Effects of Kojic Acid-mediated Sonodynamic Therapy as a Matrix Metalloprotease-9 Inhibitor against Oral Squamous Cell Carcinoma: A Bioinformatics Screening and In Vitro Analysis

Article ID: e011223224137 Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Oral squamous cell carcinoma (OSCC) is a type of cancer that is responsible for a significant amount of morbidity and mortality worldwide. Researchers are searching for promising therapeutic methods to manage this cancer. In this study, an in silico approach was used to evaluate the activity of sonodynamic therapy (SDT) based on the use of Kojic acid as a sonosensitizer to inhibit matrix metalloprotease-9 (MMP-9) in OSCC.

Materials and Methods: The three-dimensional structure of MMP-9 was predicted and validated by computational approaches. The possible functional role of MMP-9 was determined in terms of Gene Ontology (GO) enrichment analysis. In silico, molecular docking was then performed to evaluate the binding energies of Kojic acid with MMP-9, and ADME parameters and toxicity risks were predicted. The pharmacokinetics and drug-likeness properties of Kojic acid were assessed. Moreover, after the determination of the cytotoxicity effect of Kojic acid-mediated SDT, the change of mmp-9 gene expression was assessed on OSCC cells.

Results: The results of the study showed that Kojic acid could efficiently interact with MMP-9 protein with a strong binding affinity. Kojic acid obeyed Lipinski’s rule of five without violation and exhibited drug-likeness. The cytotoxic effects of Kojic acid and ultrasound waves on the OSCC cells were dose-dependent, and the lowest expression level of the mmp-9 gene was observed in SDT.

Conclusions: Overall, Kojic acid-mediated SDT as an MMP-9 inhibitor can be a promising adjuvant treatment for OSCC. The study highlights the potential of In silico approaches to evaluate therapeutic methods for cancer treatment.

Graphical Abstract

[1]
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers 2020; 6(1): 92.
[http://dx.doi.org/10.1038/s41572-020-00224-3] [PMID: 33243986]
[2]
Marur S, Forastiere AA. Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. Mayo Clin Proc 2016; 91(3): 386-96.
[http://dx.doi.org/10.1016/j.mayocp.2015.12.017] [PMID: 26944243]
[3]
Shay G, Lynch CC, Fingleton B. Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol 2015; 44-46: 200-6.
[http://dx.doi.org/10.1016/j.matbio.2015.01.019] [PMID: 25652204]
[4]
Bates AM, Gomez Hernandez MP, Lanzel EA, Qian F, Brogden KA. Matrix metalloproteinase (MMP) and immunosuppressive biomarker profiles of seven head and neck squamous cell carcinoma (HNSCC) cell lines. Transl Cancer Res 2018; 7(3): 533-42.
[http://dx.doi.org/10.21037/tcr.2018.05.09] [PMID: 30221145]
[5]
Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000; 10(6): 415-33.
[http://dx.doi.org/10.1006/scbi.2000.0379] [PMID: 11170864]
[6]
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2(3): 161-74.
[http://dx.doi.org/10.1038/nrc745] [PMID: 11990853]
[7]
Fingleton B, Vargo-Gogola T, Crawford HC, Matrisian LM. Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 2001; 3(6): 459-68.
[http://dx.doi.org/10.1038/sj.neo.7900190] [PMID: 11774028]
[8]
DeClerck YA, Mercurio AM, Stack MS, et al. Proteases, extracellular matrix, and cancer: A workshop of the path B study section. Am J Pathol 2004; 164(4): 1131-9.
[http://dx.doi.org/10.1016/S0002-9440(10)63200-2] [PMID: 15039201]
[9]
Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 2013; 13(9): 649-65.
[http://dx.doi.org/10.1038/nri3499] [PMID: 23969736]
[10]
Vilen ST, Salo T, Sorsa T, Nyberg P. Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. ScientificWorldJournal 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/920595] [PMID: 23365550]
[11]
Lِffek S, Schilling O, Franzke CW. Biological role of matrix metalloproteinases: A critical balance. Eur Respir J 2011; 38(1): 191-208.
[http://dx.doi.org/10.1183/09031936.00146510] [PMID: 21177845]
[12]
Iizuka S, Ishimaru N, Kudo Y. Matrix metalloproteinases: The gene expression signatures of head and neck cancer progression. Cancers 2014; 6(1): 396-415.
[http://dx.doi.org/10.3390/cancers6010396] [PMID: 24531055]
[13]
Patel BP, Shah SV, Shukla SN, Shah PM, Patel PS. Clinical significance of MMP-2 and MMP-9 in patients with oral cancer. Head Neck 2007; 29(6): 564-72.
[http://dx.doi.org/10.1002/hed.20561] [PMID: 17252594]
[14]
Zilles JC, dos Santos FL, Kulkamp-Guerreiro IC, Contri RV. Biological activities and safety data of kojic acid and its derivatives: A review. Exp Dermatol 2022; 31(10): 1500-21.
[http://dx.doi.org/10.1111/exd.14662] [PMID: 35960194]
[15]
Oncul S, Karakaya G, Dilsiz Aytemir M, Ercan A. A kojic acid derivative promotes intrinsic apoptotic pathway of hepatocellular carcinoma cells without incurring drug resistance. Chem Biol Drug Des 2019; 94(6): 2084-93.
[http://dx.doi.org/10.1111/cbdd.13615] [PMID: 31495064]
[16]
Karakaya G, Ercan A, Oncul S, Aytemir MD. Synthesis and cytotoxic evaluation of kojic acid derivatives with inhibitory activity on melanogenesis in human melanoma cells. Anticancer Agents Med Chem 2019; 18(15): 2137-48.
[http://dx.doi.org/10.2174/1871520618666180402141714] [PMID: 29607787]
[17]
Ercan A, Oncul S, Karakaya G, Aytemir M. An allomaltol derivative triggers distinct death pathways in luminal a and triple-negative breast cancer subtypes. Bioorg Chem 2020; 105: 104403.
[http://dx.doi.org/10.1016/j.bioorg.2020.104403] [PMID: 33166845]
[18]
Annan NA, Butler IS, Titi HM, El-Lazeik Y, Jean-Claude BJ, Mostafa SI. DNA interaction and anticancer evaluation of new zinc(II), ruthenium(II), rhodium(III), palladium(II), silver(I) and platinum(II) complexes based on kojic acid; X-ray crystal structure of [Ag(ka)(PPh3)]·H2O. Inorg Chim Acta 2019; 487: 433-47.
[http://dx.doi.org/10.1016/j.ica.2018.12.031]
[19]
Momo CHK, Mboussaah ADK, François ZN, Shaiq MA. New pyran derivative with antioxidant and anticancer properties isolated from the probiotic Lactobacillus plantarum H24 strain. Nat Prod Res 2022; 36(4): 909-17.
[http://dx.doi.org/10.1080/14786419.2020.1849201] [PMID: 33225751]
[20]
Nawarak J, Huang-Liu R, Kao SH, et al. Proteomics analysis of kojic acid treated A375 human malignant melanoma cells. J Proteome Res 2008; 7(9): 3737-46.
[http://dx.doi.org/10.1021/pr7008737] [PMID: 18630942]
[21]
Cheng SL, Huang Liu R, Sheu JN, Chen ST, Sinchaikul S, Tsay GJ. Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull 2006; 29(4): 655-69.
[http://dx.doi.org/10.1248/bpb.29.655] [PMID: 16595896]
[22]
El-Metwally MM, ElBealy ER, Beltagy DM, Shaaban M, El-kott AF. Suppressive efficiency of Kojic acid from Aspergillus tamarii MM11 against HepG-2 cell line derived from human liver cancer. Trop J Pharm Res 2020; 19(8): 1661-8.
[http://dx.doi.org/10.4314/tjpr.v19i8.14]
[23]
Moon KY, Ahn KS, Lee J, Kim YS. Kojic acid, a potential inhibitor of NF-κB activation in transfectant human HaCaT and SCC-13 cells. Arch Pharm Res 2001; 24(4): 307-11.
[http://dx.doi.org/10.1007/BF02975097] [PMID: 11534762]
[24]
Gomes AJ, Lunardi CN, Gonzalez S, Tedesco AC. The antioxidant action of Polypodium leucotomos extract and kojic acid: Reactions with reactive oxygen species. Braz J Med Biol Res 2001; 34(11): 1487-94.
[http://dx.doi.org/10.1590/S0100-879X2001001100018] [PMID: 11668361]
[25]
Rho HS, Ahn SM, Yoo DS, Kim MK, Cho DH, Cho JY. Kojyl thioether derivatives having both tyrosinase inhibitory and anti-inflammatory properties. Bioorg Med Chem Lett 2010; 20(22): 6569-71.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.042] [PMID: 20934336]
[26]
Dung TTM, Kim SC, Yoo BC, et al. (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 6-hydroxynaphthalene-2-carboxylate, a kojic acid derivative, inhibits inflammatory mediator production via the suppression of Syk/Src and NF-κB activation. Int Immunopharmacol 2014; 20(1): 37-45.
[http://dx.doi.org/10.1016/j.intimp.2014.02.019] [PMID: 24583147]
[27]
Khan A, Park TJ, Ikram M, et al. Antioxidative and anti-inflammatory effects of kojic acid in aβ-induced mouse model of alzheimer’s disease. Mol Neurobiol 2021; 58(10): 5127-40.
[http://dx.doi.org/10.1007/s12035-021-02460-4] [PMID: 34255249]
[28]
Gao G, Liu F, Xu Z, et al. Evidence of nigericin as a potential therapeutic candidate for cancers: A review. Biomed Pharmacother 2021; 137: 111262.
[http://dx.doi.org/10.1016/j.biopha.2021.111262] [PMID: 33508621]
[29]
Ramsay D, Stevenson H, Jerjes W. From basic mechanisms to clinical research: Photodynamic therapy applications in head and neck malignancies and vascular anomalies. J Clin Med 2021; 10(19): 4404.
[http://dx.doi.org/10.3390/jcm10194404] [PMID: 34640423]
[30]
Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17(11): 657-74.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]
[31]
Gheewala T, Skwor T, Munirathinam G. Photosensitizers in prostate cancer therapy. Oncotarget 2017; 8(18): 30524-38.
[http://dx.doi.org/10.18632/oncotarget.15496] [PMID: 28430624]
[32]
Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: An update. CA Cancer J Clin 2011; 61(4): 250-81.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[33]
Gao J, Chen Z, Li X, et al. Chemiluminescence in combination with organic photosensitizers: Beyond the light penetration depth limit of photodynamic therapy. Int J Mol Sci 2022; 23(20): 12556.
[http://dx.doi.org/10.3390/ijms232012556] [PMID: 36293406]
[34]
Jiang Z, Yang X, Ainiwaer M, Chen F, Liu J. Recent clinical and preclinical advances in external stimuli-responsive therapies for head and neck squamous cell carcinoma. J Clin Med 2022; 12(1): 173.
[http://dx.doi.org/10.3390/jcm12010173] [PMID: 36614974]
[35]
Pourhajibagher M, Bahador A. In vitro application of sonodynamic antimicrobial chemotherapy as a sonobactericidal therapeutic approach for bacterial infections: A systematic review and meta-analysis. J Lasers Med Sci 2020; 11(S1): S1-7.
[http://dx.doi.org/10.34172/jlms.2020.S1] [PMID: 33995962]
[36]
Pourhajibagher M, Bahador A. Virtual screening and computational simulation analysis of antimicrobial photodynamic therapy using propolis-benzofuran A to control of Monkeypox. Photodiagn Photodyn Ther 2023; 41: 103208.
[http://dx.doi.org/10.1016/j.pdpdt.2022.103208] [PMID: 36417972]
[37]
Pourhajibagher M. Molecular modeling and simulation analysis of antimicrobial photodynamic therapy potential for control of COVID-19. ScientificWorldJournal 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/7089576] [PMID: 35685718]
[38]
Bahador A, Pourhajibagher M. Molecular docking study of potential antimicrobial photodynamic therapy as a potent inhibitor of SARS-CoV-2 main protease: An in silico insight. Infect Disord Drug Targets 2023; 23(2): e010922208438.
[http://dx.doi.org/10.2174/1871526522666220901164329] [PMID: 36056873]
[39]
Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev 2014; 66(1): 334-95.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[40]
Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front Pharmacol 2018; 9: 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[41]
Özten Ö, Kuznetsov AE, Gokce M, et al. Assessing cytotoxic activities, theoretical and in silico molecular docking calculations of phthalocyanines bearing cinnamyloxy-groups. J Biomol Struct Dyn 2023; 1-11.
[http://dx.doi.org/10.1080/07391102.2023.2265503] [PMID: 37794772]
[42]
Pourhajibagher M, Bazarjani F, Bahador A. In silico and in vitro insights into the prediction and analysis of natural photosensitive compounds targeting Acinetobacter baumannii biofilm-associated protein. Photodiagn Photodyn Ther 2022; 40: 103134.
[http://dx.doi.org/10.1016/j.pdpdt.2022.103134] [PMID: 36240659]
[43]
Wang J, Yu H, Ye L, Jin L, Yu M, Lv Y. Integrated regulatory mechanisms of miRNAs and targeted genes involved in colorectal cancer. Int J Clin Exp Pathol 2015; 8(1): 517-29.
[PMID: 25755742]
[44]
Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[45]
Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol 2004; 1(4): 337-41.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[46]
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008; 3(6): 1101-8.
[http://dx.doi.org/10.1038/nprot.2008.73] [PMID: 18546601]
[47]
Alam M, Abbasi K, Nouri F, et al. The cytotoxicity and anticancer effects of propolis against the oral squamous cell carcinoma: In vitro study. Open Access Maced J Med Sci 2022; 10: 2374-81.
[48]
Park JS, Park S, Park SJ, Kim SK. Synergistic effects of concurrent photodynamic therapy with indocyanine green and chemotherapy in Hepatocellular Carcinoma cell lines and mouse models. J Photochem Photobiol B 2023; 239: 112642.
[http://dx.doi.org/10.1016/j.jphotobiol.2022.112642] [PMID: 36623346]
[49]
Hajmohammadi E, Molaei T, Mowlaei SH, et al. Sonodynamic therapy and common head and neck cancers: In vitro and in vivo studies. Eur Rev Med Pharmacol Sci 2021; 25(16): 5113-21.
[http://dx.doi.org/10.26355/eurrev_202108_26522] [PMID: 34486685]
[50]
Klausen M, Ucuncu M, Bradley M. Design of photosensitizing agents for targeted antimicrobial photodynamic therapy. Molecules 2020; 25(22): 5239.
[http://dx.doi.org/10.3390/molecules25225239] [PMID: 33182751]
[51]
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473(4): 347-64.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[52]
Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: Tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[53]
Thomas PD. The gene ontology and the meaning of biological function. Methods Mol Biol 2017; 1446: 15-24.
[http://dx.doi.org/10.1007/978-1-4939-3743-1_2] [PMID: 27812932]
[54]
Lewis SE. The vision and challenges of the gene ontology. Methods Mol Biol 2017; 1446: 291-302.
[http://dx.doi.org/10.1007/978-1-4939-3743-1_21] [PMID: 27812951]
[55]
Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother 2019; 110: 582-93.
[http://dx.doi.org/10.1016/j.biopha.2018.12.006] [PMID: 30537675]
[56]
Yoo DS, Lee J, Choi SS, et al. A modulatory effect of novel kojic acid derivatives on cancer cell proliferation and macrophage activation. Pharmazie 2010; 65(4): 261-6.
[PMID: 20432622]
[57]
Szakács G, Váradi A, Özvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug Discov Today 2008; 13(9-10): 379-93.
[http://dx.doi.org/10.1016/j.drudis.2007.12.010] [PMID: 18468555]
[58]
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[59]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]