An Online Shared Decision-making Intervention for Dementia Prevention: A Parallel-group Randomized Pilot Study

Page: [577 - 587] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Objectives: Evaluate the acceptability and efficacy of an online dementia prevention intervention based on a cognitive behavioral shared decision-making model.

Materials and Methods: This was an unblinded pilot study in which participants were randomly assigned to one of two treatment groups. This study was carried out remotely via telephone, video conferencing, and online data collection. Eighteen English-speaking persons 40 years of age and older interested in developing more brain-healthy lifestyles. Both groups received 12 weekly sessions on lifestyle factors related to cognitive decline. The treatment-as-usual (TAU) group received the information and was encouraged to make lifestyle changes. The cognitive behavioral shared decision- making model (CBSDM) group received structured weekly sessions with support for evidence- informed personal goal choices and behavior change strategies. Primary outcome measures were the Alzheimer's Disease Risk Inventory and the Memory Self-Efficacy and Dementia Knowledge Assessment Scales. Participants reported brain health activities during the first, sixth, and 12th weeks of the study.

Results: No significant between-group changes were seen in the three primary outcome measures. The intervention was viewed positively by participants, who all said they would participate in it again. Participants in the CBSDM group showed increases in knowledge of dementia risk factors and exercise. Other outcomes were consistent with moderate to large effect sizes for both groups.

Conclusion: An online intervention providing psychoeducation and behavior change support was viewed positively by older adults. Results provide preliminary support for the CBSDM intervention’s efficacy in promoting brain health in older adults.

Clinical Trial Registration Number: NCT04822129.

[1]
van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; Froelich, L.; Katayama, S.; Sabbagh, M.; Vellas, B.; Watson, D.; Dhadda, S.; Irizarry, M.; Kramer, L.D.; Iwatsubo, T. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med., 2023, 388(1), 9-21.
[http://dx.doi.org/10.1056/NEJMoa2212948] [PMID: 36449413]
[2]
Zissimopoulos, J.; Crimmins, E.; St Clair, P. The value of delaying Alzheimer’s disease onset. Forum Health Econ. Policy, 2014, 18(1), 25-39.
[http://dx.doi.org/10.1515/fhep-2014-0013] [PMID: 27134606]
[3]
Lock, S.L. The benefits of brain health to our economies. Nature Aging, 2023, 3(1), 1-2.
[http://dx.doi.org/10.1038/s43587-022-00302-z] [PMID: 37118523]
[4]
Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet, 2020, 396(10248), 413-446.
[http://dx.doi.org/10.1016/S0140-6736(20)30367-6] [PMID: 32738937]
[5]
Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; Lindström, J.; Mangialasche, F.; Paajanen, T.; Pajala, S.; Peltonen, M.; Rauramaa, R.; Stigsdotter-Neely, A.; Strandberg, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet, 2015, 385(9984), 2255-2263.
[http://dx.doi.org/10.1016/S0140-6736(15)60461-5] [PMID: 25771249]
[6]
Joanna Hellmuth Md. Can we trust The End of Alzheimer’s? Lancet Neurol., 2020, 19(5), 389-390.
[http://dx.doi.org/10.1016/S1474-4422(20)30113-7] [PMID: 32333896]
[7]
Mehegan, L.; Rainville, C. 2021 AARP survey on the perceptions related to a dementia diagnosis: Adults age 40; AARP Research: Washington, DC, 2021.
[http://dx.doi.org/10.26419/res.00471.001]
[8]
Zülke, A.E.; Luppa, M.; Köhler, S.; Riedel-Heller, S.G. Knowledge of risk and protective factors for dementia in older German adults A population-based survey on risk and protective factors for dementia and internet-based brain health interventions. PLoS One, 2022, 17(11), e0277037.
[http://dx.doi.org/10.1371/journal.pone.0277037] [PMID: 36342935]
[9]
Friedman, B.B.; Suri, S.; Solé-Padullés, C.; Düzel, S.; Drevon, C.A.; Baaré, W.F.C.; Bartrés-Faz, D.; Fjell, A.M.; Johansen-Berg, H.; Madsen, K.S.; Nyberg, L.; Penninx, B.W.J.H.; Sexton, C.; Walhovd, K.B.; Zsoldos, E.; Budin-Ljøsne, I. Are people ready for personalized brain health? Perspectives of research participants in the Lifebrain Consortium. Gerontologist, 2020, 60(6), 1050-1059.
[http://dx.doi.org/10.1093/geront/gnz155] [PMID: 31682729]
[10]
Friedman, D.B.; Laditka, J.N.; Hunter, R.; Ivey, S.L.; Wu, B.; Laditka, S.B.; Tseng, W.; Corwin, S.J.; Liu, R.; Mathews, A.E. Getting the message out about cognitive health: a cross-cultural comparison of older adults’ media awareness and communication needs on how to maintain a healthy brain. Gerontologist, 2009, 49(S1), S50-S60.
[http://dx.doi.org/10.1093/geront/gnp080] [PMID: 19525217]
[11]
Wilcox, S.; Sharkey, J.R.; Mathews, A.E.; Laditka, J.N.; Laditka, S.B.; Logsdon, R.G.; Sahyoun, N.; Robare, J.F.; Liu, R. Perceptions and beliefs about the role of physical activity and nutrition on brain health in older adults. Gerontologist, 2009, 49(S1), S61-S71.
[http://dx.doi.org/10.1093/geront/gnp078] [PMID: 19525218]
[12]
Maust, D.T.; Solway, E.; Langa, K.M.; Kullgren, J.T.; Kirch, M.; Singer, D.C.; Malani, P. Perception of dementia risk and preventive actions among US adults aged 50 to 64 years. JAMA Neurol., 2020, 77(2), 259-262.
[http://dx.doi.org/10.1001/jamaneurol.2019.3946] [PMID: 31730178]
[13]
Elwyn, G.; Frosch, D.; Thomson, R.; Joseph-Williams, N.; Lloyd, A.; Kinnersley, P.; Cording, E.; Tomson, D.; Dodd, C.; Rollnick, S.; Edwards, A.; Barry, M. Shared decision making: A model for clinical practice. J. Gen. Intern. Med., 2012, 27(10), 1361-1367.
[http://dx.doi.org/10.1007/s11606-012-2077-6] [PMID: 22618581]
[14]
Hibbard, J.H. Engaging health care consumers to improve the quality of care. Med. Care, 2003, 41(1), I-61-I-70.
[http://dx.doi.org/10.1097/00005650-200301001-00007] [PMID: 12544817]
[15]
Ownby, R.L.; Waldrop, D. Cogstim: A shared decision-making model to support older adults’ brain health. Curr. Alzheimer Res., 2023, 20(3), 202-208.
[http://dx.doi.org/10.2174/1567205020666230525110814] [PMID: 37231715]
[16]
Bredesen, D.E.; Amos, E.C.; Canick, J.; Ackerley, M.; Raji, C.; Fiala, M.; Ahdidan, J. Reversal of cognitive decline in Alzheimer’s disease. Aging, 2016, 8(6), 1250-1258.
[http://dx.doi.org/10.18632/aging.100981] [PMID: 27294343]
[17]
Small, G.; Vorgan, G. The Alzheimer’s prevention program; Workman: New York, 2012.
[18]
Sherzai, D.; Sherzai, A. The Alzheimer’s solution; Simon & Schuster UK: London, 2017.
[19]
Beck, J.S. Cognitive behavior therapy: Basics and beyond, 3rd ed; Guilford: New York, 2020.
[20]
Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Larson, E.B.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care. Lancet, 2017, 390(10113), 2673-2734.
[http://dx.doi.org/10.1016/S0140-6736(17)31363-6] [PMID: 28735855]
[21]
Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)-a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform., 2009, 42(2), 377-381.
[http://dx.doi.org/10.1016/j.jbi.2008.08.010] [PMID: 18929686]
[22]
Anstey, K.J.; Cherbuin, N.; Herath, P.M. Development of a new method for assessing global risk of Alzheimer’s disease for use in population health approaches to prevention. Prev. Sci., 2013, 14(4), 411-421.
[http://dx.doi.org/10.1007/s11121-012-0313-2] [PMID: 23319292]
[23]
Anstey, K.J.; Cherbuin, N.; Herath, P.M.; Qiu, C.; Kuller, L.H.; Lopez, O.L.; Wilson, R.S.; Fratiglioni, L. A self-report risk index to predict occurrence of dementia in three independent cohorts of older adults: the ANU-ADRI. PLoS One, 2014, 9(1), e86141.
[http://dx.doi.org/10.1371/journal.pone.0086141] [PMID: 24465922]
[24]
Zelinski, E.M.; Gilewski, M.J. A 10-item Rasch modeled memory self-efficacy scale. Aging Ment. Health, 2004, 8(4), 293-306.
[http://dx.doi.org/10.1080/13607860410001709665] [PMID: 15370046]
[25]
Annear, M.J.; Toye, C.M.; Eccleston, C.E.; McInerney, F.J.; Elliott, K.E.J.; Tranter, B.K.; Hartley, T.; Robinson, A.L. Dementia Knowledge Assessment Scale: Development and preliminary psychometric properties. J. Am. Geriatr. Soc., 2015, 63(11), 2375-2381.
[http://dx.doi.org/10.1111/jgs.13707] [PMID: 26503020]
[26]
Annear, M.J.; Toye, C.; Elliott, K.E.J.; McInerney, F.; Eccleston, C.; Robinson, A. Dementia knowledge assessment scale (DKAS): Confirmatory factor analysis and comparative subscale scores among an international cohort. BMC Geriatr., 2017, 17(1), 168.
[http://dx.doi.org/10.1186/s12877-017-0552-y] [PMID: 28760154]
[27]
Radloff, L.S. The CES-D Scale. Appl. Psychol. Meas., 1977, 1(3), 385-401.
[http://dx.doi.org/10.1177/014662167700100306]
[28]
Cohen, S.; Janicki-Deverts, D. Who’s stressed? Distributions of psychological stress in the United States in probability samples from 1983, 2006, and 2009. J. Appl. Soc. Psychol., 2012, 42(6), 1320-1334.
[http://dx.doi.org/10.1111/j.1559-1816.2012.00900.x]
[29]
Cella, D.; Riley, W.; Stone, A.; Rothrock, N.; Reeve, B.; Yount, S.; Amtmann, D.; Bode, R.; Buysse, D.; Choi, S.; Cook, K.; DeVellis, R.; DeWalt, D.; Fries, J.F.; Gershon, R.; Hahn, E.A.; Lai, J.S.; Pilkonis, P.; Revicki, D.; Rose, M.; Weinfurt, K.; Hays, R. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J. Clin. Epidemiol., 2010, 63(11), 1179-1194.
[http://dx.doi.org/10.1016/j.jclinepi.2010.04.011] [PMID: 20685078]
[30]
McKay, F.H.; Wright, A.; Shill, J.; Stephens, H.; Uccellini, M. Using health and well-being apps for behavior change: A systematic search and rating of apps. JMIR Mhealth Uhealth, 2019, 7(7), e11926.
[http://dx.doi.org/10.2196/11926] [PMID: 31274112]
[31]
Harkin, B.; Webb, T.L.; Chang, B.P.I.; Prestwich, A.; Conner, M.; Kellar, I.; Benn, Y.; Sheeran, P. Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence. Psychol. Bull., 2016, 142(2), 198-229.
[http://dx.doi.org/10.1037/bul0000025] [PMID: 26479070]
[32]
Dunn, E.E.; Gainforth, H.L.; Robertson-Wilson, J.E. Behavior change techniques in mobile applications for sedentary behavior. Digit. Health, 2018, 4, 2055207618785798.
[http://dx.doi.org/10.1177/2055207618785798] [PMID: 31463076]
[33]
Compernolle, S.; DeSmet, A.; Poppe, L.; Crombez, G.; De Bourdeaudhuij, I.; Cardon, G.; van der Ploeg, H.P.; Van Dyck, D. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act., 2019, 16(1), 63.
[http://dx.doi.org/10.1186/s12966-019-0824-3] [PMID: 31409357]
[34]
Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr., 2014, 17(12), 2769-2782.
[http://dx.doi.org/10.1017/S1368980013003169] [PMID: 24476641]
[35]
Venkatesh, V. Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the Technology Acceptance Model. Inf. Syst. Res., 2000, 11(4), 342-365.
[http://dx.doi.org/10.1287/isre.11.4.342.11872]
[36]
Shah, T.M.; Weinborn, M.; Verdile, G.; Sohrabi, H.R.; Martins, R.N. Enhancing cognitive functioning in healthly older adults: A systematic review of the clinical significance of commercially available computerized cognitive training in preventing cognitive decline. Neuropsychol. Rev., 2017, 27(1), 62-80.
[http://dx.doi.org/10.1007/s11065-016-9338-9] [PMID: 28092015]
[37]
Shatil, E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front. Aging Neurosci., 2013, 5, 8.
[http://dx.doi.org/10.3389/fnagi.2013.00008] [PMID: 23531885]
[38]
Doran, G.T. There’s a S.M.A.R.T. way to write managements’s goals and objectives. Manage. Rev., 1981, 70(11), 35-36.
[39]
Cohen, J. Statistical power analysis for the behavioral sciences, 2nd ed; Routledge: New York, 1988.
[40]
Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw., 2015, 67(1), 1-48.
[http://dx.doi.org/10.18637/jss.v067.i01]
[41]
Luke, S.G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods, 2017, 49(4), 1494-1502.
[http://dx.doi.org/10.3758/s13428-016-0809-y] [PMID: 27620283]
[42]
Ludecke, D. Effect size computation for meta analysis; R Core Team: Vienna, Austria, 2019.
[43]
Bloom, D.A.; Kaplan, D.J.; Mojica, E.; Strauss, E.J.; Gonzalez-Lomas, G.; Campbell, K.A.; Alaia, M.J.; Jazrawi, L.M. The minimal clinically important difference: A review of clinical significance. Am. J. Sports Med., 2023, 51(2), 520-524.
[http://dx.doi.org/10.1177/03635465211053869] [PMID: 34854345]
[44]
Angst, F.; Aeschlimann, A.; Angst, J. The minimal clinically important difference raised the significance of outcome effects above the statistical level, with methodological implications for future studies. J. Clin. Epidemiol., 2017, 82, 128-136.
[http://dx.doi.org/10.1016/j.jclinepi.2016.11.016] [PMID: 27986610]
[45]
Norman, G.R.; Sloan, J.A.; Wyrwich, K.W. Interpretation of changes in health-related quality of life: The remarkable universality of half a standard deviation. Med. Care, 2003, 41(5), 582-592.
[http://dx.doi.org/10.1097/01.MLR.0000062554.74615.4C] [PMID: 12719681]
[46]
Linden, A. ITSA: Stata module to perform interrupted time series analysis for single and multiple groups; Boston College Department of Economics: Boston, MA, 2014.