Mechanism of Houpu Wenzhong Decoction in the Treatment of Chronic Gastritis and Depression Based on Network Pharmacology and Molecular Docking

Page: [58 - 71] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Objective: The study aimed to discuss the possible mechanisms of Houpu Wenzhong Decoction in the treatment of chronic gastritis and depression based on network pharmacology and molecular docking.

Methods: The chemical components and corresponding targets of seven crude drugs in Houpu Wenzhong Decoction were retrieved from the database TCMSP. The targets for treating chronic gastritis and depression were obtained from the database Gene Cards. STRING 11.5 was used to establish the protein-protein interaction network of common targets among “chemical components- chronic gastritis-depression”, and then Cytoscape was employed for visual analysis. The targets with the top ten degrees were selected as key targets, which were then imported to BioGPS to obtain the distribution in organs and tissues. The common targets were analyzed via Go and KEGG pathway enrichment analyses using Metascape. The top ten degrees of active components were verified by molecular docking of key targets.

Results: Under the conditions of OB ≥ 30% and DL ≥ 0.18, a total of 144 chemical components and related 251 targets of Houpu Wenzhong Decoction were retrieved. 1192 and 12902 targets were retrieved for chronic gastritis and depression from the GeneCards database, respectively. 104 common targets were obtained by intersection among the two diseases and drug targets. The key common targets have been found to be mainly distributed in organs and tissues, such as the adrenal cortex, amygdala, appendix, adrenal gland, colorectal, liver, and prostates, as observed through BioGPS analysis. 5141 biological processes, 354 cell components, and 615 molecular functions were obtained by GO functional enrichment analysis, and 302 signal pathways were obtained by KEGG enrichment analysis. Among these, IL-17, TNF, PI3K-Akt, and toll-like receptor signaling pathway have been found to be involved. Molecular docking results showed the key active components, naringenin and hesperidin, to have good binding activities with targets STAT3 and Jun.

Conclusion: 104 common targets between chronic gastritis and depression have been obtained as the basis for Houpu Wenzhong Decoction to treat the two diseases. The ten key active ingredients have been found to act on 15 key signal pathways through 104 common key targets to treat the two diseases.

Graphical Abstract

[1]
Chen, W.; Luo, R.; Yu, J.; Xie, Y.; Zhuang, X. Clinical effect of Yiqi Hewei capsules combined with Ba duan jin exercise in treatment of chronic gastritis with anxiety and depression: Ananalysis of 50 cases. Hunan. J. Tradit. Chin. Med., 2021, 37(06), 11-32.
[2]
Yan, Z. The study on Helicobacter pylori infection and anxiety-depression in chronic gastris. Master; Qingdao University, 2017.
[3]
Fehér, J.; Kovács, I.; Balacco Gabrieli, C. Role of gastrointestinal inflammations in the development and treatment of depression. Orv. Hetil., 2011, 152(37), 1477-1485.
[http://dx.doi.org/10.1556/OH.2011.29166] [PMID: 21893478]
[4]
Liu, J.Q.; Yan, J.; Shu, J.C.; Zhang, R.; Yang, R.K.; Zhang, S.L.; Cao, T.Y.; Yang, M. Research progress of houpo wenzhongtang. Chin. J. Exp. Tradit. Med. Form., 2019, 25(17), 209.
[5]
Song, Z.G.; Zhou, X.Q.; Yan, D.M.; Tang, L.P.; Wang, F.; Li, B. Research progress on effective components and mechanisms of anti-depressive Chinese medicine. Zhongguo Zhongyao Zazhi, 2022, 47(5), 1184-1189.
[PMID: 35343143]
[6]
Duan, S.; Liu, C. Treatment of chronic gastritis of insufficiency-cold in spleen and stomach by modified matgnoliae officinalis decoction: Analysis of 43 Cases. West. J. Chin. Tradit. Med., 2016, 29(8), 98.
[7]
Fengmin, Z. Treating 60 cases of chronic gastritis with the Houpu Wenzhong decoction. Clin. J. Chin. Med., 2015, 7(23), 107.
[8]
Huang, S.; Chen, Y.; Zhang, Y. Study on the mechanism of Houpoea officinalis in treating depression. World. J. Integr. Tradi. Western. Med., 2015, 10(07), 1023-1026.
[9]
Cheng-Fu, L.I.; Chen, X.M.; Chen, S.M.; Li-Tao, Y.I.; Liu, Q. Extracts from Pericarpium citri improve behaviors and hippocampal bdnf in mice exposed to chronic mild unpredictable stress. Chin. J. Exp. Tradit. Med. Form., 2014, 20(19), 151.
[10]
Zong, Y.; Shu-Fen, H.E.; Sun, B.T.; Zhang, Q.; Wen-Zheng, J.U. Antidepressant mechanism and application of glycyrrhizma radix et rhizoma. Chin. J. Exp. Tradit. Med. Form., 2016, 22(10), 194.
[11]
Tan, S.; Ren, W.; Xia, B.; Lin, L.; Ouyang, R.; Pharmacy, D. Effects of lindera aggregate of stir-baking with vinegar-aucklandia lappa on gastric emptying and gastrointestinal hormones in functional dyspepsia liver depression and qi stagnation model rats. Chin. Pharmacy., 2019, 30(5), 684.
[12]
Xie, P.; Qin, H.; Tan, X.; Weng, M.; Long, X.; Luo, J.; Mingfang, L.I. Research progress on chemical constituents of Alpinia katsumadai hayata and their pharmacological activities. Liaoning Zhongyiyao Daxue Xuebao, 2017, 19(3), 60.
[13]
Zhang, W.; Chen, L.; Duan, J. Study on the antidepressant activities of polysaccharides from three herbs and their mechanism. Shanxi Nongye Daxue Xuebao, 2017, 37(12), 905-912.
[14]
Li, H.; Li, Y.; Ren, G. Research status and prospect of herbal volatile oil in prevention and treatment of emotional diseases. Chin. Tradit. Herbal Drugs, 2019, 50(17), 4031-4040.
[15]
Li, S. Framework and practice of network-based studies for understanding the mechanism of Chinese herbal formulae. J. Chin. Integr. Med., 2007, 5(05), 489-493.
[http://dx.doi.org/10.3736/jcim20070501] [PMID: 17854545]
[16]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[17]
Li, J.; Zhao, P.; Li, Y.; Tian, Y.; Wang, Y. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci. Rep., 2015, 5(1), 15290.
[http://dx.doi.org/10.1038/srep15290] [PMID: 26469778]
[18]
Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42, 32-38.
[http://dx.doi.org/10.1093/nar/gku293]
[19]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: The human gene integrator. Database, 2010, 2010(0), baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[20]
Wang, H.H.; Wei, W.H.; Xin, L.I.; Zhang, X.; Jing, X.U.; Guo, F.F.; Zhang, H.; Fan, J.W.; Yang, H.J. Effective constituents and mechanism of Magnoliae officinalis cortex for depressive disorder based on network pharmacology Chin. J. Exp. Tradit. Med. Form., 2019, 25(10), 162.
[21]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[22]
Zeng, h.; Zhou, q.; Luo, t. Comparison of effects of magnolol and honokiol on diarrhea and gastrointestinal emptying inhibition in mice. Zhong Yao Cai, 2015, 38(10), 2160-2162.
[23]
Song, Y.; Chen, H.; Hu, Y.; Tan, S.; Luo, X.; Yang, W. Effect of pericarpium citri reticulatae and its main active ingredients on gastrin in serum, acetylcholine, motilin, substance P and vasoactive intestinal peptide in plasma of rats. Pharmaco. Clin. Chin. Mater. Med., 2017, 33(3), 79.
[24]
Tan, S.; Chen, H.; Song, Y. Effects of fructus aurantii aurantii and its main active components on serum gastrin, plasma acetylcholine, motilin, substance P and vasoactive intestinal peptide in rats with spleen deficiency. Lishizhen. Med. Mater. Med. Res., 2017, 28(05), 1037-1040.
[25]
Wei, H.; Peng, Y.; Guo-Xu, M.A.; Li-Jia, X.U. Advances in studies on active components of Saussurea lappa and their pharmacological actions. Chin. Tradit. Herbal Drugs, 2012, 43(3), 613.
[26]
Tan, Y.; Guan, Y.D.; Zheng, C.Q.; Gastroenterology, D.O. Protection of apinetin on dextran sulfate sodium-induced ulcerative colitis in mice and its mechanism. Drugs & Clinic., 2018, 33(6), 1303.
[27]
Peng, J.; Mei, X. A textual research on the relationship between depression and spleen. Zhonghua Zhongyiyao Xuekan, 2003, 21(11), 1833-1840.
[28]
Jinxia, M.A.; Zhang, D.; Zhu, F. Based on spleen governing thought to discuss chronic atrophic gastritis with depression and anxiety. Zhonghua Zhongyiyao Xuekan, 2018, 36(10), 2362.
[29]
Nardone, G.; Compare, D. The psyche and gastric functions. Dig. Dis., 2014, 32(3), 206-212.
[http://dx.doi.org/10.1159/000357851] [PMID: 24732184]
[30]
Zhang, S.; Huang, J.; Xie, X.; He, Y.; Mo, F.; Luo, Z. Quercetin from polygonum capitatum protects against gastric inflammation and apoptosis associated with helicobacter pylori infection by affecting the levels of p38MAPK, BCL-2 and BAX. Molecules, 2017, 22(5), 744.
[http://dx.doi.org/10.3390/molecules22050744] [PMID: 28481232]
[31]
Kim, S.H.; Park, J.G.; Sung, G.H.; Yang, S.; Yang, W.S.; Kim, E.; Kim, J.H.; Ha, V.T.; Kim, H.G.; Yi, Y.S.; Kim, J.H.; Baek, K.S.; Sung, N.Y.; Lee, M.; Kim, J.H.; Cho, J.Y. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain. Mol. Nutr. Food Res., 2015, 59(7), 1400-1405.
[http://dx.doi.org/10.1002/mnfr.201400820] [PMID: 25917334]
[32]
Li, S.Q.; Dong, S.; Su, Z.H.; Zhang, H.W.; Peng, J.B.; Yu, C.Y.; Zou, Z.M. Comparative pharmacokinetics of naringin in rat after oral administration of chaihu-shu-gan-san aqueous extract and naringin alone. Metabolites, 2013, 3(4), 867-880.
[http://dx.doi.org/10.3390/metabo3040867] [PMID: 24958255]
[33]
Park, J.M.; Park, S.H.; Hong, K.S.; Han, Y.M.; Jang, S.H.; Kim, E.H.; Hahm, K.B. Special licorice extracts containing lowered glycyrrhizin and enhanced licochalcone A prevented Helicobacter pylori-initiated, salt diet-promoted gastric tumorigenesis. Helicobacter, 2014, 19(3), 221-236.
[http://dx.doi.org/10.1111/hel.12121] [PMID: 24646026]
[34]
Cho, S.Y.; Lee, J.H.; Bae, K.H.; Kim, Y-S.; Jeong, C-S. Anti-gastritic effects of magnolol and honokiol from the stem bark of magnolia obovata. Biomol. Ther., 2008, 16(3), 270-276.
[http://dx.doi.org/10.4062/biomolther.2008.16.3.270]
[35]
Merzoug, S.; Toumi, M.L.; Tahraoui, A. Quercetin mitigates Adriamycin-induced anxiety- and depression-like behaviors, immune dysfunction, and brain oxidative stress in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(10), 921-933.
[http://dx.doi.org/10.1007/s00210-014-1008-y] [PMID: 24947870]
[36]
Zhang, S.; Zhang, Y.; Li, B.; Xu, C. Protective effects of kaempferol on autophagy-and oxidative stress-mediated injury of hippocampal neuronin CUMS-induced depression model rats. Chin. J. Immunol., 2019, 35(02), 146-150.
[37]
Cai, L.; Li, R.; Wu, Q. Effects of hesperidin on behavior and HPA axis in chronic stress depression model rats. Zhong Yao Cai, 2013, 38(02), 229-233.
[PMID: 23672047]
[38]
Aggarwal, A.; Gaur, V.; Kumar, A. Nitric oxide mechanism in the protective effect of naringin against post-stroke depression (PSD) in mice. Life Sci., 2010, 86(25-26), 928-935.
[http://dx.doi.org/10.1016/j.lfs.2010.04.011] [PMID: 20433854]
[39]
Zhang, B.; Wang, P.P.; Hu, K.L.; Li, L.N.; Yu, X.; Lu, Y.; Chang, H.S. Antidepressant-like effect and mechanism of action of honokiol on the mouse lipopolysaccharide (LPS) depression model. Molecules, 2019, 24(11), 2035.
[http://dx.doi.org/10.3390/molecules24112035] [PMID: 31141940]
[40]
Lu, T.; Xu, J.; Yu, F. Effect of magnolol on hippocampal neuroplasticity in unpredictable chronic mild stress treated rats. Chin. Tradit. Herbal Drugs, 2018, 49(20), 4844-4850.
[41]
Kong, E.; Sucic, S.; Monje, F.J.; Reisinger, S.N.; Savalli, G.; Diao, W.; Khan, D.; Ronovsky, M.; Cabatic, M.; Koban, F.; Freissmuth, M.; Pollak, D.D. Correction: Corrigendum: STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behaviour. Sci. Rep., 2015, 5(1), 11965.
[http://dx.doi.org/10.1038/srep11965] [PMID: 26177279]
[42]
Lin, H.; Wang, Q.; Wang, X.; Wang, J. The mechanism of Shenfoweikang in reversing precancerous lesions of chronic atrophic gastritis in mice by signal transduction molecules based on VEGF, STAT3 and HIF-1α. Lishizhen. Med. Mater. Med. Res., 2017, 28(10), 2320-2322.
[43]
Sun, L.; Liang, J.; Jun, L.U.; Wang, J.R.; Qian, W.U.; Guo, Z.; Zhao, B.C.; Zhang, C.T.; Ya, T.U. Effects of acupuncture and electroacupuncture(EA) on hippocampal pJNK,c-jun and Caspase-3 expression in rats with chronic stress depression. Beijing. J. Tradit. Chin. Med., 2014, 37(12), 820.
[44]
Chang, J.; Zhang, Y.; Shen, N.; Zhou, J.; Zhang, H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation. Exp. Brain Res., 2021, 239(11), 3359-3370.
[http://dx.doi.org/10.1007/s00221-021-06203-8] [PMID: 34482419]
[45]
Xi-Rong, L.U.; Qian-Fei, X.U.; Jin-Kang, X.U. Jianpiliqi Huoxuehuayu regulates MAPK/ERK signaling pathway to inhibit the proliferation and differentiation of chronic atrophic gastritis cells. Chin. J. Integr. Trad. West. Med. Dig., 2017, 25(7), 515.
[46]
Meng, L.; Bai, X.; Zheng, Y.; Chen, D.; Zheng, Y. Altered expression of norepinephrine transporter participate in hypertension and depression through regulated TNF-α and IL-6. Clin. Exp. Hypertens., 2020, 42(2), 181-189.
[http://dx.doi.org/10.1080/10641963.2019.1601205] [PMID: 30957546]
[47]
Feng, G.; Jing, W.U.; Chen, J.T.; Liu, W.; Xin, H.E.; Song, H.Q.; Guang, W.Z. Effects of jianpi wenwei powder on serum TNF-αIL-6 and IRAK-4 mRNA expression in gastric tissues of spleen-deficiency gastritis rats. Chin. J. Exp. Tradit. Med. Form., 2016, 22(14), 145.
[48]
Jian, M.A.; Meng, X.Y.; Wang, T.; Jiang, C.; Ping, J.I.; Zhou, C.H. The relationship between Helicobacter pylori and the concentration of serum IL-6,TGF-β1 and IL-17 in chronic active gastritis and its clinical significance. Zhonghua Linchuang Yishi Zazhi, 2012, 6(11)
[49]
Huang, Y.; Zhang, Z.; Huang, Y. The relationship between PI3K-AKT signaling pathway and depression and the research progress on TCM intervention. Shanghai. J. Tradit. Chin. Med., 2020, 54(02), 108-112.
[50]
Yan, Z.P.; Ting-Ting, X.U.; Zhen-Tao, A.N.; Ying, H.U.; Chen, W.Z.; Jin-Xia, M.A.; Zhu, F.S. Effects of Jianpi Yiqi Formula on expression of PI3K-Akt signaling pathway in gastric tissue of rats with chronic atrophic gastritis. Chin. J. Tradit. Chin. Med. Pharma., 2019, 34(10), 4800.
[51]
Zhang, Y.; Li, S. Y.; Wang, J. Y.; Zhai, X.; Rong, P. J. Effect of transcutaneous auricular vagus nerve stimulation on hyperglycemia and insulin receptors expression in impaired glucose tolerance rats. Acupuncture. research., 2020, 45(11), 882-887.
[52]
Lin, Z.Q.; Wang, D.X.; Hong, S.S.; Fu, X.Y. Effects of Xiangsha Liujunzi decoction on TLR signal pathway in gastric mucosa tissues of rats with Helicobacter pylori-induced chronic atrophic gastritis. Zhongguo Zhongyao Zazhi, 2016, 41(16), 3078-3083.
[PMID: 28920352]
[53]
Freire de Melo, F.; Rocha, A.M.C.; Rocha, G.A.; Pedroso, S.H.S.P.; de Assis Batista, S.; Fonseca de Castro, L.P.; Carvalho, S.D.; Bittencourt, P.F.S.; de Oliveira, C.A.; Corrêa-Oliveira, R.; Magalhães Queiroz, D.M. A regulatory instead of an IL-17 T response predominates in Helicobacter pylori-associated gastritis in children. Microbes Infect., 2012, 14(4), 341-347.
[http://dx.doi.org/10.1016/j.micinf.2011.11.008] [PMID: 22155622]