi.org/10.1021/acsbiomaterials.2c00342] [PMID: 35861577]
[7]
Chung, K.W.; Choi, Y.J.; Park, M.H.; Jang, E.J.; Kim, D.H.; Park, B.H.; Yu, B.P.; Chung, H.Y. Molecular insights into SIRT1 protection against uvb-induced skin fibroblast senescence by suppression of oxidative stress and p53 acetylation. J. Gerontol. A Biol. Sci. Med. Sci., 2015, 70(8), 959-968.
[http://dx.doi.org/10.1093/gerona/glu137] [PMID: 25165029]
[8]
Kim, H.; Jang, J.; Song, M.J.; Park, C.H.; Lee, D.H.; Lee, S.H.; Chung, J.H. Inhibition of matrix metalloproteinase expression by selective clearing of senescent dermal fibroblasts attenuates ultraviolet-induced photoaging. Biomed. Pharmacother., 2022, 150, 113034.
[http://dx.doi.org/10.1016/j.biopha.2022.113034] [PMID: 35489284]
[9]
Lago, J.C.; Puzzi, M.B. The effect of aging in primary human dermal fibroblasts. PLoS One, 2019, 14(7), e0219165.
[http://dx.doi.org/10.1371/journal.pone.0219165] [PMID: 31269075]
[10]
Song, D.; Park, H.; Lee, S.H.; Kim, M.J.; Kim, E.J.; Lim, K.M. PAL-12, a new anti-aging hexa-peptoid, inhibits UVB-induced photoaging in human dermal fibroblasts and 3D reconstructed human full skin model, Keraskin-FT™. Arch. Dermatol. Res., 2017, 309(9), 697-707.
[http://dx.doi.org/10.1007/s00403-017-1768-6] [PMID: 28852829]
[11]
Scisciola, L.; Sarno, F.; Carafa, V.; Cosconati, S.; Di Maro, S.; Ciuffreda, L.; De Angelis, A.; Stiuso, P.; Feoli, A.; Sbardella, G.; Altucci, L.; Nebbioso, A. Two novel SIRT1 activators, SCIC2 and SCIC2.1, enhance SIRT1-mediated effects in stress response and senescence. Epigenetics, 2020, 15(6-7), 664-683.
[http://dx.doi.org/10.1080/15592294.2019.1704349] [PMID: 31942817]
[12]
Varesi, A.; Chirumbolo, S.; Campagnoli, L.I.M.; Pierella, E.; Piccini, G.B.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants, 2022, 11(7), 1224.
[http://dx.doi.org/10.3390/antiox11071224] [PMID: 35883714]
[13]
Shin, K.O.; Uchida, Y.; Park, K. Diesel particulate extract accelerates premature skin aging in human fibroblasts via ceramide-1-phosphate-mediated signaling pathway. Int. J. Mol. Sci., 2022, 23(5), 2691.
[http://dx.doi.org/10.3390/ijms23052691] [PMID: 35269833]
[14]
Markiewicz, E.; Jerome, J.; Mammone, T.; Idowu, O.C. Anti-glycation and anti-aging properties of resveratrol derivatives in the in-vitro 3D models of human skin. Clin. Cosmet. Investig. Dermatol., 2022, 15, 911-927.
[http://dx.doi.org/10.2147/CCID.S364538] [PMID: 35615726]