Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer

Page: [236 - 262] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.

Graphical Abstract

[1]
Nfonsam, V.; Wusterbarth, E.; Gong, A.; Vij, P. Early-onset colorectal cancer. Surg. Oncol. Clin. N. Am., 2022, 31(2), 143-155.
[http://dx.doi.org/10.1016/j.soc.2021.11.001] [PMID: 35351270]
[2]
Wang, Y.; Yan, X.; Qu, X.; Mao, J.; Wang, J.; Yang, M.; Tao, M. Topoisomerase IIβ binding protein 1 serves as a novel prognostic biomarker for stage II-III colorectal cancer patients. Pathol. Res. Pract., 2023, 241, 154287.
[http://dx.doi.org/10.1016/j.prp.2022.154287] [PMID: 36586311]
[3]
Li, J.; Ma, X.; Chakravarti, D.; Shalapour, S.; DePinho, R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev., 2021, 35, 787-820.
[PMID: 34074695]
[4]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[5]
Mahmoud, N.N. Colorectal cancer. Surg. Oncol. Clin. N. Am., 2022, 31(2), 127-141.
[http://dx.doi.org/10.1016/j.soc.2021.12.001] [PMID: 35351269]
[6]
Cao, D.D.; Xu, H.L.; Xu, X.M.; Ge, W. The impact of primary tumor location on efficacy of cetuximab in metastatic colorectal cancer patients with different Kras status: A systematic review and meta-analysis. Oncotarget, 2017, 8(32), 53631-53641.
[http://dx.doi.org/10.18632/oncotarget.19022] [PMID: 28881837]
[7]
Kumar, S.; Noel, M.S.; Khorana, A.A. Advances in adjuvant therapy of colon cancer. Semin. Colon Rectal Surg., 2016, 27(4), 204-212.
[http://dx.doi.org/10.1053/j.scrs.2016.04.019]
[8]
Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer. JAMA, 2021, 325(7), 669-685.
[http://dx.doi.org/10.1001/jama.2021.0106] [PMID: 33591350]
[9]
Wu, C. Systemic therapy for colon cancer. Surg. Oncol. Clin. N. Am., 2018, 27(2), 235-242.
[http://dx.doi.org/10.1016/j.soc.2017.11.001] [PMID: 29496087]
[10]
Choi, H.Y.; Chang, J.E. Targeted therapy for cancers: From ongoing clinical trials to FDA-approved drugs. Int. J. Mol. Sci., 2023, 24(17), 13618.
[http://dx.doi.org/10.3390/ijms241713618] [PMID: 37686423]
[11]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[12]
de Almeida, S.M.V.; Ribeiro, A.G.; de Lima Silva, G.C. Ferreira, Alves, J.E.; Beltrão, E.I.C.; de Oliveira, J.F.; de Carvalho, L.B.; Alves de Lima, M.C. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed. Pharmacother., 2017, 96, 1538-1556.
[http://dx.doi.org/10.1016/j.biopha.2017.11.054] [PMID: 29174576]
[13]
Baglini, E.; Salerno, S.; Barresi, E.; Robello, M.; Da Settimo, F.; Taliani, S.; Marini, A.M. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur. J. Pharm. Sci., 2021, 156, 105594.
[http://dx.doi.org/10.1016/j.ejps.2020.105594] [PMID: 33059042]
[14]
Gomes, J.N.S.; Santos, M.B. de Medeiros e Silva, Y.M.S.; Albino, S.L.; de Moura, R.O. Topoisomerase enzyme inhibitors as potential drugs against cancer: What makes them selective or dual? – a review. Curr. Pharm. Des., 2022, 28(34), 2800-2824.
[http://dx.doi.org/10.2174/1381612828666220728095619] [PMID: 35909281]
[15]
Hevener, K.; Verstak, T.A.; Lutat, K.E.; Riggsbee, D.L.; Mooney, J.W. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B, 2018, 8(6), 844-861.
[http://dx.doi.org/10.1016/j.apsb.2018.07.008] [PMID: 30505655]
[16]
Jang, J.Y.; Kim, D.; Kim, N.D. Recent developments in combination chemotherapy for colorectal and breast cancers with topoisomerase inhibitors. Int. J. Mol. Sci., 2023, 24(9), 8457.
[http://dx.doi.org/10.3390/ijms24098457] [PMID: 37176164]
[17]
Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[18]
Soren, B.C.; Dasari, J.B.; Ottaviani, A.; Iacovelli, F.; Fiorani, P.; Topoisomerase, I.B. Topoisomerase IB: A relaxing enzyme for stressed DNA. Cancer Drug Resist., 2020, 3(1), 18-25.
[PMID: 35582040]
[19]
Capranico, G.; Marinello, J.; Chillemi, G. Type I DNA Topoisomerases. J. Med. Chem., 2017, 60(6), 2169-2192.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00966] [PMID: 28072526]
[20]
Ceramella, J.; Mariconda, A.; Iacopetta, D.; Saturnino, C.; Barbarossa, A.; Caruso, A.; Rosano, C.; Sinicropi, M.S.; Longo, P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg. Med. Chem. Lett., 2020, 30(3), 126905.
[http://dx.doi.org/10.1016/j.bmcl.2019.126905] [PMID: 31874823]
[21]
Bollimpelli, V.S.; Dholaniya, P.S.; Kondapi, A.K. Topoisomerase IIβ and its role in different biological contexts. Arch. Biochem. Biophys., 2017, 633, 78-84.
[http://dx.doi.org/10.1016/j.abb.2017.06.021] [PMID: 28669856]
[22]
Azzoni, C.; Bottarelli, L.; Cecchini, S.; Ziccarelli, A.; Campanini, N.; Bordi, C.; Sarli, L.; Silini, E.M. Role of topoisomerase I and thymidylate synthase expression in sporadic colorectal cancer: Associations with clinicopathological and molecular features. Pathol. Res. Pract., 2014, 210(2), 111-117.
[http://dx.doi.org/10.1016/j.prp.2013.11.004] [PMID: 24332575]
[23]
Heestand, G.M.; Schwaederle, M.; Gatalica, Z.; Arguello, D.; Kurzrock, R. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients. Eur. J. Cancer, 2017, 83, 80-87.
[http://dx.doi.org/10.1016/j.ejca.2017.06.019] [PMID: 28728050]
[24]
Silvestris, N.; Simone, G.; Partipilo, G.; Scarpi, E.; Lorusso, V.; Brunetti, A.; Maiello, E.; Paradiso, A.; Mangia, A. CES2, ABCG2, TS and Topo-I primary and synchronous metastasis expression and clinical outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI regimen. Int. J. Mol. Sci., 2014, 15(9), 15767-15777.
[http://dx.doi.org/10.3390/ijms150915767] [PMID: 25198900]
[25]
Bar, J.K.; Lis-Nawara, A.; Grelewski, P.; Noga, L.; Grzebieniak, Z. Jeleń, M. The Association Between HSP90/topoisomerase I immunophenotype and the clinical features of colorectal cancers in respect to kras gene status. Anticancer Res., 2017, 37(9), 4953-4960.
[PMID: 28870917]
[26]
Negri, F.V.; Azzoni, C.; Bottarelli, L.; Campanini, N.; Mandolesi, A.; Wotherspoon, A.; Cunningham, D.; Scartozzi, M.; Cascinu, S.; Tinelli, C.; Silini, E.M.; Ardizzoni, A. Thymidylate synthase, topoisomerase-1 and microsatellite instability: Relationship with outcome in mucinous colorectal cancer treated with fluorouracil. Anticancer Res., 2013, 33(10), 4611-4617.
[PMID: 24123038]
[27]
Dang, Y.; Liu, F.; Zhao, Y. P-Gp and TOPO II expression and their clinical significance in colon cancer. Ann. Clin. Lab. Sci., 2020, 50(5), 584-590.
[PMID: 33067204]
[28]
Swedan, H.K.; Kassab, A.E.; Gedawy, E.M.; Elmeligie, S.E.; Topoisomerase, I.I. Topoisomerase II inhibitors design: Early studies and new perspectives. Bioorg. Chem., 2023, 136, 106548.
[http://dx.doi.org/10.1016/j.bioorg.2023.106548] [PMID: 37094479]
[29]
Deng, X.; Luo, T.; Zhang, X.; Li, Y.; Xie, L.; Jiang, W.; Liu, L.; Wang, Z. Design, synthesis and biological evaluation of 3-arylisoquinoline derivatives as topoisomerase I and II dual inhibitors for the therapy of liver cancer. Eur. J. Med. Chem., 2022, 237, 114376.
[http://dx.doi.org/10.1016/j.ejmech.2022.114376] [PMID: 35462164]
[30]
Buzun, K.; Bielawska, A.; Bielawski, K.; Gornowicz, A. DNA topoisomerases as molecular targets for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1781-1799.
[http://dx.doi.org/10.1080/14756366.2020.1821676] [PMID: 32975138]
[31]
Pogorelčnik, B.; Perdih, A.; Solmajer, T. Recent advances in the development of catalytic inhibitors of human DNA topoisomerase IIα as novel anticancer agents. Curr. Med. Chem., 2013, 20(5), 694-709.
[http://dx.doi.org/10.2174/092986713804999402] [PMID: 23210851]
[32]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[33]
Poddevin, B.; Riou, J.F.; Lavelle, F.; Pommier, Y. Dual topoisomerase I and II inhibition by intoplicine (RP-60475), a new antitumor agent in early clinical trials. Mol. Pharmacol., 1993, 44(4), 767-774.
[PMID: 8232227]
[34]
Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res., 2019, 148, 104398.
[http://dx.doi.org/10.1016/j.phrs.2019.104398] [PMID: 31415916]
[35]
Alemany, C. Etirinotecan pegol: Development of a novel conjugated topoisomerase i inhibitor topical collection on evolving therapies. Curr. Oncol. Rep., 2014, 16, 1-6.
[http://dx.doi.org/10.1007/s11912-013-0367-8]
[36]
Sy, S.K.; Sweeney, T.D.; Ji, C.; Hoch, U.; Eldon, M.A. Etirinotecan pegol administration is associated with lower incidences of neutropenia compared to irinotecan administration. Cancer Chemother. Pharmacol., 2017, 79(1), 57-67.
[http://dx.doi.org/10.1007/s00280-016-3192-6] [PMID: 27904955]
[37]
Lenz, H.J.; Philip, P.; Saunders, M.; Kolevska, T.; Mukherjee, K.; Samuel, L.; Bondarde, S.; Dobbs, T.; Tagliaferri, M.; Hoch, U.; Hannah, A.L.; Berkowitz, M. Randomized study of etirinotecan pegol versus irinotecan as second-line treatment for metastatic colorectal cancer. Cancer Chemother. Pharmacol., 2017, 80(6), 1161-1169.
[http://dx.doi.org/10.1007/s00280-017-3438-y] [PMID: 29043412]
[38]
Haque, A.; Brazeau, D.; Amin, A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds. Eur. J. Cancer, 2021, 149, 165-183.
[http://dx.doi.org/10.1016/j.ejca.2021.03.009] [PMID: 33865202]
[39]
Liang, X.; Wu, Q.; Luan, S.; Yin, Z.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; He, M.; Lv, C.; Zhang, W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem., 2019, 171, 129-168.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.034] [PMID: 30917303]
[40]
Shiomi, K.; Kuriyama, I.; Yoshida, H.; Mizushina, Y. Inhibitory effects of myricetin on mammalian DNA polymerase, topoisomerase and human cancer cell proliferation. Food Chem., 2013, 139(1-4), 910-918.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.009] [PMID: 23561189]
[41]
Mizushina, Y.; Kuriyama, I.; Nakahara, T.; Kawashima, Y.; Yoshida, H. Inhibitory effects of α-mangostin on mammalian DNA polymerase, topoisomerase, and human cancer cell proliferation. Food Chem. Toxicol., 2013, 59, 793-800.
[http://dx.doi.org/10.1016/j.fct.2013.06.027] [PMID: 23811100]
[42]
León-Gonzalez, A.J.; Acero, N.; Muñoz-Mingarro, D.; López-Lázaro, M.; Martín-Cordero, C. Cytotoxic activity of hirsutanone, a diarylheptanoid isolated from Alnus glutinosa leaves. Phytomedicine, 2014, 21(6), 866-870.
[http://dx.doi.org/10.1016/j.phymed.2014.01.008] [PMID: 24581747]
[43]
Tsai, K.; Liu, Y.H.; Chen, T.W.; Yang, S.M.; Wong, H.Y.; Cherng, J.; Chou, K.S.; Cherng, J.M. Cuminaldehyde from cinnamomum verum induces cell death through targeting topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells. Nutrients, 2016, 8(6), 318.
[http://dx.doi.org/10.3390/nu8060318] [PMID: 27231935]
[44]
Chen, G.L.; Tian, Y.Q.; Wu, J.L.; Li, N.; Guo, M.Q. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci. Rep., 2016, 6(1), 38284.
[http://dx.doi.org/10.1038/srep38284] [PMID: 27922057]
[45]
Otake, K.; Yamada, K.; Miura, K.; Sasazawa, Y.; Miyazaki, S.; Niwa, Y.; Ogura, A.; Takao, K.; Simizu, S. Identification of topoisomerases as molecular targets of cytosporolide C and its analog. Bioorg. Med. Chem., 2019, 27(15), 3334-3338.
[http://dx.doi.org/10.1016/j.bmc.2019.06.014] [PMID: 31204230]
[46]
Zhang, H.L.; Zhang, Y.; Yan, X.L.; Xiao, L.G.; Hu, D.X.; Yu, Q.; An, L.K. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg. Med. Chem., 2020, 28(11), 115527.
[http://dx.doi.org/10.1016/j.bmc.2020.115527] [PMID: 32345458]
[47]
Zhu, S.; Wang, Y.; Wen, Z.; Duan, Y.; Huang, Y. Discovery of a DNA topoisomerase I inhibitor huanglongmycin N and its congeners from Streptomyces sp. CB09001. J. Org. Chem., 2021, 86(23), 16675-16683.
[http://dx.doi.org/10.1021/acs.joc.1c01939] [PMID: 34709824]
[48]
Wang, M.; Liang, L.; Wang, R.; Jia, S.; Xu, C.; Wang, Y.; Luo, M.; Lin, Q.; Yang, M.; Zhou, H.; Liu, D.; Qing, C. Narciclasine, a novel topoisomerase I inhibitor, exhibited potent anti-cancer activity against cancer cells. Nat. Prod. Bioprospect., 2023, 13(1), 27.
[http://dx.doi.org/10.1007/s13659-023-00392-1] [PMID: 37640882]
[49]
Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron, 2021, 78, 131801.
[http://dx.doi.org/10.1016/j.tet.2020.131801]
[50]
Nadysev, G.Y.; Tikhomirov, A.S.; Lin, M.H.; Yang, Y.T.; Dezhenkova, L.G.; Chen, H.Y.; Kaluzhny, D.N.; Schols, D.; Shtil, A.A.; Shchekotikhin, A.E.; Chueh, P.J. Aminomethylation of heliomycin: preparation and anticancer characterization of the first series of semi-synthetic derivatives. Eur. J. Med. Chem., 2018, 143, 1553-1562.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.055] [PMID: 29137865]
[51]
Liu, W.; Li, Q.; Hu, J.; Wang, H.; Xu, F.; Bian, Q. Application of natural products derivatization method in the design of targeted anticancer agents from 2000 to 2018. Bioorg. Med. Chem., 2019, 27(23), 115150.
[http://dx.doi.org/10.1016/j.bmc.2019.115150] [PMID: 31635893]
[52]
Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol., 2019, 52, 1-8.
[http://dx.doi.org/10.1016/j.cbpa.2018.12.007] [PMID: 30682725]
[53]
Kamal, A.; Suresh, P.; Ramaiah, M.J.; Srinivasa, R. T.; Kapavarapu, R.K.; Rao, B.N.; Imthiajali, S.; Lakshminarayan Reddy, T.; Pushpavalli, S.N.C.V.L.; Shankaraiah, N.; Pal-Bhadra, M. 4β-[4-(1-(Aryl)ureido)benzamide]podophyllotoxins as DNA topoisomerase I and IIα inhibitors and apoptosis inducing agents. Bioorg. Med. Chem., 2013, 21(17), 5198-5208.
[http://dx.doi.org/10.1016/j.bmc.2013.06.033] [PMID: 23849207]
[54]
Fukuda, T.; Nanjo, Y.; Fujimoto, M.; Yoshida, K.; Natsui, Y.; Ishibashi, F.; Okazaki, F.; To, H.; Iwao, M. Lamellarin-inspired potent topoisomerase I inhibitors with the unprecedented ben zo[g][1]benzopyrano[4,3-b]indol-6(13H)-one scaffold. Bioorg. Med. Chem., 2019, 27(2), 265-277.
[http://dx.doi.org/10.1016/j.bmc.2018.11.037] [PMID: 30553626]
[55]
Zheng, L.; Gao, T.; Ge, Z.; Ma, Z.; Xu, J.; Ding, W.; Shen, L. Design, synthesis and structure-activity relationship studies of glycosylated derivatives of marine natural product lamellarin D. Eur. J. Med. Chem., 2021, 214, 113226.
[http://dx.doi.org/10.1016/j.ejmech.2021.113226] [PMID: 33582387]
[56]
Huang, Y.; Chen, S.; Wu, S.; Dong, G.; Sheng, C. Evodiamine-inspired dual inhibitors of histone deacetylase 1 (HDAC1) and topoisomerase 2 (TOP2) with potent antitumor activity. Acta Pharm. Sin. B, 2020, 10(7), 1294-1308.
[http://dx.doi.org/10.1016/j.apsb.2019.11.011] [PMID: 32874829]
[57]
Deng, J.; Long, L.; Peng, X.; Jiang, W.; Peng, Y.; Zhang, X.; Zhao, Y.; Tian, Y.; Wang, Z.; Zhuo, L.N. (14)-substituted evodiamine derivatives as dual topoisomerase 1/tubulin-Inhibiting anti-gastrointestinal tumor agents. Eur. J. Med. Chem., 2023, 255, 115366.
[http://dx.doi.org/10.1016/j.ejmech.2023.115366] [PMID: 37099835]
[58]
Wu, D.; Shi, W.; Zhao, J.; Wei, Z.; Chen, Z.; Zhao, D.; Lan, S.; Tai, J.; Zhong, B.; Yu, H. Assessment of the chemotherapeutic potential of a new camptothecin derivative, ZBH-1205. Arch. Biochem. Biophys., 2016, 604, 74-85.
[http://dx.doi.org/10.1016/j.abb.2016.06.007] [PMID: 27302903]
[59]
Zhou, M.; Liu, M.; He, X.; Yu, H.; Wu, D.; Yao, Y.; Fan, S.; Zhang, P.; Shi, W.; Zhong, B. Synthesis and biological evaluation of novel 10-substituted-7-ethyl-10-hydroxycamptothecin (SN-38) prodrugs. Molecules, 2014, 19(12), 19718-19731.
[http://dx.doi.org/10.3390/molecules191219718] [PMID: 25438082]
[60]
Wu, D.; Zhao, D.W.; Li, Y.Q.; Shi, W.G.; Yin, Q.L.; Tu, Z.K.; Yu, Y.Y.; Zhong, B.H.; Yu, H.; Bao, W.G. Antitumor potential of a novel camptothecin derivative, ZBH-ZM-06. Oncol. Rep., 2018, 39(2), 871-879.
[PMID: 29251321]
[61]
Li, M.; Wang, L.; Wei, Y.; Wang, W.; Liu, Z.; Zuo, A.; Liu, W.; Tian, J.; Wang, H. Anti-colorectal cancer effects of a novel camptothecin derivative PCC0208037 in vitro and in vivo. Pharmaceuticals, 2022, 16(1), 53.
[http://dx.doi.org/10.3390/ph16010053] [PMID: 36678550]
[62]
Khalil, N.A.; Ahmed, E.M.; Zaher, A.F.; Alhamaky, S.M.; Osama, N.; El-Zoghbi, M.S. New benzothienopyran and benzothienopyranopyrimidine derivatives as topoisomerase I inhibitors: Design, synthesis, anticancer screening, apoptosis induction and molecular modeling studies. Bioorg. Chem., 2023, 137, 106638.
[http://dx.doi.org/10.1016/j.bioorg.2023.106638] [PMID: 37257374]
[63]
Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338.
[http://dx.doi.org/10.2147/DDDT.S329547] [PMID: 34675489]
[64]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[PMID: 27670581]
[65]
El-Gohary, N.S.; Hawas, S.S.; Gabr, M.T.; Shaaban, M.I.; El-Ashmawy, M.B. New series of fused pyrazolopyridines: Synthesis, molecular modeling, antimicrobial, antiquorum-sensing and antitumor activities. Bioorg. Chem., 2019, 92, 103109.
[http://dx.doi.org/10.1016/j.bioorg.2019.103109] [PMID: 31521987]
[66]
Hawas, S.S.; El-Gohary, N.S.; Gabr, M.T.; Shaaban, M.I.; El-Ashmawy, M.B. Synthesis, molecular docking, antimicrobial, antiquorum-sensing and antiproliferative activities of new series of pyrazolo[3,4- b]pyridine analogs. Synth. Commun., 2019, 49(19), 2466-2487.
[http://dx.doi.org/10.1080/00397911.2019.1618873]
[67]
Jun, K.Y.; Kwon, H.; Park, S.E.; Lee, E.; Karki, R.; Thapa, P.; Lee, J.H.; Lee, E.S.; Kwon, Y. Discovery of dihydroxylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor. Eur. J. Med. Chem., 2014, 80, 428-438.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.066] [PMID: 24796883]
[68]
Kadayat, T.M.; Park, C.; Jun, K.Y.; Thapa Magar, T.B.; Bist, G.; Yoo, H.Y.; Kwon, Y.; Lee, E.S. Hydroxylated 2,4-diphenyl indenopyridine derivatives as a selective non-intercalative topoisomerase IIα catalytic inhibitor. Eur. J. Med. Chem., 2015, 90, 302-314.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.046] [PMID: 25437617]
[69]
Kadayat, T.M.; Song, C.; Shin, S.; Magar, T.B.T.; Bist, G.; Shrestha, A.; Thapa, P.; Na, Y.; Kwon, Y.; Lee, E.S. Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno[1,2-b]pyridines. Bioorg. Med. Chem., 2015, 23(13), 3499-3512.
[http://dx.doi.org/10.1016/j.bmc.2015.04.031] [PMID: 26022080]
[70]
Kadayat, T.M.; Song, C.; Kwon, Y.; Lee, E.S. Modified 2,4-diaryl-5H-indeno[1,2-b]pyridines with hydroxyl and chlorine moiety: Synthesis, anticancer activity, and structure–activity relationship study. Bioorg. Chem., 2015, 62, 30-40.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.002] [PMID: 26218799]
[71]
Kwon, H.B.; Park, C.; Jeon, K.H.; Lee, E.; Park, S.E.; Jun, K.Y.; Kadayat, T.M.; Thapa, P.; Karki, R.; Na, Y.; Park, M.S.; Rho, S.B.; Lee, E.S.; Kwon, Y. A series of novel terpyridine-skeleton molecule derivants inhibit tumor growth and metastasis by targeting topoisomerases. J. Med. Chem., 2015, 58(3), 1100-1122.
[http://dx.doi.org/10.1021/jm501023q] [PMID: 25603122]
[72]
Karki, R.; Park, C.; Jun, K.Y.; Jee, J.G.; Lee, J.H.; Thapa, P.; Kadayat, T.M.; Kwon, Y.; Lee, E.S. Synthesis, antitumor activity, and structure–activity relationship study of trihydroxylated 2,4,6-triphenyl pyridines as potent and selective topoisomerase II inhibitors. Eur. J. Med. Chem., 2014, 84, 555-565.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.058] [PMID: 25062006]
[73]
Karki, R.; Park, C.; Jun, K.Y.; Kadayat, T.M.; Lee, E.S.; Kwon, Y. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison. Eur. J. Med. Chem., 2015, 90, 360-378.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.045] [PMID: 25437622]
[74]
Karki, R.; Song, C.; Kadayat, T.M.; Magar, T.B.T.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines. Bioorg. Med. Chem., 2015, 23(13), 3638-3654.
[http://dx.doi.org/10.1016/j.bmc.2015.04.002] [PMID: 25936262]
[75]
Karki, R.; Jun, K.Y.; Kadayat, T.M.; Shin, S.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: Synthesis, biological evaluation and 3D-QSAR study. Eur. J. Med. Chem., 2016, 113, 228-245.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.050] [PMID: 26945111]
[76]
Thapa, P.; Jun, K.Y.; Kadayat, T.M.; Park, C.; Zheng, Z.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents. Bioorg. Med. Chem., 2015, 23(19), 6454-6466.
[http://dx.doi.org/10.1016/j.bmc.2015.08.018] [PMID: 26361737]
[77]
Thapa, P.; Kadayat, T.M.; Park, S.; Shin, S.; Thapa, M.T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Synthesis and biological evaluation of 2-phenol-4-chlorophenyl-6-aryl pyridines as topoisomerase II inhibitors and cytotoxic agents. Bioorg. Chem., 2016, 66, 145-159.
[http://dx.doi.org/10.1016/j.bioorg.2016.04.007] [PMID: 27174797]
[78]
Park, S.; Thapa Magar, T.B.; Kadayat, T.M.; Lee, H.J.; Bist, G.; Shrestha, A.; Lee, E.S.; Kwon, Y. Rational design, synthesis, and evaluation of novel 2,4-Chloro- and Hydroxy-Substituted diphenyl Benzofuro[3,2-b]Pyridines: Non-intercalative catalytic topoisomerase I and II dual inhibitor. Eur. J. Med. Chem., 2017, 127, 318-333.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.003] [PMID: 28068603]
[79]
Park, S.; Kadayat, T.M.; Jun, K.Y.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Lee, E.S.; Kwon, Y. Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors. Eur. J. Med. Chem., 2017, 125, 14-28.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.019] [PMID: 27643560]
[80]
Magar, T.B.T.; Seo, S.H.; Kadayat, T.M.; Jo, H.; Shrestha, A.; Bist, G.; Katila, P.; Kwon, Y.; Lee, E.S. Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines as selective topoisomerase IIα-targeting anticancer agents. Bioorg. Med. Chem., 2018, 26(8), 1909-1919.
[http://dx.doi.org/10.1016/j.bmc.2018.02.035] [PMID: 29510948]
[81]
Bist, G.; Park, S.; Song, C.; Thapa Magar, T.B.; Shrestha, A.; Kwon, Y.; Lee, E.S. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur. J. Med. Chem., 2017, 133, 69-84.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.048] [PMID: 28384547]
[82]
Shrestha, A.; Park, S.; Shin, S.; Man Kadayat, T.; Bist, G.; Katila, P.; Kwon, Y.; Lee, E.S. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg. Chem., 2018, 79, 1-18.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.033] [PMID: 29715635]
[83]
Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973.
[http://dx.doi.org/10.1016/j.bmc.2020.115973] [PMID: 33444846]
[84]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[85]
Kunwar, S.; Hwang, S.Y.; Katila, P.; Park, S.; Jeon, K.H.; Kim, D.; Kadayat, T.M.; Kwon, Y.; Lee, E.S. Discovery of a 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amine derivative as a novel DNA intercalating topoisomerase IIα poison. Eur. J. Med. Chem., 2021, 226, 113860.
[http://dx.doi.org/10.1016/j.ejmech.2021.113860] [PMID: 34597897]
[86]
Mekheimer, R.A.; Allam, S.M.R.; Al-Sheikh, M.A.; Moustafa, M.S.; Al-Mousawi, S.M.; Mostafa, Y.A.; Youssif, B.G.M.; Gomaa, H.A.M.; Hayallah, A.M.; Abdelaziz, M.; Sadek, K.U. Discovery of new pyrimido[5,4-c]quinolines as potential antiproliferative agents with multitarget actions: Rapid synthesis, docking, and ADME studies. Bioorg. Chem., 2022, 121, 105693.
[http://dx.doi.org/10.1016/j.bioorg.2022.105693] [PMID: 35219045]
[87]
Zhao, Q.; Xu, X.; Xie, Z.; Liu, X.; You, Q.; Guo, Q.; Zhong, Y.; Li, Z. Design, synthesis and biological evaluation of 3-substituted indenoisoquinoline derivatives as topoisomerase I inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 1068-1072.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.014] [PMID: 26725027]
[88]
Elanany, M.A.; Osman, E.E.A.; Gedawy, E.M.; Abou-Seri, S.M. Design and synthesis of novel cytotoxic fluoroquinolone analogs through topoisomerase inhibition, cell cycle arrest, and apoptosis. Sci. Rep., 2023, 13(1), 4144.
[http://dx.doi.org/10.1038/s41598-023-30885-5] [PMID: 36914702]
[89]
El-Sheref, E.M.; Tawfeek, H.N.; Hassan, A.A.; Bräse, S.; Elbastawesy, M.A.I.; Gomaa, H.A.M.; Mostafa, Y.A.; Youssif, B.G.M. Synthesis of novel amidines via one-pot three component reactions: Selective topoisomerase I inhibitors with antiproliferative properties. Front Chem., 2022, 10, 1039176.
[http://dx.doi.org/10.3389/fchem.2022.1039176] [PMID: 36465858]
[90]
Almeida, S.M.V.; Lafayette, E.A.; Silva, W.L.; Lima Serafim, V.; Menezes, T.M.; Neves, J.L.; Ruiz, A.L.T.G.; Carvalho, J.E.; Moura, R.O.; Beltrão, E.I.C.; Carvalho Júnior, L.B.; Lima, M.C.A. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases. Int. J. Biol. Macromol., 2016, 92, 467-475.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.057] [PMID: 27435006]
[91]
Gouveia, R.G.; Ribeiro, A.G.; Segundo, M.Â.S.P.; de Oliveira, J.F.; de Lima, M.C.A.; de Lima Souza, T.R.C.; de Almeida, S.M.V.; de Moura, R.O. Synthesis, DNA and protein interactions and human topoisomerase inhibition of novel Spiroacridine derivatives. Bioorg. Med. Chem., 2018, 26(22), 5911-5921.
[http://dx.doi.org/10.1016/j.bmc.2018.10.038] [PMID: 30420325]
[92]
Duarte, S.S.; Silva, D.K.F.; Lisboa, T.M.H.; Gouveia, R.G.; de Andrade, C.C.N.; de Sousa, V.M.; Ferreira, R.C.; de Moura, R.O.; Gomes, J.N.S.; da Silva, P.M.; de Lourdes Assunção Araújo de Azeve, F.; Keesen, T.S.L.; Gonçalves, J.C.R.; Batista, L.M.; Sobral, M.V. Apoptotic and antioxidant effects in HCT-116 colorectal carcinoma cells by a spiro-acridine compound, AMTAC-06. Pharmacol. Rep., 2022, 74(3), 545-554.
[http://dx.doi.org/10.1007/s43440-022-00357-0] [PMID: 35297003]
[93]
Zhang, W.; Zhang, B.; Zhang, W.; Yang, T.; Wang, N.; Gao, C.; Tan, C.; Liu, H.; Jiang, Y. Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. Eur. J. Med. Chem., 2016, 116, 59-70.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.066] [PMID: 27060757]
[94]
Ammar, L.; Lin, H.Y.; Shih, S.P.; Tsai, T.N.; Syu, Y.T.; Abdel-Halim, M.; Hwang, T.L.; Abadi, A.H. Novel 9-benzylaminoacridine derivatives as dual inhibitors of phosphodiesterase 5 and topoisomerase II for the treatment of colon cancer. Molecules, 2023, 28(2), 840.
[http://dx.doi.org/10.3390/molecules28020840] [PMID: 36677898]
[95]
Yuan, Z.; Chen, S.; Chen, C.; Chen, J.; Chen, C.; Dai, Q.; Gao, C.; Jiang, Y. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur. J. Med. Chem., 2017, 138, 1135-1146.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.050] [PMID: 28763648]
[96]
Dai, Q.; Chen, J.; Gao, C.; Sun, Q.; Yuan, Z.; Jiang, Y. Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. Chin. Chem. Lett., 2020, 31(2), 404-408.
[http://dx.doi.org/10.1016/j.cclet.2019.06.019]
[97]
Barros, F.W.A.; Silva, T.G.; da Rocha Pitta, M.G.; Bezerra, D.P.; Costa-Lotufo, L.V.; de Moraes, M.O.; Pessoa, C.; de Moura, M.A.F.B.; de Abreu, F.C.; de Lima, M.C.A.; Galdino, S.L.; da Rocha Pitta, I.; Goulart, M.O.F. Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives. Bioorg. Med. Chem., 2012, 20(11), 3533-3539.
[http://dx.doi.org/10.1016/j.bmc.2012.04.007] [PMID: 22546208]
[98]
Barros, F.W.A.; Bezerra, D.P.; Ferreira, P.M.P.; Cavalcanti, B.C.; Silva, T.G.; Pitta, M.G.R.; de Lima, M. Inhibition of DNA Topoisomerase I activity and induction of apoptosis by thiazacridine derivatives. Toxicol. Appl. Pharmacol., 2013, 268, 37-46.
[http://dx.doi.org/10.1016/j.taap.2013.01.010] [PMID: 23347980]
[99]
Perin, N.; Nhili, R. Cindrić, M.; Bertoša, B.; Vušak, D.; Martin-Kleiner, I.; Laine, W.; Karminski-Zamola, G.; Kralj, M.; David-Cordonnier, M.H.; Hranjec, M. Amino substituted benzimidazo[1,2- a]quinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties. Eur. J. Med. Chem., 2016, 122, 530-545.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.007] [PMID: 27448912]
[100]
Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.H.; Kraljević, Pavelić, S.; Karminski-Zamola, G.; Hranjec, M. Novel amidino substituted benzimidazole and benzothiazole benzo[b]thieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur. J. Med. Chem., 2017, 136, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.014] [PMID: 28525845]
[101]
Kamal, A.; Narasimha Rao, M.P.; Swapna, P.; Srinivasulu, V.; Bagul, C.; Shaik, A.B.; Mullagiri, K.; Kovvuri, J.; Reddy, V.S.; Vidyasagar, K.; Nagesh, N. Synthesis of β-carboline–benzimidazole conjugates using lanthanum nitrate as a catalyst and their biological evaluation. Org. Biomol. Chem., 2014, 12(15), 2370-2387.
[http://dx.doi.org/10.1039/C3OB42236D] [PMID: 24604306]
[102]
Noha, R.M.; Abdelhameid, M.K.; Ismail, M.M.; Mohammed, M.R.; Salwa, E. Design, synthesis and screening of benzimidazole containing compounds with methoxylated aryl radicals as cytotoxic molecules on (HCT-116) colon cancer cells. Eur. J. Med. Chem., 2021, 209, 112870.
[http://dx.doi.org/10.1016/j.ejmech.2020.112870] [PMID: 33158579]
[103]
Pandey, S.; Tripathi, P.; Parashar, P.; Maurya, V.; Malik, M.Z.; Singh, R.; Yadav, P.; Tandon, V. Synthesis and biological evaluation of novel 1 H-benzo[d]imidazole derivatives as potential anticancer agents targeting human topoisomerase I. ACS Omega, 2022, 7(3), 2861-2880.
[http://dx.doi.org/10.1021/acsomega.1c05743] [PMID: 35097282]
[104]
Singla, P.; Luxami, V.; Singh, R.; Tandon, V.; Paul, K. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur. J. Med. Chem., 2017, 126, 24-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.093] [PMID: 27744184]
[105]
Subba Rao, A.V.; Vishnu Vardhan, M.V.P.S.; Subba Reddy, N.V.; Srinivasa Reddy, T.; Shaik, S.P.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIα inhibitors. Bioorg. Chem., 2016, 69, 7-19.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.002] [PMID: 27656775]
[106]
Singh, I.; Luxami, V.; Paul, K. Synthesis of naphthalimide-phenanthro[9,10-d]imidazole derivatives: In vitro evaluation, binding interaction with DNA and topoisomerase inhibition. Bioorg. Chem., 2020, 96, 103631.
[http://dx.doi.org/10.1016/j.bioorg.2020.103631] [PMID: 32036164]
[107]
Soni, J.P.; Nikitha Reddy, G.; Rahman, Z.; Sharma, A.; Spandana, A.; Phanindranath, R.; Dandekar, M.P.; Nagesh, N.; Shankaraiah, N. Synthesis and cytotoxicity evaluation of DNA-interactive β-carboline indolyl-3-glyoxamide derivatives: Topo-II inhibition and in silico modelling studies. Bioorg. Chem., 2023, 131, 106313.
[http://dx.doi.org/10.1016/j.bioorg.2022.106313] [PMID: 36516521]
[108]
Lakshmi M, K.; Thatikonda, S.; Sigalapalli, D.K.; Sagar, A.; Kiranmai, G.; Kalle, A.M.; Alvala, M.; Godugu, C.; Nagesh, N.; Nagendra B, B. Design and synthesis of β-carboline linked aryl sulfonyl piperazine derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorg. Chem., 2020, 101, 103983.
[http://dx.doi.org/10.1016/j.bioorg.2020.103983] [PMID: 32683136]
[109]
Chaniyara, R.; Tala, S.; Chen, C.W.; Zang, X.; Kakadiya, R.; Lin, L.F.; Chen, C.H.; Chien, S.I.; Chou, T.C.; Tsai, T.H.; Lee, T.C.; Shah, A.; Su, T.L. Novel antitumor indolizino[6,7-b]indoles with multiple modes of action: DNA cross-linking and topoisomerase I and II inhibition. J. Med. Chem., 2013, 56(4), 1544-1563.
[http://dx.doi.org/10.1021/jm301788a] [PMID: 23360284]
[110]
Chang, S.M.; Christian, W.; Wu, M.H.; Chen, T.L.; Lin, Y.W.; Suen, C.S.; Pidugu, H.B.; Detroja, D.; Shah, A.; Hwang, M.J.; Su, T.L.; Lee, T.C. Novel indolizino[8,7-b]indole hybrids as anti-small cell lung cancer agents: Regioselective modulation of topoisomerase II inhibitory and DNA crosslinking activities. Eur. J. Med. Chem., 2017, 127, 235-249.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.046] [PMID: 28064078]
[111]
Tokala, R.; Sana, S.; Lakshmi, U.J.; Sankarana, P.; Sigalapalli, D.K.; Gadewal, N.; Kode, J.; Shankaraiah, N. Design and synthesis of thiadiazolo-carboxamide bridged β-carboline-indole hybrids: DNA intercalative topo-IIα inhibition with promising antiproliferative activity. Bioorg. Chem., 2020, 105, 104357.
[http://dx.doi.org/10.1016/j.bioorg.2020.104357] [PMID: 33091673]
[112]
Kaur, M.; Mehta, V.; Abdullah Wani, A.; Arora, S.; Bharatam, P.V.; Sharon, A.; Singh, S.; Kumar, R. Synthesis of 1,4-dihydropyrazolo[4,3-b]indoles via intramolecular C(sp2)-N bond formation involving nitrene insertion, DFT study and their anticancer assessment. Bioorg. Chem., 2021, 114, 105114.
[http://dx.doi.org/10.1016/j.bioorg.2021.105114] [PMID: 34243073]
[113]
de Oliveira, J.F.; Lima, T.S.; Vendramini-Costa, D.B.; de Lacerda Pedrosa, S.C.B.; Lafayette, E.A.; da Silva, R.M.F.; de Almeida, S.M.V.; de Moura, R.O.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Lima, M.C.A. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur. J. Med. Chem., 2017, 136, 305-314.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.023] [PMID: 28505535]
[114]
Kadagathur, M.; Devi, G.P.; Grewal, P.; Sigalapalli, D.K.; Makhal, P.N.; Banerjee, U.C.; Bathini, N.B.; Tangellamudi, N.D. Novel diindoloazepinone derivatives as DNA minor groove binding agents with selective topoisomerase I inhibition: Design, synthesis, biological evaluation and docking studies. Bioorg. Chem., 2020, 99, 103629.
[http://dx.doi.org/10.1016/j.bioorg.2020.103629] [PMID: 32272367]
[115]
Kadagathur, M.; Sujat Shaikh, A.; Panda, B.; George, J.; Phanindranath, R.; Kumar Sigalapalli, D.; Bhale, N.A.; Godugu, C.; Nagesh, N.; Shankaraiah, N.; Tangellamudi, N.D. Synthesis of indolo/pyrroloazepinone-oxindoles as potential cytotoxic, DNA-intercalating and Topo I inhibitors. Bioorg. Chem., 2022, 122, 105706.
[http://dx.doi.org/10.1016/j.bioorg.2022.105706] [PMID: 35240414]
[116]
Shchekotikhin, A.E.; Glazunova, V.A.; Dezhenkova, L.G.; Luzikov, Y.N.; Buyanov, V.N.; Treshalina, H.M.; Lesnaya, N.A.; Romanenko, V.I.; Kaluzhny, D.N.; Balzarini, J.; Agama, K.; Pommier, Y.; Shtil, A.A.; Preobrazhenskaya, M.N. Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho[2,3-f]indole-5,10-diones. Eur. J. Med. Chem., 2014, 86, 797-805.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.021] [PMID: 25244612]
[117]
Trudu, F.; Amato, F. Vaňhara, P.; Pivetta, T.; Peña-Méndez, E.M.; Havel, J. Coordination compounds in cancer: Past, present and perspectives. J. Appl. Biomed., 2015, 13(2), 79-103.
[http://dx.doi.org/10.1016/j.jab.2015.03.003]
[118]
Yu, G.; Jiang, M.; Huang, F.; Chen, X. Supramolecular coordination complexes as diagnostic and therapeutic agents. Curr. Opin. Chem. Biol., 2021, 61, 19-31.
[http://dx.doi.org/10.1016/j.cbpa.2020.08.007] [PMID: 33147551]
[119]
Grazul, M.; Budzisz, E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord. Chem. Rev., 2009, 253(21-22), 2588-2598.
[http://dx.doi.org/10.1016/j.ccr.2009.06.015]
[120]
Dolfen, D.; Schottler, K.; Valiahdi, S.M.; Jakupec, M.A.; Keppler, B.K.; Tiekink, E.R.T.; Mohr, F. Synthesis, structures and in vitro cytotoxicity of some platinum(II) complexes containing thiocarbamate esters. J. Inorg. Biochem., 2008, 102(12), 2067-2071.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.07.002] [PMID: 18707761]
[121]
Yeo, C.I.; Ooi, K.K.; Akim, A.M.; Ang, K.P.; Fairuz, Z.A.; Halim, S.N.B.A.; Ng, S.W.; Seng, H.L.; Tiekink, E.R.T. The influence of R substituents in triphenylphosphinegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh] (R=Me, Et and iPr), upon in vitro cytotoxicity against the HT-29 colon cancer cell line and upon apoptotic pathways. J. Inorg. Biochem., 2013, 127, 24-38.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.05.011] [PMID: 23850666]
[122]
Tabassum, S.; Zaki, M.; Afzal, M.; Arjmand, F. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα In vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. Eur. J. Med. Chem., 2014, 74, 509-523.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.046] [PMID: 24508781]
[123]
Tabassum, S.; Afzal, M.; Arjmand, F. New modulated design, docking and synthesis of carbohydrate-conjugate heterobimetallic CuII–SnIV complex as potential topoisomerase II inhibitor: In vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. Eur. J. Med. Chem., 2014, 74, 694-702.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.036] [PMID: 24268597]
[124]
Sandhaus, S.; Taylor, R.; Edwards, T.; Huddleston, A.; Wooten, Y.; Venkatraman, R.; Weber, R.T.; González-Sarrías, A.; Martin, P.M.; Cagle, P.; Tse-Dinh, Y.C.; Beebe, S.J.; Seeram, N.; Holder, A.A. A novel copper(II) complex identified as a potent drug against colorectal and breast cancer cells and as a poison inhibitor for human topoisomerase IIα. Inorg. Chem. Commun., 2016, 64, 45-49.
[http://dx.doi.org/10.1016/j.inoche.2015.12.013] [PMID: 26752972]
[125]
Vikneswaran, R.; Eltayeb, N.E.; Ramesh, S.; Yahya, R. New alicyclic thiosemicarbazone chelated zinc(II) antitumor complexes: Interactions with DNA/protein, nuclease activity and inhibition of topoisomerase-I. Polyhedron, 2016, 105, 89-95.
[http://dx.doi.org/10.1016/j.poly.2015.12.012]
[126]
Heng, M.P.; Sim, K.S.; Tan, K.W. Nickel and zinc complexes of testosterone N4-substituted thiosemicarbazone: Selective cytotoxicity towards human colorectal carcinoma cell line HCT 116 and their cell death mechanisms. J. Inorg. Biochem., 2020, 208, 111097.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111097] [PMID: 32438269]
[127]
Sahyon, H.A.; El-Bindary, A.A.; Shoair, A.F.; Abdellatif, A.A. Synthesis and characterization of ruthenium(III) complex containing 2-aminomethyl benzimidazole, and its anticancer activity of in vitro and in vivo models. J. Mol. Liq., 2018, 255, 122-134.
[http://dx.doi.org/10.1016/j.molliq.2018.01.140]
[128]
Hackl, C.M.; Legina, M.S.; Pichler, V.; Schmidlehner, M.; Roller, A.; Dömötör, O.; Enyedy, E.A.; Jakupec, M.A.; Kandioller, W.; Keppler, B.K. Thiomaltol‐based organometallic complexes with 1‐methylimidazole as leaving group: Synthesis, stability, and biological behavior. Chemistry, 2016, 22(48), 17269-17281.
[http://dx.doi.org/10.1002/chem.201603206] [PMID: 27759173]