Nanotechnology for Sustainable Environmental Applications

Article ID: e291123223993 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Nanotechnology is a captivating scientific field with numerous practical applications. The study of nanomaterials and their unique and enhanced capabilities has prompted extensive research into their diverse uses, spanning disciplines from biology and materials science to chemistry and physics. Nanotechnology is expected to play a crucial role in addressing environmental challenges such as sensing, monitoring, mitigation, and power generation. However, it is important to consider the potential environmental impact of nanotechnology, although the specific pathways of such impact have yet to be fully defined. The utilization of nanomaterials in instruments, gadgets, equipment, and other products, as well as the energy required for their production and operation, directly and indirectly influence our environment. In both cases, it is desirable to minimize their impact. Additionally, advancements in nanoscale catalysts, inline and remote detectors, and nano-chemical reactors hold promise for the detection and mitigation of low-level contaminants. Therefore, this chapter focuses on exploring the foundational concepts of nanoscience and nanotechnology as they relate to the field of environmental engineering.

Graphical Abstract

[1]
Omran, BA.; Omran, BA. Fundamentals of nanotechnology and nanobiotechnology. Nanobiotechnology, 2020, 1-36.
[http://dx.doi.org/10.1007/978-3-030-46071-6_1]
[2]
Horton, M.; Khan, A.; Maddison, S. Delivering nanotechnology to the healthcare, IT and environmental sectors - A perspective from the ‘London centre for nanotechnology’. BT Technol. J., 2006, 24(3), 175-183.
[http://dx.doi.org/10.1007/s10550-006-0090-1]
[3]
Liu, Y.; Su, G.; Zhang, B.; Jiang, G.; Yan, B. Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst, 2011, 136(5), 872-877.
[http://dx.doi.org/10.1039/c0an00905a] [PMID: 21258678]
[4]
Tratnyek, P.G.; Johnson, R.L. Nanotechnologies for environmental cleanup. Nano Today, 2006, 1(2), 44-48.
[http://dx.doi.org/10.1016/S1748-0132(06)70048-2]
[5]
Ali Mansoori, G.; Bastami, TR.; Ahmadpour, A.; Eshaghi, Z. Environmental application of nanotechnology. In: Annual Review of Nano Research; World Scientific Pub. Co., 2008.
[http://dx.doi.org/10.1142/9789812790248_0010]
[6]
Taran, M.; Safaei, M.; Karimi, N.; Almasi, A. Benefits and application of nanotechnology in environmental science: An overview. Biointerface Res. Appl. Chem., 2021, 11, 7860-7870.
[7]
Omran, B.A.; Nassar, H.N.; Younis, S.A.; El-Salamony, R.A.; Fatthallah, N.A.; Hamdy, A.; El-Shatoury, E.H.; El-Gendy, N.S. Novel mycosynthesis of cobalt oxide nanoparticles using Aspergillus brasiliensis ATCC 16404-optimization, characterization and antimicrobial activity. J. Appl. Microbiol., 2020, 128(2), 438-457.
[http://dx.doi.org/10.1111/jam.14498] [PMID: 31650655]
[8]
El‐Gendy, NS; El‐Gendy, NS Omran, BA Green synthesis of nanoparticles for water treatment. In: Nano and Bio‐Based Technologies for Wastewater Treatment: Prediction and Control Tools for the Dispersion of Pollutants in the Environment; Wiley,, 2019.
[http://dx.doi.org/10.1002/9781119577119.ch7]
[9]
Hornyak, GL.; Moore, JJ.; Tibbals, HF.; Dutta, J. Fundamentals of nanotechnology; CRC press, 2018.
[http://dx.doi.org/10.1201/9781315222561]
[10]
Omran, BA. Nanobiotechnology: A multidisciplinary field of science; Springer, 2020.
[http://dx.doi.org/10.1007/978-3-030-46071-6]
[11]
Tiwari, P.; Srivastava, M.; Mishra, R.; Ji, G.; Prakash, R. Economic use of waste Musa paradisica peels for effective control of mild steel loss in aggressive acid solutions. J. Environ. Chem. Eng., 2018, 6(4), 4773-4783.
[http://dx.doi.org/10.1016/j.jece.2018.07.016]
[12]
Chen, Y.; Li, C.P.; Chen, H.; Chen, Y. One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process. Sci. Technol. Adv. Mater., 2006, 7(8), 839-846.
[http://dx.doi.org/10.1016/j.stam.2006.11.014]
[13]
Lalwani, G.; Henslee, A.M.; Farshid, B.; Lin, L.; Kasper, F.K.; Qin, Y.X.; Mikos, A.G.; Sitharaman, B. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules, 2013, 14(3), 900-909.
[http://dx.doi.org/10.1021/bm301995s] [PMID: 23405887]
[14]
Wan, J.; Lacey, S.D.; Dai, J.; Bao, W.; Fuhrer, M.S.; Hu, L. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev., 2016, 45(24), 6742-6765.
[http://dx.doi.org/10.1039/C5CS00758E] [PMID: 27704060]
[15]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[16]
Ahmad, W.; Singh, A.; Mishrwan, V.S.; Joshi, S.; Rawat, A. Titanium dioxide nanomaterials: Synthesis and applications. Asian J. Chem., 2023, 35(8), 1770-1774.
[http://dx.doi.org/10.14233/ajchem.2023.27287]
[17]
Baer, D.R.; Engelhard, M.H.; Johnson, G.E.; Laskin, J.; Lai, J.; Mueller, K.; Munusamy, P.; Thevuthasan, S.; Wang, H.; Washton, N.; Elder, A.; Baisch, B.L.; Karakoti, A.; Kuchibhatla, S.V.N.T.; Moon, D. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol. A, 2013, 31(5), 050820.
[http://dx.doi.org/10.1116/1.4818423] [PMID: 24482557]
[18]
Omran, B.A.; Nassar, H.N.; Younis, S.A.; Fatthallah, N.A.; Hamdy, A.; El-Shatoury, E.H.; El-Gendy, N.S. Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria. J. Appl. Microbiol., 2019, 126(1), 138-154.
[http://dx.doi.org/10.1111/jam.14102] [PMID: 30199141]
[19]
Zhang, J.H.; Li, Z.; Xu, J.; Li, J.; Yan, K.; Cheng, W.; Xin, M.; Zhu, T.; Du, J.; Chen, S.; An, X.; Zhou, Z.; Cheng, L.; Ying, S.; Zhang, J.; Gao, X.; Zhang, Q.; Jia, X.; Shi, Y.; Pan, L. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun., 2022, 13(1), 5839.
[http://dx.doi.org/10.1038/s41467-022-33454-y] [PMID: 36192475]
[20]
Bumbrah, G.S.; Sharma, R.M. Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic Sci., 2016, 6(3), 209-215.
[http://dx.doi.org/10.1016/j.ejfs.2015.06.001]
[21]
Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis, 6th ed; Brooks Cole: Belmont, 2007, p. 1039.
[22]
Huang, X.; Liu, H.; Lu, D.; Lin, Y.; Liu, J.; Liu, Q.; Nie, Z.; Jiang, G. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chem. Soc. Rev., 2021, 50(8), 5243-5280.
[http://dx.doi.org/10.1039/D0CS00714E] [PMID: 33656017]
[23]
Lavigne, J.P.; Espinal, P.; Dunyach-Remy, C.; Messad, N.; Pantel, A.; Sotto, A. Mass spectrometry: A revolution in clinical microbiology? CCLM, 2013, 51(2), 257-270.
[http://dx.doi.org/10.1515/cclm-2012-0291] [PMID: 23072853]
[24]
Korin, E.; Froumin, N.; Cohen, S. Surface analysis of nanocomplexes by X-ray photoelectron spectroscopy (XPS). ACS Biomater. Sci. Eng., 2017, 3(6), 882-889.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00040] [PMID: 33429560]
[25]
Matsushima, N.; Yamauchi, J. First-principles calculation of X-ray photoelectron spectroscopy binding energy shift for nitrogen and phosphorus defects in 3C-silicon carbide. Jpn. J. Appl. Phys., 2019, 58(6), 061005.
[http://dx.doi.org/10.7567/1347-4065/ab1c6f]
[26]
Dominguez, G.; Mcleod, A.S.; Gainsforth, Z.; Kelly, P.; Bechtel, H.A.; Keilmann, F.; Westphal, A.; Thiemens, M.; Basov, D.N. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat. Commun., 2014, 5(1), 5445.
[http://dx.doi.org/10.1038/ncomms6445] [PMID: 25487365]
[27]
Kumar, S.; Biswas, A. A unified TOPSIS approach to MADM problems in interval-valued intuitionistic fuzzy environment. In: Computational Intelligence: Theories. Applications and Future Directions-Volume II; Springer: Singapore, 2019; pp. 435-447.
[28]
Ellis, D.I.; Goodacre, R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 2006, 131(8), 875-885.
[http://dx.doi.org/10.1039/b602376m] [PMID: 17028718]
[29]
Bayda, S.; Hadla, M.; Palazzolo, S.; Kumar, V.; Caligiuri, I.; Ambrosi, E.; Pontoglio, E.; Agostini, M.; Tuccinardi, T.; Benedetti, A.; Riello, P.; Canzonieri, V.; Corona, G.; Toffoli, G.; Rizzolio, F. Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy. J. Control. Release, 2017, 248, 144-152.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.022] [PMID: 28093297]
[30]
Hambardzumyan, A.; Molinari, M.; Dumelie, N.; Foulon, L.; Habrant, A.; Chabbert, B.; Aguié-Béghin, V. Structure and optical properties of plant cell wall bio-inspired materials: Cellulose–lignin multilayer nanocomposites. C. R. Biol., 2011, 334(11), 839-850.
[http://dx.doi.org/10.1016/j.crvi.2011.07.003] [PMID: 22078740]
[31]
Dendisová, M.; Jeništová, A. Parchaňská-Kokaislová, A.; Matějka, P.; Prokopec, V.; Švecová, M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal. Chim. Acta, 2018, 1031, 1-14.
[http://dx.doi.org/10.1016/j.aca.2018.05.046] [PMID: 30119727]
[32]
Kumar, C.S. Ed.; Raman spectroscopy for nanomaterials characterization; Springer, 2012.
[http://dx.doi.org/10.1007/978-3-642-20620-7]
[33]
Smith, E.; Dent, G. Modern Raman spectroscopy: A practical approach; John Wiley & Sons, 2019.
[http://dx.doi.org/10.1002/9781119440598]
[34]
Titus, D.; Samuel, JJ.E. Nanoparticle characterization techniques. In: Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier, 2019.
[35]
Chirayil, CJ.; Abraham, J.; Mishra, RK.; George, SC.; Thomas, S. Instrumental techniques for the characterization of nanoparticles. In: Thermal and rheological measurement techniques for nanomaterials characterization; Elsevier, 2017; pp. 1-36.
[http://dx.doi.org/10.1016/B978-0-323-46139-9.00001-3]
[36]
Kumar, C.S. Ed.; UV-VIS and photoluminescence spectroscopy for nanomaterials characterization; Springer: Berlin, Heidelberg, 2013.
[http://dx.doi.org/10.1007/978-3-642-27594-4]
[37]
Mayeen, A.; Shaji, LK.; Nair, AK.; Kalarikkal, N. Morphological characterization of nanomaterials. In: Characterization of Nanomaterials; Woodhead Publishing, 2018.
[http://dx.doi.org/10.1016/B978-0-08-101973-3.00012-2]
[38]
Joshi, M.; Patravale, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int. J. Pharm., 2008, 346(1-2), 124-132.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.060] [PMID: 17651933]
[39]
Inkson, BJ Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In: Materials characterization using nondestructive evaluation (NDE) methods;; Woodhead publishing,, 2016.
[40]
Cheville, N.F.; Stasko, J. Techniques in electron microscopy of animal tissue. Vet. Pathol., 2014, 51(1), 28-41.
[http://dx.doi.org/10.1177/0300985813505114] [PMID: 24114311]
[41]
Varela, M.; Lupini, A.R.; Benthem, K.; Borisevich, A.Y.; Chisholm, M.F.; Shibata, N.; Abe, E.; Pennycook, S.J. Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res., 2005, 35(1), 539-569.
[http://dx.doi.org/10.1146/annurev.matsci.35.102103.090513]
[42]
Bian, K.; Gerber, C.; Heinrich, A.J.; Müller, D.J.; Scheuring, S.; Jiang, Y. Scanning probe microscopy. Nat. Rev. Methods Primers, 2021, 1(1), 36.
[http://dx.doi.org/10.1038/s43586-021-00033-2]
[43]
Binnig, G.; Gerber, C.; Stoll, E.; Albrecht, T.R.; Quate, C.F. Atomic resolution with atomic force microscope. Europhys. Lett., 1987, 3(12), 1281-1286.
[http://dx.doi.org/10.1209/0295-5075/3/12/006]
[44]
Gavara, N. A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc. Res. Tech., 2017, 80(1), 75-84.
[http://dx.doi.org/10.1002/jemt.22776] [PMID: 27676584]
[45]
Rashidi, L.; Khosravi-Darani, K. The applications of nanotechnology in food industry. Crit. Rev. Food Sci. Nutr., 2011, 51(8), 723-730.
[http://dx.doi.org/10.1080/10408391003785417] [PMID: 21838555]
[46]
Silva, G.A. Introduction to nanotechnology and its applications to medicine. Surg. Neurol., 2004, 61(3), 216-220.
[http://dx.doi.org/10.1016/j.surneu.2003.09.036] [PMID: 14984987]
[47]
Singhal, S.; Nie, S.; Wang, M.D. Nanotechnology applications in surgical oncology. Annu. Rev. Med., 2010, 61(1), 359-373.
[http://dx.doi.org/10.1146/annurev.med.60.052907.094936] [PMID: 20059343]
[48]
Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthet. Surg., 2010, 3(1), 32-33.
[http://dx.doi.org/10.4103/0974-2077.63301] [PMID: 20606992]
[49]
Hamida, R.S.; Ali, M.A.; Redhwan, A.M.O.; Bin-Meferij, M.M. Cyanobacteria-a promising platform in green nanotechnology: A review on nanoparticles fabrication and their prospective applications. Int. J. Nanomed., 2020, 15, 6033-6066.
[http://dx.doi.org/10.2147/IJN.S256134] [PMID: 32884261]
[50]
Ranghar, S.; Sirohi, P.; Verma, P.; Agarwal, V. Nanoparticle-based drug delivery systems: Promising approaches against infections. Braz. Arch. Biol. Technol., 2013, 57(2), 209-222.
[http://dx.doi.org/10.1590/S1516-89132013005000011]
[51]
Peavy, S.H.; Rowe, D.R.; Tchobanoglous, G. Environmental Engineering, International Edition; MacGraw-Hill, 1985, pp. 207-322.
[52]
Al-Muyeed, A.; Manzoor-Al Islam, S.; Mamun, Z.I. A novel wastewater treatment ecotechnology applied to improve environmental sanitation in Khulna slum. Sixth South Asian Conference on Sanitation (SACOSAN), Dhaka, Bangladesh 11-13 Jan2016.
[53]
Hristozov, D.; Ertel, J. Nanotechnology and sustainability: Benefits and risks of nanotechnology for environmental sustainability. Forum der Forschung, 2009, 22, 161-168.
[54]
Dudefoi, W.; Villares, A.; Peyron, S.; Moreau, C.; Ropers, M.H.; Gontard, N.; Cathala, B. Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. Innov. Food Sci. Emerg. Technol., 2018, 46, 107-121.
[http://dx.doi.org/10.1016/j.ifset.2017.09.007]
[55]
Peters, R.J.B.; Bouwmeester, H.; Gottardo, S.; Amenta, V.; Arena, M.; Brandhoff, P.; Marvin, H.J.P.; Mech, A.; Moniz, F.B.; Pesudo, L.Q.; Rauscher, H.; Schoonjans, R.; Undas, A.K.; Vettori, M.V.; Weigel, S.; Aschberger, K. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol., 2016, 54, 155-164.
[http://dx.doi.org/10.1016/j.tifs.2016.06.008]
[56]
Chau, C.F.; Wu, S.H.; Yen, G.C. The development of regulations for food nanotechnology. Trends Food Sci. Technol., 2007, 18(5), 269-280.
[http://dx.doi.org/10.1016/j.tifs.2007.01.007]
[57]
Das, G.; Patra, J.K.; Paramithiotis, S.; Shin, H.S. The sustainability challenge of food and environmental nanotechnology: Current status and imminent perceptions. Int. J. Environ. Res. Public Health, 2019, 16(23), 4848.
[http://dx.doi.org/10.3390/ijerph16234848] [PMID: 31810271]
[58]
Babatunde, D.E.; Denwigwe, I.H.; Babatunde, O.M.; Gbadamosi, S.L.; Babalola, I.P.; Agboola, O. Environmental and societal impact of nanotechnology. IEEE Access, 2020, 8, 4640-4667.
[http://dx.doi.org/10.1109/ACCESS.2019.2961513]
[59]
Rickerby, D.G.; Morrison, M. Nanotechnology and the environment: A European perspective. Sci. Technol. Adv. Mater., 2007, 8(1-2), 19-24.
[http://dx.doi.org/10.1016/j.stam.2006.10.002]
[60]
Jiménez-Cadena, G.; Riu, J.; Rius, F.X. Gas sensors based on nanostructured materials. Analyst, 2007, 132(11), 1083-1099.
[http://dx.doi.org/10.1039/b704562j] [PMID: 17955141]
[61]
Baglama, J.; Reichel, L. Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM J. Sci. Comput., 2005, 27(1), 19-42.
[http://dx.doi.org/10.1137/04060593X]
[62]
Green, S.B.; Yang, Y. Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 2009, 74(1), 155-167.
[http://dx.doi.org/10.1007/s11336-008-9099-3]
[63]
Rodrigues, S.M.; Demokritou, P.; Dokoozlian, N.; Hendren, C.O.; Karn, B.; Mauter, M.S.; Sadik, O.A.; Safarpour, M.; Unrine, J.M.; Viers, J.; Welle, P.; White, J.C.; Wiesner, M.R.; Lowry, G.V. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ. Sci. Nano, 2017, 4(4), 767-781.
[http://dx.doi.org/10.1039/C6EN00573J]
[64]
Mesci-Haftaci, S.; Ankarali, H.; Caglar, M.; Yavuzcan, A. Reliability of colposcopy in Turkey: correlation with Pap smear and 1-year follow up. Asian Pac. J. Cancer Prev., 2014, 15(17), 7317-7320.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7317] [PMID: 25227835]
[65]
Xiang, K.; Li, Y.; Ford, W.; Land, W.; Schaffer, J.D.; Congdon, R.; Zhang, J.; Sadik, O. Automated analysis of food-borne pathogens using a novel microbial cell culture, sensing and classification system. Analyst, 2016, 141(4), 1472-1482.
[http://dx.doi.org/10.1039/C5AN02614H] [PMID: 26818563]
[66]
Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol., 2017, 8, 1014.
[http://dx.doi.org/10.3389/fmicb.2017.01014] [PMID: 28676790]
[67]
Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils, 2015, 51(8), 897-911.
[http://dx.doi.org/10.1007/s00374-015-1039-7]
[68]
Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol., 2015, 77, 36-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039] [PMID: 25748851]
[69]
Jayavarthanan, R.; Nanda, A.; Bhat, M.A. The impact of nanotechnology on environment. In: Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications; IGI Global, 2017; pp. 1659-1689.
[70]
Palit, S.; Hussain, C.M. Nanomaterials for environmental engineering and energy applications. In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Taylor & Francis Group, 2020.
[http://dx.doi.org/10.1007/978-3-030-11155-7_98-1]