Microwave-assisted Synthesis of Bioactive Six-membered O-heterocycles

Page: [88 - 96] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Microwave radiation has been utilised since the late 1970s as an alternative thermal energy source for chemical reactions. Initially used in inorganic chemistry, its potential for organic chemistry was revealed in 1986. Convertion of electromagnetic energy into heat, with frequencies ranging from 0.3-300 GHz using microwave irradiation, is an efficient heating method. The microwave heating method has significant potential for industrial processes, reducing reaction times and enhancing yields and selectivity. It finds applications in peptide and organic synthesis, materials science, polymer chemistry, biochemical processes, and nanotechnology. Microwave-assisted organic synthesis is environmentally friendly and beneficial for producing bioactive heterocyclic compounds. Oxygen-containing heterocycles are abundant and possess various biological functions, making them essential for developing new drugs. Microwave technology facilitates the synthesis of these compounds, including bioactive six-membered o-heterocycles such as pyrones, oxazolones, furanones, oxetanes, oxazolidinones, and dioxetanes. By utilizing modern organic transformations, microwave-assisted chemistry enhances the efficiency of synthetic processes, leading to the discovery of more beneficial molecules. The review provides an up-to-date analysis of the synthesis and medicinal properties of O-heterocycles, emphasizing the strengths and needs of this field. It guides researchers, facilitating microwave-assisted green synthesis reactions and offering a flexible platform for forming bioactive heterocyclic rings.

Graphical Abstract

[1]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[2]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27(41), 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[3]
Cunico, W.; Vellasco, Junior, W.; Moreth, M.; Gomes, C. Microwave-assisted synthesis of 1,3-Thiazolidin-4-ones and 2-Aryl-1,3-oxathiolan-5-ones. Lett. Org. Chem., 2008, 5(5), 349-352.
[http://dx.doi.org/10.2174/157017808784872089]
[4]
Gronnow, M.J.; White, R.J.; Clark, J.H.; Macquarrie, D.J. Energy efficiency in chemical reactions: A comparative study of different reaction techniques. Org. Process Res. Dev., 2005, 9(4), 516-518.
[http://dx.doi.org/10.1021/op0498060]
[5]
Kremsner, J.M.; Stadler, A.; Kappe, C.O. The scale-up of microwave-assisted organic synthesis. Top. Curr. Chem., 2006, 266, 233-278.
[http://dx.doi.org/10.1007/128_048]
[6]
Glasnov, T.N.; Kappe, C.O. Microwave‐assisted synthesis under continuous‐flow conditions. Macromol. Rapid Commun., 2007, 28(4), 395-410.
[http://dx.doi.org/10.1002/marc.200600665]
[7]
Ondruschka, B.; Bonrath, W.; Stuerga, D. Development and design of reactors in microwave-assisted chemistry. In: MicrowaVes in Organic Synthesis; Wiley, 2012, pp. 57-103.
[http://dx.doi.org/10.1002/9783527651313.ch2]
[8]
Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials, 2016, 9(4), 231.
[http://dx.doi.org/10.3390/ma9040231] [PMID: 28773355]
[9]
Tagliapietra, S.; Calcio Gaudino, E.; Martina, K.; Barge, A.; Cravotto, G. Microwave irradiation in micro‐ meso‐fluidic systems; hybrid technology has issued the challenge. Chem. Rec., 2019, 19(1), 98-117.
[http://dx.doi.org/10.1002/tcr.201800057] [PMID: 30044531]
[10]
Adhikari, A.; Bhakta, S.; Ghosh, T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron, 2022, 126, 133085.
[http://dx.doi.org/10.1016/j.tet.2022.133085]
[11]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[12]
Martins, M.; Cunico, W.; Pereira, C.; Sinhorin, A.; Flores, A.; Bonacorso, H.; Zanatta, N. 4-Alkoxy-1,1,1-Trichloro-3-Alken-2-ones: Preparation and applications in heterocyclic synthesis. Curr. Org. Synth., 2004, 1(4), 391-403.
[http://dx.doi.org/10.2174/1570179043366611]
[13]
Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
[14]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[15]
Maleki, A.; Sarvary, A. Synthesis of tetrazoles via isocyanide-based reactions. RSC Adv., 2015, 5(75), 60938-60955.
[http://dx.doi.org/10.1039/C5RA11531K]
[16]
Kaur, N.J. Benign approaches for the microwave-assisted synthesis of five-membered 1,2-N,N-heterocycles. Heterocycl. Chem, 2015, 52, 953-973.
[17]
Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941]
[18]
Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles.Inorg. Nano-Met. Chem, 2017, 47, 163-187.
[19]
Orru, R.V.; de Greef, M. Recent advances in solution-phasemulticomponent methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 10(10), 1471-1499.
[http://dx.doi.org/10.1055/s-2003-40507]
[20]
Kaur, N. Ruthenium catalysis in six-membered O -heterocycles synthesis. Synth. Commun., 2018, 48(13), 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698]
[21]
Kaur, N. Green synthesis of three- to five-membered O -heterocycles using ionic liquids. Synth. Commun., 2018, 48(13), 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243]
[22]
Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S- heterocycles. Synth. Commun., 2018, 48(14), 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
[23]
Kaur, N. Photochemical mediated reactions in five-membered O- heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165]
[24]
Kaur, N. Photochemical irradiation: Seven and higher membered O -heterocycles. Synth. Commun., 2018, 48(23), 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051]
[25]
Kaur, N. Ruthenium catalyzed synthesis of five-membered O heterocycles. Inorg. Chem. Commun., 2019, 99, 82-107.
[http://dx.doi.org/10.1016/j.inoche.2018.11.011]
[26]
Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024]
[27]
Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen-containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131]
[28]
Touzani, R.; Ramdani, A.; Ben-Hadda, T.; El Kadiri, S.; Maury, O.; Bozec, H.L.; Dixneuf, P.H. Efficient synthesis of new nitrogen donor containing tripods under microwave irradiation and without solvent. Synth. Commun., 2001, 31(9), 1315-1321.
[http://dx.doi.org/10.1081/SCC-100104040]
[29]
Venkateshwarlu, R.; Chinnababu, B.; Ramulu, U.; Purushotham, R.K.; Damoder, R.M.; Sowjanya, P.; Venkateswara, R.P.; Aravind, S. Synthesis and biological evaluation of (-)-kunstleramide and its derivatives. MedChemComm, 2017, 8(2), 394-404.
[http://dx.doi.org/10.1039/C6MD00606J] [PMID: 30108756]
[30]
Xu, Q.; Kulkarni, A.A.; Sajith, A.M.; Hussein, D.; Brown, D.; Güner, O.F.; Reddy, M.D.; Watkins, E.B.; Lassègue, B.; Griendling, K.K.; Bowen, J.P. Design, synthesis, and biological evaluation of inhibitors of the NADPH oxidase, Nox4. Bioorg. Med. Chem., 2018, 26(5), 989-998.
[http://dx.doi.org/10.1016/j.bmc.2017.12.023] [PMID: 29426628]
[31]
Nagesh, N.; Raju, G.; Srinivas, R.; Ramesh, P.; Reddy, M.D.; Reddy, C.R. A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and down-regulates c-MYC expression in human cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(1), 129-140.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.004] [PMID: 25452213]
[32]
Raju, G.; Srinivas, R.; Reddy, M.D.; Reddy, C.R.; Nagesh, N. Studies on non-covalent interaction of coumarin attached pyrimidine and 1-methyl indole 1,2,3 triazole analogues with intermolecular telomeric G-quadruplex DNA using ESI-MS and spectroscopy. Nucleosides Nucleotides Nucleic Acids, 2014, 33(7), 489-506.
[http://dx.doi.org/10.1080/15257770.2014.891742] [PMID: 24972013]
[33]
Sudina, P.R.; Motati, D.R.; Seema, A. Stereocontrolled total synthesis of nonenolide. J. Nat. Prod., 2018, 81(6), 1399-1404.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00001] [PMID: 29889525]
[34]
Kaur, N. Metal catalysts: Applications in higher-membered N-heterocycles synthesis. J. Indian Chem. Soc., 2015, 12(1), 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5]
[35]
Kaur, N. Application of microwave irradiation in the synthesis of fused six-membered heterocycles with N -Heteroatom. Synth. Commun., 2015, 45(2), 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734]
[36]
Kaur, N. Microwave-assisted synthesis of fused polycyclic six-membered N -Heterocycles. Synth. Commun., 2015, 45(3), 273-299.
[http://dx.doi.org/10.1080/00397911.2013.816735]
[37]
Kaur, N. Review of microwave-assisted synthesis of benzo-fused six-membered N,N -heterocycles. Synth. Commun., 2015, 45(3), 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736]
[38]
Raji, R.C.; Rao, N.N.; Reddy, M.D. Total synthesis of (+)-. Seimatopolide A. Eur. J. Org. Chem., 2012, 2012(26), 4910-4913.
[http://dx.doi.org/10.1002/ejoc.201200732]
[39]
Reddy, C.R.; Reddy, M.D.; Dilipkumar, U. Total synthesis of a pyrrole lactone alkaloid, longanlactone. Eur. J. Org. Chem., 2014, 2014(28), 6310-6313.
[http://dx.doi.org/10.1002/ejoc.201402563]
[40]
Reddy, M.D.; Kobori, H.; Mori, T.; Wu, J.; Kawagishi, H.; Watkins, E.B. Gram-Scale, stereoselective synthesis and biological evaluation of (+)-Armillariol C. J. Nat. Prod., 2017, 80(9), 2561-2565.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00484] [PMID: 28825818]
[41]
Reddy, C.R.; Dilipkumar, U.; Reddy, M.D.; Rao, N.N. Total synthesis and revision of the absolute configuration of seimatopolide B. Org. Biomol. Chem., 2013, 11(20), 3355-3364.
[http://dx.doi.org/10.1039/c3ob27518c] [PMID: 23563244]
[42]
Kaur, N. Review on the synthesis of six-membered N,N -heterocycles by microwave irradiation. Synth. Commun., 2015, 45(10), 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208]
[43]
Kaur, N. Greener and expeditious synthesis of fused six-membered N,N -heterocycles using microwave irradiation. Synth. Commun., 2015, 45(13), 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236]
[44]
Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S -Heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354]
[45]
Kaur, N. Microwave-assisted synthesis of five-membered O -Heterocycles. Synth. Commun., 2014, 44(24), 3483-3508.
[http://dx.doi.org/10.1080/00397911.2013.800213]
[46]
Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O -heterocycles. Synth. Commun., 2019, 49(6), 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525]
[47]
Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered O -heterocycles. Synth. Commun., 2014, 44(21), 3047-3081.
[http://dx.doi.org/10.1080/00397911.2013.796383]
[48]
Kaur, N. Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49(13), 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149]
[49]
Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven- and higher-membered O -heterocycles. Synth. Commun., 2014, 44(19), 2739-2755.
[http://dx.doi.org/10.1080/00397911.2013.796382]
[50]
Griffith, E.C.; Su, Z.; Turk, B.E.; Chen, S.; Chang, Y.H.; Wu, Z.; Biemann, K.; Liu, J.O. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol., 1997, 4(6), 461-471.
[http://dx.doi.org/10.1016/S1074-5521(97)90198-8] [PMID: 9224570]
[51]
Rowinsky, E.K.; Eisenhauer, E.A.; Chaudhry, V.; Arbuck, S.G.; Donehower, R.C. Clinical toxicities encountered with paclitaxel (Taxol). Semin. Oncol., 1993, 20(4), 1-15.
[PMID: 8102012]
[52]
Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G.W.; Kobayashi, T.; Stevens, R.C.; Iwata, S. Structure of the human histamine H1 receptor complex with doxepin. Nature, 2011, 475(7354), 65-70.
[http://dx.doi.org/10.1038/nature10236] [PMID: 21697825]
[53]
Iwasaki, M.; Kazao, Y.; Ishida, T.; Nishihara, Y. Synthesis of oxygen-containing heterocyclic compounds by iron-catalyzed alkylative cyclization of unsaturated carboxylic acids and alcohols. Org. Lett., 2020, 22(18), 7343-7347.
[http://dx.doi.org/10.1021/acs.orglett.0c02671] [PMID: 32870016]
[54]
Ghosh, T. Nickel-catalyzed regioselective access to dibenzo[ c,f]oxocine framework via reductive Heck reaction. Synth. Commun., 2018, 48(11), 1338-1345.
[http://dx.doi.org/10.1080/00397911.2018.1445865]
[55]
Sinka, V.; Martín, V.S.; Cruz, D.A.; Padrón, J.I. Synthesis of seven membered oxacycles: Recent developments and new approaches. Eur. J. Org. Chem., 2020, 2020(43), 6704-6717.
[http://dx.doi.org/10.1002/ejoc.202000850]
[56]
Zhang, L.; Mou, N.J.; Xiao, D.R.; Zhuang, X.; Lin, X.L.; Cai, T.; Luo, Q.L. Regioselective synthesis of fused oxa-heterocycles via iodine-mediated annulation of cyclic 1,3-dicarbonyl compounds with propargylic alcohols. Org. Chem. Front., 2021, 8(6), 1155-1162.
[http://dx.doi.org/10.1039/D0QO01496F]
[57]
Desimoni, G.; Faita, G.; Quadrelli, P. Forty Years after “Heterodiene Syntheses with α,β-Unsaturated Carbonyl Compounds”: Enantioselective Syntheses of 3,4-Dihydropyran Derivatives. Chem. Rev., 2018, 118(4), 2080-2248.
[http://dx.doi.org/10.1021/acs.chemrev.7b00322] [PMID: 29442499]
[58]
Bokor, É.; Kun, S.; Goyard, D.; Tóth, M.; Praly, J.P.; Vidal, S.; Somsák, L. C -Glycopyranosyl arenes and hetarenes: Synthetic methods and bioactivity focused on antidiabetic potential. Chem. Rev., 2017, 117(3), 1687-1764.
[http://dx.doi.org/10.1021/acs.chemrev.6b00475] [PMID: 28121130]
[59]
Jacques, R.; Pal, R.; Parker, N.A.; Sear, C.E.; Smith, P.W.; Ribaucourt, A.; Hodgson, D.M. Recent applications in natural product synthesis of dihydrofuran and -pyran formation by ring-closing alkene metathesis. Org. Biomol. Chem., 2016, 14(25), 5875-5893.
[http://dx.doi.org/10.1039/C6OB00593D] [PMID: 27108941]
[60]
Pratap, R.; Ram, V.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev., 2014, 114(20), 10476-10526.
[http://dx.doi.org/10.1021/cr500075s] [PMID: 25303539]
[61]
Polshettiwar, V.; Varma, R.S. Tandem bis-aldol reaction of ketones: A facile one-pot synthesis of 1,3-dioxanes in aqueous medium. J. Org. Chem., 2007, 72(19), 7420-7422.
[http://dx.doi.org/10.1021/jo701337j] [PMID: 17696550]
[62]
Nicolaou, K.C.; Pfefferkorn, J.A.; Roecker, A.J.; Cao, G-Q.; Barluenga, S.; Mitchell, H.J. Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans. J. Am. Chem. Soc., 2000, 122(41), 9939-9953.
[http://dx.doi.org/10.1021/ja002033k]
[63]
Nicolaou, K.C.; Pfefferkorn, J.A.; Mitchell, H.J.; Roecker, A.J.; Barluenga, S.; Cao, G.Q.; Affleck, R.L.; Lillig, J.E. Natural product-like combinatorial libraries based on privileged structures. 2. construction of a 10 000-membered benzopyran library by directed split-and-pool chemistry using nanokans and optical encoding. J. Am. Chem. Soc., 2000, 122(41), 9954-9967.
[http://dx.doi.org/10.1021/ja002034c]
[64]
Balbi, A.; Roma, G.; Mazzei, M.; Sottofattori, E.; Cadel, S.; Schiantarelli, P. [Chemistry and pharmacology of pyrane derivatives. XVII. Synthesis of substituted 2-(dialkylamino)-3-formylchromones and their tricyclic derivatives]. Farmaco, 1989, 44(6), 565-577.
[PMID: 2803447]
[65]
Iwasaki, K.; Shiraga, T.; Nagase, K.; Tozuka, Z.; Noda, K.; Sakuma, S.; Fujitsu, T.; Shimatani, K.; Sato, A.; Fujioka, M. Isolation, identification, and biological activities of oxidative metabolites of FK506, a potent immunosuppressive macrolide lactone. Drug Metab. Dispos., 1993, 21(6), 971-977.
[PMID: 7507815]
[66]
Peng, Y.; Song, G. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal. Commun., 2007, 8(2), 111-114.
[http://dx.doi.org/10.1016/j.catcom.2006.05.031]
[67]
Kathrotiya, H.G.; Patel, M.P. Microwave-assisted synthesis of 3′-indolyl substituted 4H-chromenes catalyzed by DMAP and their antimicrobial activity. Med. Chem. Res., 2012, 21(11), 3406-3416.
[http://dx.doi.org/10.1007/s00044-011-9861-4]
[68]
Sangani, C.; Shah, N.; Patel, M.; Patel, R. Microwave assisted synthesis of novel 4h-chromene derivatives bearing phenoxypyrazole and their antimicrobial activity assess. J. Serb. Chem. Soc., 2012, 77(9), 1165-1174.
[http://dx.doi.org/10.2298/JSC120102030S]
[69]
Sangani, C.B.; Shah, N.M.; Patel, M.P.; Patel, R.G. Microwave-assisted synthesis of novel 4H-chromene derivatives bearing 2-aryloxyquinoline and their antimicrobial activity assessment. Med. Chem. Res., 2013, 22(8), 3831-3842.
[http://dx.doi.org/10.1007/s00044-012-0381-7]
[70]
Parikh, P.H.; Timaniya, J.B.; Patel, M.J.; Patel, K.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J. Mol. Struct., 2022, 1249, 131605.
[http://dx.doi.org/10.1016/j.molstruc.2021.131605]
[71]
El-Agrody, A.M.; Al-Dies, A.A.M.; Fouda, A.M. Microwave assisted synthesis of 2-amino-6-methoxy-4H-benzo[h]chromene derivatives. Chemistry, 2014, 5, 133-137.
[72]
Yang, X.H.; Zhang, P.H.; Wang, Z.M.; Jing, F.; Zhou, Y.H.; Hu, L.H. Synthesis and bioactivity of lignin related high-added-value 2H,4H-dihydro-pyrano[2,3-c]pyrazoles and 1H,4H-dihydro-pyrano[2,3-c]pyrazoles. Ind. Crops Prod., 2014, 52, 413-419.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.017]
[73]
Ahmed, H.E.A.; El-Nassag, M.A.A.; Hassan, A.H.; Mohamed, H.M.; Halawa, A.H.; Okasha, R.M.; Ihmaid, S.; Abd El-Gilil, S.M.; Khattab, E.S.A.E.H.; Fouda, A.M.; El-Agrody, A.M.; Aljuhani, A.; Afifi, T.H. Developing lipophilic aromatic halogenated fused systems with specific ring orientations, leading to potent anticancer analogs and targeting the c-Src Kinase enzyme. J. Mol. Struct., 2019, 1186, 212-223.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.012]
[74]
H, R.B.; Ravinder, M.; Narsimha, S. Microwave-assisted one pot synthesis of fused [1,2,3]triazolo-pyrano[3,2-h]quinolines and their biological evaluation. Asian J. Pharm. Pharmacol., 2019, 5(6), 1202-1210.
[http://dx.doi.org/10.31024/ajpp.2019.5.6.17]
[75]
Sayed, G.H.; Azab, M.E.; Anwer, K.E. Conventional and microwave‐assisted synthesis and biological activity study of novel heterocycles containing pyran moiety. J. Heterocycl. Chem., 2019, 56(8), 2121-2133.
[http://dx.doi.org/10.1002/jhet.3606]
[76]
Banerjee, A.G.; Kothapalli, L.P.; Sharma, P.A.; Thomas, A.B.; Nanda, R.K.; Shrivastava, S.K.; Khatanglekar, V.V. A facile microwave assisted one pot synthesis of novel xanthene derivatives as potential anti-inflammatory and analgesic agents. Arab. J. Chem., 2016, 9, S480-S489.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.001]
[77]
Amininia, A.; Pourshamsian, K.; Sadeghi, B. Introducing an effective nanocatalytic for the one-pot synthesis and investigation of biological properties of pyranopyrimidinone and xanthene derivatives. J. Chil. Chem. Soc., 2019, 64(4), 4633-4638.
[http://dx.doi.org/10.4067/S0717-97072019000404633]
[78]
Iniyavan, P.; Sarveswari, S.; Vijayakumar, V. Microwave-assisted clean synthesis of xanthenes and chromenes in [bmim][PF6] and their antioxidant studies. Res. Chem. Intermed., 2015, 41(10), 7413-7426.
[http://dx.doi.org/10.1007/s11164-014-1821-4]
[79]
Vahabi, V.; Hatamjafari, F. Microwave assisted convenient one-pot synthesis of coumarin derivatives via Pechmann condensation catalyzed by FeF3 under solvent-free conditions and antimicrobial activities of the products. Molecules, 2014, 19(9), 13093-13103.
[http://dx.doi.org/10.3390/molecules190913093] [PMID: 25255747]